pietrolesci
commited on
Upload ./dataset.py with huggingface_hub
Browse files- dataset.py +303 -0
dataset.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is adapted from the GPT-Neox library
|
2 |
+
import os
|
3 |
+
import struct
|
4 |
+
from functools import lru_cache
|
5 |
+
from itertools import accumulate
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from torch.utils.data import Dataset
|
10 |
+
|
11 |
+
dtypes = {1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float32, 7: np.float64, 8: np.uint16}
|
12 |
+
|
13 |
+
|
14 |
+
def code(dtype):
|
15 |
+
for k in dtypes:
|
16 |
+
if dtypes[k] == dtype:
|
17 |
+
return k
|
18 |
+
raise ValueError(dtype)
|
19 |
+
|
20 |
+
|
21 |
+
def index_file_path(prefix_path):
|
22 |
+
return prefix_path + ".idx"
|
23 |
+
|
24 |
+
|
25 |
+
def data_file_path(prefix_path):
|
26 |
+
return prefix_path + ".bin"
|
27 |
+
|
28 |
+
|
29 |
+
def _warmup_mmap_file(path):
|
30 |
+
with open(path, "rb") as stream:
|
31 |
+
while stream.read(100 * 1024 * 1024):
|
32 |
+
pass
|
33 |
+
|
34 |
+
|
35 |
+
class MMapIndexedDataset(Dataset):
|
36 |
+
class Index:
|
37 |
+
_HDR_MAGIC = b"MMIDIDX\x00\x00"
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def writer(cls, path, dtype):
|
41 |
+
class _Writer:
|
42 |
+
def __enter__(self):
|
43 |
+
self._file = open(path, "wb") # noqa: SIM115
|
44 |
+
|
45 |
+
# Write Magic string so we can check the file format then opening it again.
|
46 |
+
self._file.write(cls._HDR_MAGIC)
|
47 |
+
# Write version number
|
48 |
+
# Little endian unsigned 64 Bit integer
|
49 |
+
self._file.write(struct.pack("<Q", 1))
|
50 |
+
# Little endian unsigned 8 Bit integer
|
51 |
+
self._file.write(struct.pack("<B", code(dtype)))
|
52 |
+
|
53 |
+
return self
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def _get_pointers(sizes):
|
57 |
+
pointers = np.zeros(len(sizes), dtype=np.int64)
|
58 |
+
sizes = np.array(sizes, dtype=np.int64)
|
59 |
+
|
60 |
+
np.cumsum(sizes[:-1], out=pointers[1:])
|
61 |
+
pointers = pointers * dtype().itemsize
|
62 |
+
return pointers
|
63 |
+
|
64 |
+
def write(self, sizes, doc_idx):
|
65 |
+
pointers = self._get_pointers(sizes)
|
66 |
+
|
67 |
+
# Little endian unsigned 64 Bit integer
|
68 |
+
self._file.write(struct.pack("<Q", len(sizes)))
|
69 |
+
# Little endian unsigned 64 Bit integer
|
70 |
+
self._file.write(struct.pack("<Q", len(doc_idx)))
|
71 |
+
|
72 |
+
sizes = np.array(sizes, dtype=np.int32)
|
73 |
+
self._file.write(sizes.tobytes(order="C"))
|
74 |
+
del sizes
|
75 |
+
|
76 |
+
pointers = np.array(pointers, dtype=np.int64)
|
77 |
+
self._file.write(pointers.tobytes(order="C"))
|
78 |
+
del pointers
|
79 |
+
|
80 |
+
doc_idx = np.array(doc_idx, dtype=np.int64)
|
81 |
+
self._file.write(doc_idx.tobytes(order="C"))
|
82 |
+
|
83 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
84 |
+
self._file.close()
|
85 |
+
|
86 |
+
return _Writer()
|
87 |
+
|
88 |
+
def __init__(self, path, skip_warmup=False):
|
89 |
+
with open(path, "rb") as stream:
|
90 |
+
magic_test = stream.read(9)
|
91 |
+
assert magic_test == self._HDR_MAGIC, (
|
92 |
+
"Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly."
|
93 |
+
)
|
94 |
+
# Little endian unsigned 64 Bit integer
|
95 |
+
version = struct.unpack("<Q", stream.read(8))
|
96 |
+
assert version == (1,)
|
97 |
+
|
98 |
+
# Little endian unsigned 8 Bit integer
|
99 |
+
(dtype_code,) = struct.unpack("<B", stream.read(1))
|
100 |
+
self._dtype = dtypes[dtype_code]
|
101 |
+
self._dtype_size = self._dtype().itemsize
|
102 |
+
|
103 |
+
self._len = struct.unpack("<Q", stream.read(8))[0]
|
104 |
+
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
|
105 |
+
offset = stream.tell()
|
106 |
+
|
107 |
+
if not skip_warmup:
|
108 |
+
print(" warming up index mmap file...")
