|
|
|
|
|
|
|
[paths] |
|
train = null |
|
dev = null |
|
vectors = "en_core_web_md" |
|
[system] |
|
gpu_allocator = null |
|
|
|
[nlp] |
|
lang = "en" |
|
pipeline = ["tok2vec","spancat"] |
|
batch_size = 1000 |
|
|
|
[components] |
|
|
|
[components.tok2vec] |
|
factory = "tok2vec" |
|
|
|
[components.tok2vec.model] |
|
@architectures = "spacy.Tok2Vec.v2" |
|
|
|
[components.tok2vec.model.embed] |
|
@architectures = "spacy.MultiHashEmbed.v2" |
|
width = ${components.tok2vec.model.encode.width} |
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"] |
|
rows = [5000, 1000, 2500, 2500] |
|
include_static_vectors = true |
|
|
|
[components.tok2vec.model.encode] |
|
@architectures = "spacy.MaxoutWindowEncoder.v2" |
|
width = 256 |
|
depth = 8 |
|
window_size = 1 |
|
maxout_pieces = 3 |
|
|
|
[components.spancat] |
|
factory = "spancat" |
|
max_positive = null |
|
scorer = {"@scorers":"spacy.spancat_scorer.v1"} |
|
spans_key = "sc" |
|
threshold = 0.5 |
|
|
|
[components.spancat.model] |
|
@architectures = "spacy.SpanCategorizer.v1" |
|
|
|
[components.spancat.model.reducer] |
|
@layers = "spacy.mean_max_reducer.v1" |
|
hidden_size = 128 |
|
|
|
[components.spancat.model.scorer] |
|
@layers = "spacy.LinearLogistic.v1" |
|
nO = null |
|
nI = null |
|
|
|
[components.spancat.model.tok2vec] |
|
@architectures = "spacy.Tok2VecListener.v1" |
|
width = ${components.tok2vec.model.encode.width} |
|
|
|
[components.spancat.suggester] |
|
@misc = "spacy.ngram_suggester.v1" |
|
sizes = [1,2,3] |
|
|
|
[corpora] |
|
|
|
[corpora.train] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.train} |
|
max_length = 0 |
|
|
|
[corpora.dev] |
|
@readers = "spacy.Corpus.v1" |
|
path = ${paths.dev} |
|
max_length = 0 |
|
|
|
[training] |
|
dev_corpus = "corpora.dev" |
|
train_corpus = "corpora.train" |
|
seed = ${system.seed} |
|
gpu_allocator = ${system.gpu_allocator} |
|
dropout = 0.1 |
|
accumulate_gradient = 1 |
|
patience = 20000 |
|
max_epochs = 10 |
|
max_steps = 0 |
|
eval_frequency = 200 |
|
frozen_components = [] |
|
annotating_components = [] |
|
before_to_disk = null |
|
before_update = null |
|
|
|
[training.batcher] |
|
@batchers = "spacy.batch_by_words.v1" |
|
discard_oversize = false |
|
tolerance = 0.2 |
|
get_length = null |
|
|
|
[training.batcher.size] |
|
@schedules = "compounding.v1" |
|
start = 1000 |
|
stop = 10000 |
|
compound = 1.001 |
|
t = 0.0 |
|
|
|
[training.optimizer] |
|
@optimizers = "Adam.v1" |
|
|
|
[initialize] |
|
vectors = ${paths.vectors} |