rdiehlmartinez
commited on
Commit
·
ebfb4b3
1
Parent(s):
33a4030
including model size into subconfig name
Browse files- pythia-training-metrics.py +71 -71
pythia-training-metrics.py
CHANGED
@@ -10,54 +10,56 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
10 |
MODEL_SIZES = [
|
11 |
"70m",
|
12 |
"160m",
|
13 |
-
|
14 |
"1.4b",
|
15 |
#"2.8b",
|
16 |
]
|
17 |
|
18 |
_GRADIENTS_DESCRIPTION = """\
|
19 |
-
Dataset for storing gradients of pythia models
|
20 |
"""
|
21 |
|
22 |
_WEIGHTS_DESCRIPTION = """\
|
23 |
-
Dataset for storing weights of pythia models
|
24 |
"""
|
25 |
|
26 |
_WEIGHTS_MINI_DESCRIPTION = """\
|
27 |
Dataset for storing weights of pythia models (minimizes the amount of gradients per
|
28 |
-
checkpoint to only 2)
|
29 |
"""
|
30 |
|
31 |
_ACTIVATIONS_DESCRIPTION = """\
|
32 |
-
Dataset for storing activations of pythia models
|
33 |
"""
|
34 |
|
35 |
-
BUILDER_CONFIGS = [
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
57 |
|
58 |
def _info(self):
|
59 |
"""
|
60 |
-
NOTE: we might want to specify features, but since the
|
61 |
model size it's annoying and kind of pointless since hf does it automatically
|
62 |
"""
|
63 |
|
@@ -71,7 +73,7 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
71 |
Returns data for different splits - we define a split as a model size.
|
72 |
"""
|
73 |
|
74 |
-
|
75 |
|
76 |
kwargs_checkpoint_steps = []
|
77 |
kwargs_gradient_steps = []
|
@@ -85,45 +87,40 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
85 |
"""
|
86 |
return list(range(max(0, step-5), min(step+6, 143_000)))
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
kwargs_gradient_steps.append(gradient_step)
|
113 |
-
else:
|
114 |
-
raise Exception("Invalid config name")
|
115 |
-
|
116 |
-
downloaded_files = dl_manager.download_and_extract(model_size_to_fp)
|
117 |
|
118 |
return [
|
119 |
datasets.SplitGenerator(
|
120 |
-
name=
|
121 |
gen_kwargs={
|
122 |
-
"filepaths":
|
123 |
"checkpoint_steps": kwargs_checkpoint_steps,
|
124 |
-
**({"gradient_steps": kwargs_gradient_steps} if self.config.name
|
125 |
}
|
126 |
-
)
|
127 |
]
|
128 |
|
129 |
def _generate_examples(self, filepaths, checkpoint_steps, **kwargs):
|
@@ -132,7 +129,7 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
132 |
if isinstance(filepaths, str):
|
133 |
filepaths = [filepaths]
|
134 |
|
135 |
-
if self.config.name
|
136 |
gradient_steps = kwargs["gradient_steps"]
|
137 |
|
138 |
global_idx = 0 # the unique identifier for the example
|
@@ -140,12 +137,15 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
140 |
for idx, filepath in enumerate(filepaths):
|
141 |
with open(filepath, 'rb') as f:
|
142 |
data = pickle.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
yield global_idx, {"checkpoint_step": checkpoint_steps[idx], "layer_name": layer_name, "data": layer_data}
|
147 |
-
global_idx += 1
|
148 |
-
elif self.config.name in ["gradients", "gradients_mini"]:
|
149 |
-
for layer_name, layer_data in data.items():
|
150 |
-
yield global_idx, {"checkpoint_step": checkpoint_steps[idx], "layer_name": layer_name, "gradient_step": gradient_steps[idx], "data": layer_data}
|
151 |
-
global_idx += 1
|
|
|
10 |
MODEL_SIZES = [
|
11 |
"70m",
|
12 |
"160m",
|
13 |
+
"410m",
|
14 |
"1.4b",
|
15 |
#"2.8b",
|
16 |
]
|
17 |
|
18 |
_GRADIENTS_DESCRIPTION = """\
|
19 |
+
Dataset for storing gradients of pythia models of the requested model size
|
20 |
"""
|
21 |
|
22 |
_WEIGHTS_DESCRIPTION = """\
|
23 |
+
Dataset for storing weights of pythia models of the requested model size
|
24 |
"""
|
25 |
|
26 |
_WEIGHTS_MINI_DESCRIPTION = """\
|
27 |
Dataset for storing weights of pythia models (minimizes the amount of gradients per
|
28 |
+
checkpoint to only 2) of the requested model size
|
29 |
"""
|
30 |
|
31 |
_ACTIVATIONS_DESCRIPTION = """\
|
