|
|
|
|
|
""" |
|
(Similar to graph-embeddings, but for SDXL) |
|
|
|
This program requires two files as arguments: |
|
A text encoder model (SDXL style), and matching config.json |
|
|
|
You can get the fancy SDXL "vit-bigg" based text encoding model and config, from |
|
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/text_encoder_2 |
|
Take the config.json and one of the .safetensors files |
|
|
|
The sd1.5 encoding model resides at |
|
https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder |
|
|
|
Once it has read those files in, it asks for 1-2 text prompts, and then graphs them. |
|
(and pops up a prog to display the output) |
|
|
|
""" |
|
import sys |
|
import torch |
|
from transformers import CLIPProcessor, CLIPTextModel |
|
|
|
if len(sys.argv) <3: |
|
print("Error: require clipmodel file and config file as arguments") |
|
exit(1) |
|
|
|
|
|
|
|
|
|
model_path = sys.argv[1] |
|
model_config = sys.argv[2] |
|
print("loading",model_path) |
|
model = CLIPTextModel.from_pretrained( |
|
model_path,config=model_config,local_files_only=True,use_safetensors=True) |
|
|
|
|
|
|
|
CLIPname = "openai/clip-vit-large-patch14" |
|
print("getting processor",CLIPname) |
|
processor = CLIPProcessor.from_pretrained(CLIPname) |
|
|
|
def embed_from_text(text): |
|
print("getting tokens for",text) |
|
inputs = processor(text=text, return_tensors="pt") |
|
outputs = model(**inputs) |
|
embeddings = outputs.pooler_output |
|
return embeddings |
|
|
|
|
|
import PyQt5 |
|
import matplotlib |
|
matplotlib.use('QT5Agg') |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
fig, ax = plt.subplots() |
|
|
|
|
|
text1 = input("First prompt: ") |
|
text2 = input("Second prompt(or leave blank): ") |
|
|
|
|
|
emb1 = embed_from_text(text1) |
|
print("shape of emb1:",emb1.shape) |
|
|
|
graph1=emb1[0].tolist() |
|
ax.plot(graph1, label=text1[:20]) |
|
|
|
if len(text2) >0: |
|
emb2 = embed_from_text(text2) |
|
graph2=emb2[0].tolist() |
|
ax.plot(graph2, label=text2[:20]) |
|
|
|
|
|
|
|
ax.set_ylabel('Values') |
|
ax.set_title(f"Graph of Embeddings in {model_path}") |
|
ax.legend() |
|
|
|
|
|
print("Pulling up the graph") |
|
plt.show() |
|
|