Upload 3 files
Browse files- embeddings.allids.safetensors +3 -0
- generate-id-embeddings.py +68 -0
- graph-byid.py +68 -0
embeddings.allids.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0c899126f5f2ab05d0714a5b07461c087c4f43450317ae07b2bcb1fd237512b
|
3 |
+
size 151772248
|
generate-id-embeddings.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
|
3 |
+
""" Work in progress
|
4 |
+
Plan:
|
5 |
+
Similar to generate-embeddings.py
|
6 |
+
However, instead of reading from a dictionary, just generate by pure
|
7 |
+
numeric tokenID
|
8 |
+
Save it out
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
import sys
|
13 |
+
import json
|
14 |
+
import torch
|
15 |
+
from safetensors.torch import save_file
|
16 |
+
from transformers import CLIPProcessor,CLIPModel
|
17 |
+
|
18 |
+
clipsrc="openai/clip-vit-large-patch14"
|
19 |
+
processor=None
|
20 |
+
model=None
|
21 |
+
|
22 |
+
device=torch.device("cuda")
|
23 |
+
|
24 |
+
|
25 |
+
def init():
|
26 |
+
global processor
|
27 |
+
global model
|
28 |
+
# Load the processor and model
|
29 |
+
print("loading processor from "+clipsrc,file=sys.stderr)
|
30 |
+
processor = CLIPProcessor.from_pretrained(clipsrc)
|
31 |
+
print("done",file=sys.stderr)
|
32 |
+
print("loading model from "+clipsrc,file=sys.stderr)
|
33 |
+
model = CLIPModel.from_pretrained(clipsrc)
|
34 |
+
print("done",file=sys.stderr)
|
35 |
+
|
36 |
+
model = model.to(device)
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
def embed_from_inputs(inputs):
|
41 |
+
with torch.no_grad():
|
42 |
+
text_features = model.get_text_features(**inputs)
|
43 |
+
embedding = text_features[0]
|
44 |
+
|
45 |
+
return embedding
|
46 |
+
|
47 |
+
|
48 |
+
init()
|
49 |
+
inputs = processor(text="dummy", return_tensors="pt")
|
50 |
+
inputs.to(device)
|
51 |
+
|
52 |
+
all_embeddings = []
|
53 |
+
|
54 |
+
for id in range(49405):
|
55 |
+
inputs.input_ids[0][1]=id
|
56 |
+
|
57 |
+
emb=embed_from_inputs(inputs)
|
58 |
+
emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
|
59 |
+
all_embeddings.append(emb)
|
60 |
+
if (id %100) ==0:
|
61 |
+
print(id)
|
62 |
+
|
63 |
+
embs = torch.cat(all_embeddings,dim=0)
|
64 |
+
print("Shape of result = ",embs.shape)
|
65 |
+
print("Saving all the things...")
|
66 |
+
save_file({"embeddings": embs}, "embeddings.safetensors")
|
67 |
+
|
68 |
+
|
graph-byid.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
""" Work in progress
|
4 |
+
Plan:
|
5 |
+
Unlike the other versions of graph-*.py, this one
|
6 |
+
requires "embeddings.allids.safetensors"
|
7 |
+
(created by generate-id-embeddings.py)
|
8 |
+
This covers the full official range of tokenids,
|
9 |
+
0-49405
|
10 |
+
|
11 |
+
It will then ask for 1-2 numeric token IDs.
|
12 |
+
It will pull the embedding matching those ids, and
|
13 |
+
graph them
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
import sys
|
18 |
+
import json
|
19 |
+
import torch
|
20 |
+
from safetensors import safe_open
|
21 |
+
|
22 |
+
import PyQt5
|
23 |
+
import matplotlib
|
24 |
+
matplotlib.use('QT5Agg') # Set the backend to TkAgg
|
25 |
+
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
|
28 |
+
embed_file="embeddings.allids.safetensors"
|
29 |
+
device=torch.device("cuda")
|
30 |
+
print("read in embeddings now",file=sys.stderr)
|
31 |
+
model = safe_open(embed_file,framework="pt",device="cuda")
|
32 |
+
embs=model.get_tensor("embeddings")
|
33 |
+
embs.to(device)
|
34 |
+
print("Shape of loaded embeds =",embs.shape)
|
35 |
+
|
36 |
+
def embed_from_tokenid(num: int):
|
37 |
+
embed = embs[num]
|
38 |
+
return embed
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
fig, ax = plt.subplots()
|
43 |
+
|
44 |
+
|
45 |
+
text1 = input("First tokenid: ")
|
46 |
+
text2 = input("Second tokenid(or leave blank): ")
|
47 |
+
|
48 |
+
|
49 |
+
emb1 = embed_from_tokenid(int(text1))
|
50 |
+
print("shape of emb1:",emb1.shape)
|
51 |
+
|
52 |
+
graph1=emb1.tolist()
|
53 |
+
ax.plot(graph1, label=text1[:20])
|
54 |
+
|
55 |
+
if len(text2) >0:
|
56 |
+
emb2 = embed_from_tokenid(int(text2))
|
57 |
+
graph2=emb2.tolist()
|
58 |
+
ax.plot(graph2, label=text2[:20])
|
59 |
+
|
60 |
+
# Add labels, title, and legend
|
61 |
+
#ax.set_xlabel('Index')
|
62 |
+
ax.set_ylabel('Values')
|
63 |
+
ax.set_title('Comparative Graph of Two Embeddings')
|
64 |
+
ax.legend()
|
65 |
+
|
66 |
+
# Display the graph
|
67 |
+
print("Pulling up the graph")
|
68 |
+
plt.show()
|