Upload subtracted-distances.py
Browse files- subtracted-distances.py +90 -0
subtracted-distances.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
|
3 |
+
""" Work in progress
|
4 |
+
Plan:
|
5 |
+
Kinda a "temp" hack (maybe)
|
6 |
+
Prompt for TWO things. Subtract the second embed from the first.
|
7 |
+
Then see what is near
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
import sys
|
12 |
+
import json
|
13 |
+
import torch
|
14 |
+
from safetensors import safe_open
|
15 |
+
|
16 |
+
from transformers import CLIPProcessor,CLIPModel
|
17 |
+
|
18 |
+
clipsrc="openai/clip-vit-large-patch14"
|
19 |
+
processor=None
|
20 |
+
model=None
|
21 |
+
|
22 |
+
device=torch.device("cuda")
|
23 |
+
|
24 |
+
|
25 |
+
def init():
|
26 |
+
global processor
|
27 |
+
global model
|
28 |
+
# Load the processor and model
|
29 |
+
print("loading processor from "+clipsrc,file=sys.stderr)
|
30 |
+
processor = CLIPProcessor.from_pretrained(clipsrc)
|
31 |
+
print("done",file=sys.stderr)
|
32 |
+
print("loading model from "+clipsrc,file=sys.stderr)
|
33 |
+
model = CLIPModel.from_pretrained(clipsrc)
|
34 |
+
print("done",file=sys.stderr)
|
35 |
+
|
36 |
+
model = model.to(device)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
embed_file="embeddings.safetensors"
|
41 |
+
|
42 |
+
device=torch.device("cuda")
|
43 |
+
|
44 |
+
print("reading words from dictionary now",file=sys.stderr)
|
45 |
+
with open("dictionary","r") as f:
|
46 |
+
tokendict = f.readlines()
|
47 |
+
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
|
48 |
+
print(len(wordlist),"lines read")
|
49 |
+
|
50 |
+
|
51 |
+
print("reading embeddings now",file=sys.stderr)
|
52 |
+
model = safe_open(embed_file,framework="pt",device="cuda")
|
53 |
+
embs=model.get_tensor("embeddings")
|
54 |
+
embs.to(device)
|
55 |
+
print("Shape of loaded embeds =",embs.shape)
|
56 |
+
|
57 |
+
def standard_embed_calc(text):
|
58 |
+
if processor == None:
|
59 |
+
init()
|
60 |
+
|
61 |
+
inputs = processor(text=text, return_tensors="pt")
|
62 |
+
inputs.to(device)
|
63 |
+
with torch.no_grad():
|
64 |
+
text_features = model.get_text_features(**inputs)
|
65 |
+
embedding = text_features[0]
|
66 |
+
return embedding
|
67 |
+
|
68 |
+
|
69 |
+
def print_distances(targetemb):
|
70 |
+
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
|
71 |
+
|
72 |
+
print("shape of distances...",targetdistances.shape)
|
73 |
+
|
74 |
+
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
|
75 |
+
|
76 |
+
smallest_distances=smallest_distances.tolist()
|
77 |
+
smallest_indices=smallest_indices.tolist()
|
78 |
+
for d,i in zip(smallest_distances,smallest_indices):
|
79 |
+
print(wordlist[i],"(",d,")")
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
text1=input("First text? ")
|
85 |
+
text2=input("Second text? ")
|
86 |
+
emb1=standard_embed_calc(text1)
|
87 |
+
emb2=standard_embed_calc(text2)
|
88 |
+
|
89 |
+
result=torch.sub(emb1,emb2)
|
90 |
+
print_distances(result)
|