|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
from loguru import logger |
|
from projectaria_tools.core.sophus import SE3 |
|
|
|
|
|
class HandEyeSolver: |
|
def __init__(self, smooth: bool, window: int, skip: int = 240, stride: int = 1): |
|
self.stride = int(stride) |
|
self.smooth = smooth |
|
self.skip = int(skip) |
|
self.window = int(window) |
|
if self.window < 240: |
|
self.smooth = False |
|
|
|
def so3xR3(self, T_Wa_A: list[SE3], T_Wb_B: list[SE3]) -> SE3: |
|
""" |
|
\return T_A_B using so3xR3 SVD decomposition. |
|
""" |
|
assert len(T_Wa_A) == len(T_Wb_B) |
|
|
|
N = len(T_Wa_A) - self.stride |
|
se3_A1_A2 = [T_Wa_A[i].inverse() @ T_Wa_A[i + self.stride] for i in range(N)] |
|
se3_B1_B2 = [T_Wb_B[i].inverse() @ T_Wb_B[i + self.stride] for i in range(N)] |
|
|
|
|
|
log_A1_A2 = [x.rotation().log() for x in se3_A1_A2] |
|
log_B1_B2 = [x.rotation().log() for x in se3_B1_B2] |
|
A = np.stack(log_A1_A2, axis=-1).squeeze() |
|
B = np.stack(log_B1_B2, axis=-1).squeeze() |
|
logger.debug(f"{A.shape=}, {B.shape=}") |
|
|
|
matrixU, S, matrixVh = np.linalg.svd( |
|
B @ A.transpose(), full_matrices=True, compute_uv=True |
|
) |
|
logger.debug(f"{matrixU.shape=}, {S.shape=}, {matrixVh.shape=}") |
|
|
|
RX = matrixVh @ matrixU.transpose() |
|
if np.linalg.det(RX) < 0: |
|
RX[2, :] = RX[2, :] * -1.0 |
|
|
|
|
|
jacobian = [x.rotation().to_matrix() - np.eye(3) for x in se3_A1_A2] |
|
jacobian = np.concatenate(jacobian, axis=0) |
|
assert jacobian.shape == (N * 3, 3) |
|
logger.debug(f"{jacobian.shape=}") |
|
residual = [ |
|
RX @ b.translation().reshape(3, 1) - a.translation().reshape(3, 1) |
|
for a, b in zip(se3_A1_A2, se3_B1_B2) |
|
] |
|
residual = np.concatenate(residual, axis=0) |
|
assert residual.shape == (N * 3, 1) |
|
logger.debug(f"{residual.shape=}") |
|
JTJ = jacobian.T @ jacobian |
|
JTr = jacobian.T @ residual |
|
tX = np.linalg.lstsq(JTJ, JTr, rcond=None)[0] |
|
|
|
T_A_B = np.ndarray([3, 4]) |
|
T_A_B[:3, :3] = RX |
|
T_A_B[:3, 3] = tX.squeeze() |
|
logger.debug(f"{T_A_B=}\n") |
|
T_A_B = SE3.from_matrix3x4(T_A_B) |
|
return T_A_B |
|
|
|
def __call__(self, T_Wa_A: list[SE3], T_Wb_B: list[SE3]) -> list[SE3]: |
|
N = len(T_Wa_A) |
|
assert N == len(T_Wb_B) |
|
if self.window >= N or not self.smooth: |
|
T_A_B = self.so3xR3(T_Wa_A, T_Wb_B) |
|
return [T_A_B] |
|
|
|
Ts_A_B = [] |
|
for i in range(0, N, self.skip): |
|
istart = int(i - self.window / 2) |
|
if istart < 0: |
|
istart = 0 |
|
iend = istart + self.window |
|
if iend >= N: |
|
iend = -1 |
|
istart = N - self.window |
|
|
|
t_wa_a = T_Wa_A[istart:iend] |
|
t_wb_b = T_Wb_B[istart:iend] |
|
T_A_B = self.so3xR3(t_wa_a, t_wb_b) |
|
Ts_A_B.append(T_A_B) |
|
return Ts_A_B |
|
|