|
model: |
|
base_learning_rate: 1.0e-5 |
|
target: sgm.models.diffusion.DiffusionEngine |
|
params: |
|
scale_factor: 0.13025 |
|
disable_first_stage_autocast: True |
|
no_cond_log: True |
|
|
|
ckpt_config: |
|
target: sgm.modules.checkpoint.CheckpointEngine |
|
params: |
|
ckpt_path: checkpoints/sd_xl_base_1.0.safetensors |
|
pre_adapters: |
|
- target: sgm.modules.checkpoint.Finetuner |
|
params: |
|
keys: |
|
- model\.diffusion_model\.(input_blocks|middle_block|output_blocks)(\.[0-9])?\.[0-9]\.transformer_blocks\.[0-9]\.attn2\.(to_k|to_v)\.weight |
|
- target: sgm.modules.checkpoint.Pruner |
|
params: |
|
keys: |
|
- model\.diffusion_model\.label_emb\.0\.0\.weight |
|
slices: |
|
- ":, :1024" |
|
print_sd_keys: False |
|
print_model: False |
|
|
|
scheduler_config: |
|
target: sgm.lr_scheduler.LambdaLinearScheduler |
|
params: |
|
warm_up_steps: [ 1000 ] |
|
cycle_lengths: [ 10000000000000 ] |
|
f_start: [ 1.e-6 ] |
|
f_max: [ 1. ] |
|
f_min: [ 1. ] |
|
|
|
denoiser_config: |
|
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser |
|
params: |
|
num_idx: 1000 |
|
|
|
scaling_config: |
|
target: sgm.modules.diffusionmodules.denoiser_scaling.EpsScaling |
|
|
|
discretization_config: |
|
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization |
|
|
|
network_config: |
|
target: sgm.modules.diffusionmodules.openaimodel.UNetModel |
|
params: |
|
adm_in_channels: 1024 |
|
num_classes: sequential |
|
use_checkpoint: True |
|
in_channels: 4 |
|
out_channels: 4 |
|
model_channels: 320 |
|
attention_resolutions: [ 4, 2 ] |
|
num_res_blocks: 2 |
|
channel_mult: [ 1, 2, 4 ] |
|
num_head_channels: 64 |
|
use_linear_in_transformer: True |
|
transformer_depth: [ 1, 2, 10 ] |
|
context_dim: 1664 |
|
spatial_transformer_attn_type: softmax-xformers |
|
|
|
conditioner_config: |
|
target: sgm.modules.GeneralConditioner |
|
params: |
|
emb_models: |
|
|
|
- is_trainable: False |
|
input_key: jpg |
|
target: sgm.modules.encoders.modules.FrozenOpenCLIPImageEmbedder |
|
params: |
|
arch: ViT-bigG-14 |
|
version: laion2b_s39b_b160k |
|
freeze: True |
|
repeat_to_max_len: False |
|
output_tokens: True |
|
only_tokens: True |
|
|
|
- is_trainable: False |
|
input_key: original_size_as_tuple |
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
|
params: |
|
outdim: 256 |
|
|
|
- is_trainable: False |
|
input_key: crop_coords_top_left |
|
target: sgm.modules.encoders.modules.ConcatTimestepEmbedderND |
|
params: |
|
outdim: 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
first_stage_config: |
|
target: sgm.models.autoencoder.AutoencoderKLInferenceWrapper |
|
params: |
|
embed_dim: 4 |
|
monitor: val/rec_loss |
|
ddconfig: |
|
attn_type: vanilla-xformers |
|
double_z: true |
|
z_channels: 4 |
|
resolution: 256 |
|
in_channels: 3 |
|
out_ch: 3 |
|
ch: 128 |
|
ch_mult: [ 1, 2, 4, 4 ] |
|
num_res_blocks: 2 |
|
attn_resolutions: [ ] |
|
dropout: 0.0 |
|
lossconfig: |
|
target: torch.nn.Identity |
|
|
|
loss_fn_config: |
|
target: sgm.modules.diffusionmodules.loss.StandardDiffusionLoss |
|
params: |
|
offset_noise_level: 0.04 |
|
sigma_sampler_config: |
|
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling |
|
params: |
|
num_idx: 1000 |
|
|
|
discretization_config: |
|
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization |
|
loss_weighting_config: |
|
target: sgm.modules.diffusionmodules.loss_weighting.EpsWeighting |
|
|
|
sampler_config: |
|
target: sgm.modules.diffusionmodules.sampling.EulerEDMSampler |
|
params: |
|
num_steps: 50 |
|
|
|
discretization_config: |
|
target: sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization |
|
|
|
guider_config: |
|
target: sgm.modules.diffusionmodules.guiders.VanillaCFG |
|
params: |
|
scale: 5.0 |
|
|
|
data: |
|
target: sgm.data.dataset.StableDataModuleFromConfig |
|
params: |
|
train: |
|
datapipeline: |
|
urls: |
|
- s3://stability-west/sddatasets/laiocosplitv1c/ |
|
pipeline_config: |
|
shardshuffle: 10000 |
|
sample_shuffle: 10000 |
|
|
|
preprocessors: |
|
- target: sdata.filters.SimpleKeyFilter |
|
params: |
|
keys: [txt, jpg] |
|
- target: sdata.filters.AttributeFilter |
|
params: |
|
filter_dict: |
|
SSCD_65: False |
|
is_spawning: True |
|
is_getty: True |
|
|
|
decoders: |
|
- pil |
|
|
|
loader: |
|
batch_size: 1 |
|
num_workers: 4 |
|
batched_transforms: |
|
- target: sdata.mappers.MultiAspectCacher |
|
params: |
|
batch_size: 16 |
|
debug: False |
|
crop_coords_key: crop_coords_top_left |
|
target_size_key: target_size_as_tuple |
|
original_size_key: original_size_as_tuple |
|
max_pixels: 262144 |
|
|
|
|
|
lightning: |
|
strategy: |
|
target: pytorch_lightning.strategies.DDPStrategy |
|
|
|
modelcheckpoint: |
|
params: |
|
every_n_train_steps: 100000 |
|
|
|
callbacks: |
|
metrics_over_trainsteps_checkpoint: |
|
params: |
|
every_n_train_steps: 5000 |
|
|
|
image_logger: |
|
target: sgm.modules.loggers.train_logging.SampleLogger |
|
params: |
|
disabled: False |
|
enable_autocast: True |
|
batch_frequency: 2000 |
|
max_images: 4 |
|
increase_log_steps: True |
|
log_first_step: False |
|
log_before_first_step: True |
|
log_images_kwargs: |
|
N: 4 |
|
num_steps: |
|
- 50 |
|
ucg_keys: [ ] |
|
|
|
trainer: |
|
devices: 0, |
|
benchmark: False |
|
num_sanity_val_steps: 0 |
|
accumulate_grad_batches: 1 |
|
max_epochs: 1000 |
|
precision: 16 |
|
|