|
109 |
+
_warmup_mmap_file(path)
|
110 |
+
|
111 |
+
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
|
112 |
+
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
113 |
+
print(" reading sizes...")
|
114 |
+
self._sizes = np.frombuffer(self._bin_buffer, dtype=np.int32, count=self._len, offset=offset)
|
115 |
+
print(" reading pointers...")
|
116 |
+
self._pointers = np.frombuffer(
|
117 |
+
self._bin_buffer, dtype=np.int64, count=self._len, offset=offset + self._sizes.nbytes
|
118 |
+
)
|
119 |
+
print(" reading document index...")
|
120 |
+
self._doc_idx = np.frombuffer(
|
121 |
+
self._bin_buffer,
|
122 |
+
dtype=np.int64,
|
123 |
+
count=self._doc_count,
|
124 |
+
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
|
125 |
+
)
|
126 |
+
|
127 |
+
def __del__(self):
|
128 |
+
self._bin_buffer_mmap._mmap.close()
|
129 |
+
del self._bin_buffer_mmap
|
130 |
+
|
131 |
+
@property
|
132 |
+
def dtype(self):
|
133 |
+
return self._dtype
|
134 |
+
|
135 |
+
@property
|
136 |
+
def sizes(self):
|
137 |
+
return self._sizes
|
138 |
+
|
139 |
+
@property
|
140 |
+
def doc_idx(self):
|
141 |
+
return self._doc_idx
|
142 |
+
|
143 |
+
@lru_cache(maxsize=8) # noqa: B019
|
144 |
+
def __getitem__(self, i):
|
145 |
+
return self._pointers[i], self._sizes[i]
|
146 |
+
|
147 |
+
def __len__(self):
|
148 |
+
return self._len
|
149 |
+
|
150 |
+
def __init__(self, path, skip_warmup=False):
|
151 |
+
super().__init__()
|
152 |
+
|
153 |
+
self._path = None
|
154 |
+
self._index = None
|
155 |
+
self._bin_buffer = None
|
156 |
+
|
157 |
+
self._do_init(path, skip_warmup)
|
158 |
+
|
159 |
+
def __getstate__(self):
|
160 |
+
return self._path
|
161 |
+
|
162 |
+
def __setstate__(self, state):
|
163 |
+
self._do_init(state)
|
164 |
+
|
165 |
+
def _do_init(self, path, skip_warmup):
|
166 |
+
self._path = path
|
167 |
+
self._index = self.Index(index_file_path(self._path), skip_warmup)
|
168 |
+
|
169 |
+
if not skip_warmup:
|
170 |
+
print(" warming up data mmap file...")
|
171 |
+
_warmup_mmap_file(data_file_path(self._path))
|
172 |
+
print(" creating numpy buffer of mmap...")
|
173 |
+
self._bin_buffer_mmap = np.memmap(data_file_path(self._path), mode="r", order="C")
|
174 |
+
print(" creating memory view of numpy buffer...")
|
175 |
+
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
176 |
+
|
177 |
+
def __del__(self):
|
178 |
+
self._bin_buffer_mmap._mmap.close()
|
179 |
+
del self._bin_buffer_mmap
|
180 |
+
del self._index
|
181 |
+
|
182 |
+
def __len__(self):
|
183 |
+
return len(self._index)
|
184 |
+
|
185 |
+
# @lru_cache(maxsize=8)
|
186 |
+
def __getitem__(self, idx):
|
187 |
+
if isinstance(idx, int):
|
188 |
+
ptr, size = self._index[idx]
|
189 |
+
np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr)
|
190 |
+
return np_array
|
191 |
+
elif isinstance(idx, slice):
|
192 |
+
start, stop, step = idx.indices(len(self))
|
193 |
+
if step != 1:
|
194 |
+
raise ValueError("Slices into indexed_dataset must be contiguous")
|
195 |
+
ptr = self._index._pointers[start]
|
196 |
+
sizes = self._index._sizes[idx]
|
197 |
+
offsets = list(accumulate(sizes))
|
198 |
+
total_size = sum(sizes)
|
199 |
+
np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr)
|
200 |
+
sents = np.split(np_array, offsets[:-1])
|
201 |
+
return sents
|
202 |
+
|
203 |
+
def get(self, idx, offset=0, length=None):
|
204 |
+
"""Retrieves a single item from the dataset with the option to only
|
205 |
+
return a portion of the item.
