Upload 3 files
Browse files- embeddings.safetensors +3 -0
- fullword.json +0 -0
- generate-embeddings.py +73 -0
embeddings.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:617a2de31c505ca771ef354528371573d36d065a6fb9ba4b191f71f277162790
|
3 |
+
size 101164120
|
fullword.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
generate-embeddings.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python3
|
2 |
+
|
3 |
+
""" Work in progress
|
4 |
+
Plan:
|
5 |
+
Read in fullword.json for list of works and token
|
6 |
+
Generate "proper" embedding for each token, and store in tensor file
|
7 |
+
Generate a tensor array of distance to every other token/embedding
|
8 |
+
Save it out
|
9 |
+
"""
|
10 |
+
|
11 |
+
|
12 |
+
import sys
|
13 |
+
import json
|
14 |
+
import torch
|
15 |
+
from safetensors.torch import save_file
|
16 |
+
from transformers import CLIPProcessor,CLIPModel
|
17 |
+
|
18 |
+
clipsrc="openai/clip-vit-large-patch14"
|
19 |
+
processor=None
|
20 |
+
model=None
|
21 |
+
|
22 |
+
device=torch.device("cuda")
|
23 |
+
|
24 |
+
|
25 |
+
def init():
|
26 |
+
global processor
|
27 |
+
global model
|
28 |
+
# Load the processor and model
|
29 |
+
print("loading processor from "+clipsrc,file=sys.stderr)
|
30 |
+
processor = CLIPProcessor.from_pretrained(clipsrc)
|
31 |
+
print("done",file=sys.stderr)
|
32 |
+
print("loading model from "+clipsrc,file=sys.stderr)
|
33 |
+
model = CLIPModel.from_pretrained(clipsrc)
|
34 |
+
print("done",file=sys.stderr)
|
35 |
+
|
36 |
+
model = model.to(device)
|
37 |
+
|
38 |
+
# Expect SINGLE WORD ONLY
|
39 |
+
def standard_embed_calc(text):
|
40 |
+
inputs = processor(text=text, return_tensors="pt")
|
41 |
+
inputs.to(device)
|
42 |
+
with torch.no_grad():
|
43 |
+
text_features = model.get_text_features(**inputs)
|
44 |
+
embedding = text_features[0]
|
45 |
+
return embedding
|
46 |
+
|
47 |
+
|
48 |
+
init()
|
49 |
+
|
50 |
+
print("read in words from json now",file=sys.stderr)
|
51 |
+
with open("fullword.json","r") as f:
|
52 |
+
tokendict = json.load(f)
|
53 |
+
|
54 |
+
print("generate embeddings for each now",file=sys.stderr)
|
55 |
+
count=1
|
56 |
+
all_embeddings = []
|
57 |
+
for word in tokendict.keys():
|
58 |
+
emb = standard_embed_calc(word)
|
59 |
+
emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work
|
60 |
+
all_embeddings.append(emb)
|
61 |
+
count+=1
|
62 |
+
if (count %100) ==0:
|
63 |
+
print(count)
|
64 |
+
|
65 |
+
embs = torch.cat(all_embeddings,dim=0)
|
66 |
+
print("Shape of result = ",embs.shape)
|
67 |
+
print("Saving all the things...")
|
68 |
+
save_file({"embeddings": embs}, "embeddings.safetensors")
|
69 |
+
|
70 |
+
|
71 |
+
print("calculate distances now")
|
72 |
+
|
73 |
+
|