|
import os |
|
import json |
|
import pandas as pd |
|
from tabulate import tabulate |
|
import typer |
|
|
|
def create_readme_for_model(model_dir: str, project_url: str): |
|
|
|
metrics_file = os.path.join(model_dir, 'metrics.json') |
|
meta_file = os.path.join(model_dir, 'model-best', 'meta.json') |
|
|
|
|
|
overall_df = pd.DataFrame(columns=['Metric', 'Value']) |
|
|
|
|
|
per_label_df = pd.DataFrame(columns=['Label', 'Precision', 'Recall', 'F-Score']) |
|
|
|
|
|
if os.path.exists(metrics_file): |
|
with open(metrics_file, 'r') as file: |
|
metrics = json.load(file) |
|
overall_df = overall_df.append({'Metric': 'Precision', 'Value': round(metrics['spans_sc_p'] * 100, 1)}, ignore_index=True) |
|
overall_df = overall_df.append({'Metric': 'Recall', 'Value': round(metrics['spans_sc_r'] * 100, 1)}, ignore_index=True) |
|
overall_df = overall_df.append({'Metric': 'F-Score', 'Value': round(metrics['spans_sc_f'] * 100, 1)}, ignore_index=True) |
|
|
|
|
|
for label, scores in metrics.get('spans_sc_per_type', {}).items(): |
|
per_label_df = per_label_df.append({ |
|
'Label': label, |
|
'Precision': round(scores['p'] * 100, 1), |
|
'Recall': round(scores['r'] * 100, 1), |
|
'F-Score': round(scores['f'] * 100, 1) |
|
}, ignore_index=True) |
|
|
|
|
|
per_label_df.sort_values(by='Label', inplace=True) |
|
|
|
|
|
overall_markdown = tabulate(overall_df, headers='keys', tablefmt='pipe', showindex=False) |
|
per_label_markdown = tabulate(per_label_df, headers='keys', tablefmt='pipe', showindex=False) |
|
|
|
|
|
meta_info = "" |
|
if os.path.exists(meta_file): |
|
with open(meta_file, 'r') as file: |
|
meta_data = json.load(file) |
|
for key, value in meta_data.items(): |
|
meta_info += f"- **{key}**: {value}\n" |
|
|
|
|
|
readme_content = f""" |
|
# Placing the Holocaust spaCy Model - {os.path.basename(model_dir).capitalize()} |
|
|
|
This is a spaCy model trained as part of the placingholocaust spaCy project. Training and evaluation code, along with the dataset, can be found at the following URL: [Placingholocaust SpaCy Project]({project_url}) |
|
|
|
## Model Performance |
|
{overall_markdown} |
|
|
|
## Performance per Label |
|
{per_label_markdown} |
|
|
|
## Meta Information |
|
{meta_info} |
|
""" |
|
|
|
|
|
readme_file = os.path.join(model_dir, 'README.md') |
|
with open(readme_file, 'w') as file: |
|
file.write(readme_content) |
|
|
|
print(f"README created in {model_dir}") |
|
|
|
def create_all_readmes(project_url: str): |
|
|
|
model_dirs = ['training/sm', 'training/md', 'training/lg', 'training/trf'] |
|
|
|
for dir in model_dirs: |
|
create_readme_for_model(dir, project_url) |
|
|
|
if __name__ == "__main__": |
|
project_url = "https://huggingface.co/datasets/placingholocaust/spacy-project" |
|
typer.run(lambda: create_all_readmes(project_url)) |
|
|