|
|
|
|
|
|
|
[paths] |
|
train = null |
|
dev = null |
|
vectors = null |
|
[system] |
|
gpu_allocator = "pytorch" |
|
|
|
[nlp] |
|
lang = "en" |
|
pipeline = ["transformer","spancat"] |
|
batch_size = 128 |
|
|
|
[components] |
|
|
|
[components.transformer] |
|
factory = "transformer" |
|
|
|
[components.transformer.model] |
|
@architectures = "spacy-transformers.TransformerModel.v3" |
|
name = "roberta-base" |
|
tokenizer_config = {"use_fast": true} |
|
|
|
[components.transformer.model.get_spans] |
|
@span_getters = "spacy-transformers.strided_spans.v1" |
|
window = 128 |
|
stride = 96 |
|
|
|
[components.spancat] |
|
factory = "spancat" |
|
max_positive = null |
|
scorer = {"@scorers":"spacy.spancat_scorer.v1"} |
|
spans_key = "sc" |
|
threshold = 0.5 |
|
|
|
[components.spancat.model] |
|
@architectures = "spacy.SpanCategorizer.v1" |
|
|
|
[components.spancat.model.reducer] |
|
@layers = "spacy.mean_max_reducer.v1" |
|
hidden_size = 128 |
|
|
|
[components.spancat.model.scorer] |
|
@layers = "spacy.LinearLogistic.v1" |
|
nO = null |
|
nI = null |
|
|
|
[components.spancat.model.tok2vec] |
|
@architectures = "spacy-transformers.TransformerListener.v1" |
|
grad_factor = 1.0 |
|
|
|
[components.spancat.model.tok2vec.pooling] |
|
@layers = "reduce_mean.v1" |
|
|
|
[components.spancat.suggester] |
|
@misc = "spacy.ngram_suggester.v1" |
|
sizes = [1,2,3] |
|
|
|
[corpora] |
|
|
|
[corpora.train] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.train} |
|
max_length = 0 |
|
|
|
[corpora.dev] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.dev} |
|
max_length = 0 |
|
|
|
[training] |
|
dev_corpus = "corpora.dev" |
|
train_corpus = "corpora.train" |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
dropout = 0.1 |
|
accumulate_gradient = 1 |
|
patience = 20000 |
|
max_epochs = 10 |
|
max_steps = 0 |
|
eval_frequency = 200 |
|
frozen_components = [] |
|
annotating_components = [] |
|
before_to_disk = null |
|
before_update = null |
|
|
|
[training.optimizer] |
|
@optimizers = "Adam.v1" |
|
|
|
[training.optimizer.learn_rate] |
|
@schedules = "warmup_linear.v1" |
|
warmup_steps = 250 |
|
total_steps = 20000 |
|
initial_rate = 5e-5 |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_padded.v1" |
|
discard_oversize = true |
|
size = 2000 |
|
buffer = 256 |
|
|
|
[initialize] |
|
vectors = ${paths.vectors} |