ppbrown commited on
Commit
0b935fe
1 Parent(s): 0a2fbbb

Upload 3 files

Browse files
embeddings.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:617a2de31c505ca771ef354528371573d36d065a6fb9ba4b191f71f277162790
3
+ size 101164120
fullword.json ADDED
The diff for this file is too large to render. See raw diff
 
generate-embeddings.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/python3
2
+
3
+ """ Work in progress
4
+ Plan:
5
+ Read in fullword.json for list of works and token
6
+ Generate "proper" embedding for each token, and store in tensor file
7
+ Generate a tensor array of distance to every other token/embedding
8
+ Save it out
9
+ """
10
+
11
+
12
+ import sys
13
+ import json
14
+ import torch
15
+ from safetensors.torch import save_file
16
+ from transformers import CLIPProcessor,CLIPModel
17
+
18
+ clipsrc="openai/clip-vit-large-patch14"
19
+ processor=None
20
+ model=None
21
+
22
+ device=torch.device("cuda")
23
+
24
+
25
+ def init():
26
+ global processor
27
+ global model
28
+ # Load the processor and model
29
+ print("loading processor from "+clipsrc,file=sys.stderr)
30
+ processor = CLIPProcessor.from_pretrained(clipsrc)
31
+ print("done",file=sys.stderr)
32
+ print("loading model from "+clipsrc,file=sys.stderr)
33
+ model = CLIPModel.from_pretrained(clipsrc)
34
+ print("done",file=sys.stderr)
35
+
36
+ model = model.to(device)
37
+
38
+ # Expect SINGLE WORD ONLY
39
+ def standard_embed_calc(text):
40
+ inputs = processor(text=text, return_tensors="pt")
41
+ inputs.to(device)
42
+ with torch.no_grad():
43
+ text_features = model.get_text_features(**inputs)
44
+ embedding = text_features[0]
45
+ return embedding
46
+
47
+
48
+ init()
49
+
50
+ print("read in words from json now",file=sys.stderr)
51
+ with open("fullword.json","r") as f:
52
+ tokendict = json.load(f)
53
+
54
+ print("generate embeddings for each now",file=sys.stderr)
55
+ count=1
56
+ all_embeddings = []
57
+ for word in tokendict.keys():
58
+ emb = standard_embed_calc(word)
59
+ emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
60
+ all_embeddings.append(emb)
61
+ count+=1
62
+ if (count %100) ==0:
63
+ print(count)
64
+
65
+ embs = torch.cat(all_embeddings,dim=0)
66
+ print("Shape of result = ",embs.shape)
67
+ print("Saving all the things...")
68
+ save_file({"embeddings": embs}, "embeddings.safetensors")
69
+
70
+
71
+ print("calculate distances now")
72
+
73
+