32 |
+
Dataset for storing activations of pythia models of the requested model size
|
33 |
"""
|
34 |
|
35 |
+
BUILDER_CONFIGS = []
|
36 |
+
for model_size in MODEL_SIZES:
|
37 |
+
BUILDER_CONFIGS.extend([
|
38 |
+
datasets.BuilderConfig(
|
39 |
+
name=f"{model_size}__gradients",
|
40 |
+
description=_WEIGHTS_DESCRIPTION,
|
41 |
+
version="1.0.0",
|
42 |
+
),
|
43 |
+
datasets.BuilderConfig(
|
44 |
+
name=f"{model_size}__gradients_mini",
|
45 |
+
description=_WEIGHTS_MINI_DESCRIPTION,
|
46 |
+
version="1.0.0",
|
47 |
+
),
|
48 |
+
datasets.BuilderConfig(
|
49 |
+
name=f"{model_size}__activations",
|
50 |
+
description=_ACTIVATIONS_DESCRIPTION,
|
51 |
+
version="1.0.0",
|
52 |
+
),
|
53 |
+
datasets.BuilderConfig(
|
54 |
+
name=f"{model_size}__weights",
|
55 |
+
description=_WEIGHTS_DESCRIPTION,
|
56 |
+
version="1.0.0",
|
57 |
+
),
|
58 |
+
])
|
59 |
|
60 |
def _info(self):
|
61 |
"""
|
62 |
+
NOTE: we might want to specify features, but since the features are different for each
|
63 |
model size it's annoying and kind of pointless since hf does it automatically
|
64 |
"""
|
65 |
|
|
|
73 |
Returns data for different splits - we define a split as a model size.
|
74 |
"""
|
75 |
|
76 |
+
to_download_files = []
|
77 |
|
78 |
kwargs_checkpoint_steps = []
|
79 |
kwargs_gradient_steps = []
|
|
|
87 |
"""
|
88 |
return list(range(max(0, step-5), min(step+6, 143_000)))
|
89 |
|
90 |
+
model_size = self.config.name.split("__")[0]
|
91 |
+
|
92 |
+
for checkpoint_step in checkpoint_steps:
|
93 |
+
|
94 |
+
directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"
|
95 |
+
|
96 |
+
if "activations" in self.config.name:
|
97 |
+
to_download_files.append(f"{directory_path}/checkpoint_activations.pickle")
|
98 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
99 |
+
elif "weights" in self.config.name:
|
100 |
+
to_download_files.append(f"{directory_path}/checkpoint_weights.pickle")
|
101 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
102 |
+
elif "gradients" in self.config.name:
|
103 |
+
gradient_steps = get_gradient_step(checkpoint_step)
|
104 |
+
if "mini" in self.config.name:
|
105 |
+
gradient_steps = gradient_steps[:2]
|
106 |
+
for gradient_step in gradient_steps:
|
107 |
+
to_download_files.append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
|
108 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
109 |
+
kwargs_gradient_steps.append(gradient_step)
|
110 |
+
else:
|
111 |
+
raise Exception("Invalid config name")
|
112 |
+
|
113 |
+
downloaded_files = dl_manager.download_and_extract(to_download_files)
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
return [
|
116 |
datasets.SplitGenerator(
|
117 |
+
name='default',
|
118 |
gen_kwargs={
|
119 |
+
"filepaths": downloaded_files,
|
120 |
"checkpoint_steps": kwargs_checkpoint_steps,
|
121 |
+
**({"gradient_steps": kwargs_gradient_steps} if "gradients" in self.config.name else {}),
|
122 |
}
|
123 |
+
)
|
124 |
]
|
125 |
|
126 |
def _generate_examples(self, filepaths, checkpoint_steps, **kwargs):
|
|
|
129 |
if isinstance(filepaths, str):
|
130 |
filepaths = [filepaths]
|
131 |
|
132 |
+
if "gradients" in self.config.name:
|
133 |
gradient_steps = kwargs["gradient_steps"]
|
134 |
|
135 |
global_idx = 0 # the unique identifier for the example
|
|
|
137 |
for idx, filepath in enumerate(filepaths):
|
138 |
with open(filepath, 'rb') as f:
|
139 |
data = pickle.load(f)
|
140 |
+
|
141 |
+
for layer_name, layer_data in data.items():
|
142 |
+
record = {
|
143 |
+
"checkpoint_step": checkpoint_steps[idx],
|
144 |
+
"layer_name": layer_name,
|
145 |
+
"data": layer_data,
|
146 |
+
}
|
147 |
+
if "gradients" in self.config.name:
|
148 |
+
record['gradient_step'] = gradient_steps[idx]
|
149 |
|
150 |
+
yield global_idx, record
|
151 |
+
global_idx += 1
|
|
|
|
|
|
|
|
|
|
|
|