Upload graph-allids.py
Browse filesUtil to visualize the "allembeddings" file
- graph-allids.py +72 -0
graph-allids.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
""" Work in progress
|
4 |
+
Plan:
|
5 |
+
Take a pre-calculated embeddings file.
|
6 |
+
calculate an average distance-from-origin across ALL IDs, and graph that.
|
7 |
+
Typically, you would use
|
8 |
+
"embeddings.allids.safetensors"
|
9 |
+
This covers the full official range of tokenids, 0-49405
|
10 |
+
But, you could use a partial file
|
11 |
+
|
12 |
+
"""
|
13 |
+
|
14 |
+
|
15 |
+
#embed_file="embeddings.allids.safetensors"
|
16 |
+
embed_file="cliptextmodel.embeddings.allids.safetensors"
|
17 |
+
|
18 |
+
|
19 |
+
import sys
|
20 |
+
if len(sys.argv) !=2:
|
21 |
+
print("ERROR: Expect an embeddings.safetensors file as argument")
|
22 |
+
sys.exit(1)
|
23 |
+
embed_file=sys.argv[1]
|
24 |
+
|
25 |
+
import torch
|
26 |
+
from safetensors import safe_open
|
27 |
+
|
28 |
+
import PyQt5
|
29 |
+
import matplotlib
|
30 |
+
matplotlib.use('QT5Agg')
|
31 |
+
|
32 |
+
import matplotlib.pyplot as plt
|
33 |
+
|
34 |
+
device=torch.device("cuda")
|
35 |
+
print(f"reading {embed_file} embeddings now",file=sys.stderr)
|
36 |
+
model = safe_open(embed_file,framework="pt",device="cuda")
|
37 |
+
embs=model.get_tensor("embeddings")
|
38 |
+
embs.to(device)
|
39 |
+
print("Shape of loaded embeds =",embs.shape)
|
40 |
+
|
41 |
+
def embed_from_tokenid(num: int):
|
42 |
+
embed = embs[num]
|
43 |
+
return embed
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
fig, ax = plt.subplots()
|
48 |
+
|
49 |
+
|
50 |
+
#type="variance"
|
51 |
+
type="mean"
|
52 |
+
print(f"calculating {type}...")
|
53 |
+
|
54 |
+
#emb1 = torch.var(embs,dim=0)
|
55 |
+
|
56 |
+
emb1 = torch.mean(embs,dim=0)
|
57 |
+
|
58 |
+
print("shape of emb1:",emb1.shape)
|
59 |
+
|
60 |
+
graph1=emb1.tolist()
|
61 |
+
ax.plot(graph1, label=f"{type} of each all embedding")
|
62 |
+
|
63 |
+
|
64 |
+
# Add labels, title, and legend
|
65 |
+
#ax.set_xlabel('Index')
|
66 |
+
ax.set_ylabel('Values')
|
67 |
+
ax.set_title(f'Graph of {embed_file}')
|
68 |
+
ax.legend()
|
69 |
+
|
70 |
+
# Display the graph
|
71 |
+
print("Pulling up the graph")
|
72 |
+
plt.show()
|