|
|
|
|
|
""" |
|
Input a single word, and it will graph it, |
|
as embedded by CLIPModel vs CLIPTextModel |
|
|
|
It will then print out the "distance" between the two, |
|
and then show you a coordinate graph |
|
|
|
You will want to zoom in to actually see the differences, usually |
|
|
|
""" |
|
|
|
|
|
import sys |
|
import json |
|
import torch |
|
from transformers import CLIPProcessor,CLIPModel,CLIPTextModel |
|
import logging |
|
|
|
logging.disable(logging.WARNING) |
|
|
|
import PyQt5 |
|
import matplotlib |
|
matplotlib.use('QT5Agg') |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
clipsrc="openai/clip-vit-large-patch14" |
|
|
|
overlaymodel="text_encoder.bin" |
|
overlaymodel2="text_encoder2.bin" |
|
|
|
processor=None |
|
clipmodel=None |
|
cliptextmodel=None |
|
|
|
device=torch.device("cuda") |
|
|
|
print("loading processor from "+clipsrc,file=sys.stderr) |
|
processor = CLIPProcessor.from_pretrained(clipsrc) |
|
print("done",file=sys.stderr) |
|
|
|
def clipmodel_one_time(text): |
|
global clipmodel |
|
if clipmodel == None: |
|
print("loading CLIPModel from "+clipsrc,file=sys.stderr) |
|
clipmodel = CLIPModel.from_pretrained(clipsrc) |
|
clipmodel = clipmodel.to(device) |
|
print("done",file=sys.stderr) |
|
|
|
inputs = processor(text=text, return_tensors="pt") |
|
inputs.to(device) |
|
with torch.no_grad(): |
|
text_features = clipmodel.get_text_features(**inputs) |
|
return text_features |
|
|
|
|
|
|
|
def cliptextmodel_one_time(text): |
|
global cliptextmodel |
|
if cliptextmodel == None: |
|
print("loading CLIPTextModel from "+clipsrc,file=sys.stderr) |
|
cliptextmodel = CLIPTextModel.from_pretrained(clipsrc) |
|
cliptextmodel = cliptextmodel.to(device) |
|
print("done",file=sys.stderr) |
|
inputs = processor(text=text, return_tensors="pt") |
|
inputs.to(device) |
|
with torch.no_grad(): |
|
outputs = cliptextmodel(**inputs) |
|
embeddings = outputs.pooler_output |
|
return embeddings |
|
|
|
|
|
def print_distance(emb1,emb2): |
|
targetdistance = torch.norm( emb1 - emb2) |
|
print("DISTANCE:",targetdistance) |
|
|
|
|
|
|
|
def prompt_for_word(): |
|
fig, ax = plt.subplots() |
|
|
|
text1 = input("Word or prompt: ") |
|
if text1 == "q": |
|
exit(0) |
|
|
|
print("generating embeddings for each now") |
|
|
|
emb1 = clipmodel_one_time(text1)[0] |
|
graph1=emb1.tolist() |
|
ax.plot(graph1, label="clipmodel") |
|
|
|
emb2 = cliptextmodel_one_time(text1)[0] |
|
graph2=emb2.tolist() |
|
ax.plot(graph2, label="cliptextmodel") |
|
|
|
print_distance(emb1,emb2) |
|
|
|
|
|
|
|
ax.set_ylabel('Values') |
|
ax.set_title('Graph embedding from std libs') |
|
ax.legend() |
|
|
|
|
|
print("Pulling up the graph. To calculate more distances, close graph") |
|
plt.show() |
|
|
|
|
|
while True: |
|
prompt_for_word() |
|
|