Upload graph-byclip.py
Browse files- graph-byclip.py +21 -11
graph-byclip.py
CHANGED
@@ -5,7 +5,7 @@ Plan:
|
|
5 |
Modded version of graph-embeddings.py
|
6 |
Just to see if using different CLIP module changes values significantly
|
7 |
(It does not)
|
8 |
-
This requires
|
9 |
pip install git+https://github.com/openai/CLIP.git
|
10 |
"""
|
11 |
|
@@ -21,7 +21,11 @@ matplotlib.use('QT5Agg') # Set the backend to TkAgg
|
|
21 |
|
22 |
import matplotlib.pyplot as plt
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
device=torch.device("cuda")
|
27 |
print("loading CLIP model")
|
@@ -29,22 +33,28 @@ model, processor = clip.load(CLIPname,device=device)
|
|
29 |
model.cuda().eval()
|
30 |
print("done")
|
31 |
|
32 |
-
def
|
33 |
-
|
|
|
|
|
34 |
|
35 |
with torch.no_grad():
|
36 |
embed = model.encode_text(tokens)
|
37 |
return embed
|
38 |
|
39 |
|
40 |
-
|
41 |
-
def
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
with torch.no_grad():
|
45 |
-
|
46 |
-
|
47 |
-
return embedding
|
48 |
|
49 |
|
50 |
fig, ax = plt.subplots()
|
|
|
5 |
Modded version of graph-embeddings.py
|
6 |
Just to see if using different CLIP module changes values significantly
|
7 |
(It does not)
|
8 |
+
This code requires
|
9 |
pip install git+https://github.com/openai/CLIP.git
|
10 |
"""
|
11 |
|
|
|
21 |
|
22 |
import matplotlib.pyplot as plt
|
23 |
|
24 |
+
# Available models:
|
25 |
+
# 'RN50', 'RN101', 'RN50x4', 'RN50x16', 'RN50x64', 'ViT-B/32', 'ViT-B/16', 'ViT-L/14', 'ViT-L/14@336px'
|
26 |
+
#CLIPname= "ViT-L/14"
|
27 |
+
CLIPname= "ViT-B/16"
|
28 |
+
#CLIPname= "ViT-L/14@336px"
|
29 |
|
30 |
device=torch.device("cuda")
|
31 |
print("loading CLIP model")
|
|
|
33 |
model.cuda().eval()
|
34 |
print("done")
|
35 |
|
36 |
+
def embed_from_tokenid(num):
|
37 |
+
# A bit sleazy, but, eh.
|
38 |
+
tokens = clip.tokenize("dummy").to(device)
|
39 |
+
tokens[0][1]=num
|
40 |
|
41 |
with torch.no_grad():
|
42 |
embed = model.encode_text(tokens)
|
43 |
return embed
|
44 |
|
45 |
|
46 |
+
|
47 |
+
def embed_from_text(text):
|
48 |
+
if text[0]=="#":
|
49 |
+
print("Converting string to number")
|
50 |
+
return embed_from_tokenid(int(text[1:]))
|
51 |
+
|
52 |
+
tokens = clip.tokenize(text).to(device)
|
53 |
+
print("Tokens for",text,"=",tokens)
|
54 |
+
|
55 |
with torch.no_grad():
|
56 |
+
embed = model.encode_text(tokens)
|
57 |
+
return embed
|
|
|
58 |
|
59 |
|
60 |
fig, ax = plt.subplots()
|