rdiehlmartinez
commited on
Commit
·
bc74a1c
1
Parent(s):
70a6425
updating _generate_examples to take in checkpoint and grad step kwargs
Browse files- pythia-training-metrics.py +17 -10
pythia-training-metrics.py
CHANGED
@@ -73,6 +73,9 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
73 |
|
74 |
model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES }
|
75 |
|
|
|
|
|
|
|
76 |
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
|
77 |
checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])
|
78 |
|
@@ -89,14 +92,20 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
89 |
|
90 |
if self.config.name == "activations":
|
91 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
|
|
|
92 |
elif self.config.name == "weights":
|
93 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
|
|
|
94 |
elif self.config.name == "gradients":
|
95 |
for gradient_step in get_gradient_step(checkpoint_step):
|
96 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
|
|
|
|
|
97 |
elif self.config.name == "gradients_mini":
|
98 |
for gradient_step in get_gradient_step(checkpoint_step)[:2]:
|
99 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
|
|
|
|
|
100 |
else:
|
101 |
raise Exception("Invalid config name")
|
102 |
|
@@ -106,12 +115,14 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
106 |
datasets.SplitGenerator(
|
107 |
name=model_size_name,
|
108 |
gen_kwargs={
|
109 |
-
"filepaths": downloaded_fps
|
|
|
|
|
110 |
}
|
111 |
) for model_size_name, downloaded_fps in downloaded_files.items()
|
112 |
]
|
113 |
|
114 |
-
def _generate_examples(self, filepaths):
|
115 |
|
116 |
# the filepaths should be a list of filepaths
|
117 |
if isinstance(filepaths, str):
|
@@ -119,19 +130,15 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
|
|
119 |
|
120 |
global_idx = 0 # the unique identifier for the example
|
121 |
|
122 |
-
for filepath in filepaths:
|
123 |
with open(filepath, 'rb') as f:
|
124 |
data = pickle.load(f)
|
125 |
-
|
126 |
-
# extract checkpoint step from the filepath
|
127 |
-
checkpoint_step = int(filepath.split("/")[-2].split("_")[-1])
|
128 |
-
|
129 |
if self.config.name in ["activations", "weights"]:
|
130 |
for layer_name, layer_data in data.items():
|
131 |
-
yield global_idx, {"checkpoint_step":
|
132 |
global_idx += 1
|
133 |
elif self.config.name in ["gradients", "gradients_mini"]:
|
134 |
-
gradient_step = int(filepath.split('/')[-1].split("_")[-1].split(".")[0])
|
135 |
for layer_name, layer_data in data.items():
|
136 |
-
yield global_idx, {"checkpoint_step":
|
137 |
global_idx += 1
|
|
|
73 |
|
74 |
model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES }
|
75 |
|
76 |
+
kwargs_checkpoint_steps = []
|
77 |
+
kwargs_gradient_steps = []
|
78 |
+
|
79 |
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
|
80 |
checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])
|
81 |
|
|
|
92 |
|
93 |
if self.config.name == "activations":
|
94 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
|
95 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
96 |
elif self.config.name == "weights":
|
97 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
|
98 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
99 |
elif self.config.name == "gradients":
|
100 |
for gradient_step in get_gradient_step(checkpoint_step):
|
101 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
|
102 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
103 |
+
kwargs_gradient_steps.append(gradient_step)
|
104 |
elif self.config.name == "gradients_mini":
|
105 |
for gradient_step in get_gradient_step(checkpoint_step)[:2]:
|
106 |
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
|
107 |
+
kwargs_checkpoint_steps.append(checkpoint_step)
|
108 |
+
kwargs_gradient_steps.append(gradient_step)
|
109 |
else:
|
110 |
raise Exception("Invalid config name")
|
111 |
|
|
|
115 |
datasets.SplitGenerator(
|
116 |
name=model_size_name,
|
117 |
gen_kwargs={
|
118 |
+
"filepaths": downloaded_fps,
|
119 |
+
"checkpoint_steps": kwargs_checkpoint_steps,
|
120 |
+
"gradient_steps": kwargs_gradient_steps,
|
121 |
}
|
122 |
) for model_size_name, downloaded_fps in downloaded_files.items()
|
123 |
]
|
124 |
|
125 |
+
def _generate_examples(self, filepaths, checkpoint_steps, gradient_steps):
|
126 |
|
127 |
# the filepaths should be a list of filepaths
|
128 |
if isinstance(filepaths, str):
|
|
|
130 |
|
131 |
global_idx = 0 # the unique identifier for the example
|
132 |
|
133 |
+
for idx, filepath in enumerate(filepaths):
|
134 |
with open(filepath, 'rb') as f:
|
135 |
data = pickle.load(f)
|
136 |
+
|
|
|
|
|
|
|
137 |
if self.config.name in ["activations", "weights"]:
|
138 |
for layer_name, layer_data in data.items():
|
139 |
+
yield global_idx, {"checkpoint_step": checkpoint_steps[idx], "layer_name": layer_name, "data": layer_data}
|
140 |
global_idx += 1
|
141 |
elif self.config.name in ["gradients", "gradients_mini"]:
|
|
|
142 |
for layer_name, layer_data in data.items():
|
143 |
+
yield global_idx, {"checkpoint_step": checkpoint_steps[idx], "layer_name": layer_name, "gradient_step": gradient_steps[idx], "data": layer_data}
|
144 |
global_idx += 1
|