|
206 |
+
|
207 |
+
get(idx) is the same as [idx] but get() does not support slicing.
|
208 |
+
"""
|
209 |
+
ptr, size = self._index[idx]
|
210 |
+
if length is None:
|
211 |
+
length = size - offset
|
212 |
+
ptr += offset * np.dtype(self._index.dtype).itemsize
|
213 |
+
np_array = np.frombuffer(self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr)
|
214 |
+
return np_array
|
215 |
+
|
216 |
+
@property
|
217 |
+
def sizes(self):
|
218 |
+
return self._index.sizes
|
219 |
+
|
220 |
+
@property
|
221 |
+
def doc_idx(self):
|
222 |
+
return self._index.doc_idx
|
223 |
+
|
224 |
+
def get_doc_idx(self):
|
225 |
+
return self._index._doc_idx
|
226 |
+
|
227 |
+
def set_doc_idx(self, doc_idx_):
|
228 |
+
self._index._doc_idx = doc_idx_
|
229 |
+
|
230 |
+
@property
|
231 |
+
def supports_prefetch(self):
|
232 |
+
return False
|
233 |
+
|
234 |
+
@staticmethod
|
235 |
+
def exists(path):
|
236 |
+
return os.path.exists(index_file_path(path)) and os.path.exists(data_file_path(path))
|
237 |
+
|
238 |
+
|
239 |
+
class GPT2Dataset(Dataset):
|
240 |
+
"""Streamlined version of the GPT2Dataset in megatron."""
|
241 |
+
|
242 |
+
def __init__(
|
243 |
+
self, indexed_dataset: MMapIndexedDataset, doc_idx: np.memmap, sample_idx: np.memmap, shuffle_idx: np.memmap
|
244 |
+
):
|
245 |
+
self.indexed_dataset = indexed_dataset
|
246 |
+
self.doc_idx = doc_idx
|
247 |
+
self.sample_idx = sample_idx
|
248 |
+
self.shuffle_idx = shuffle_idx
|
249 |
+
|
250 |
+
self.shuffle_idx_len = self.shuffle_idx.shape[0] - 1
|
251 |
+
self.sample_idx_len = self.sample_idx.shape[0] - 1
|
252 |
+
|
253 |
+
if self.shuffle_idx_len != self.sample_idx_len:
|
254 |
+
print(f"WARNING: {self.shuffle_idx_len=} != {self.sample_idx_len=}")
|
255 |
+
|
256 |
+
def __len__(self):
|
257 |
+
return min(self.shuffle_idx_len, self.sample_idx_len)
|
258 |
+
|
259 |
+
def __getitem__(self, idx: int) -> dict[str, np.ndarray]:
|
260 |
+
# Get the shuffled index.
|
261 |
+
idx = self.shuffle_idx[idx]
|
262 |
+
# Start and end documents and offsets.
|
263 |
+
doc_index_f = self.sample_idx[idx][0]
|
264 |
+
doc_index_l = self.sample_idx[idx + 1][0]
|
265 |
+
offset_f = self.sample_idx[idx][1]
|
266 |
+
offset_l = self.sample_idx[idx + 1][1]
|
267 |
+
# If we are within the same document, just extract the chunk.
|
268 |
+
if doc_index_f == doc_index_l:
|
269 |
+
sample = self.indexed_dataset.get(
|
270 |
+
self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + 1
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
# Otherwise, get the rest of the initial document.
|
274 |
+
sample_list = [self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f)]
|
275 |
+
# Loop over all in between documents and add the entire document.
|
276 |
+
for i in range(doc_index_f + 1, doc_index_l):
|
277 |
+
sample_list.append(self.indexed_dataset.get(self.doc_idx[i]))
|
278 |
+
# And finally add the relevant portion of last document.
|
279 |
+
sample_list.append(self.indexed_dataset.get(self.doc_idx[doc_index_l], length=offset_l + 1))
|
280 |
+
sample = np.concatenate(sample_list)
|
281 |
+
|
282 |
+
return {"text": np.array(sample, dtype=np.int64)}
|
283 |
+
|
284 |
+
|
285 |
+
def read_dataset(file_path: str | Path, prefix: str, document_path: str | Path = ".") -> GPT2Dataset:
|
286 |
+
# e.g., pile_20B_tokenizer_text_document_train_indexmap_120ns_2048sl_1234s_doc_idx.npy
|
287 |
+
# prefix: pile_20B_tokenizer_text_document_train_indexmap_120ns_2048sl_1234s
|
288 |
+
|
289 |
+
file_path = Path(file_path)
|
290 |
+
document_path = Path(document_path)
|
291 |
+
|
292 |
+
doc_idx = np.load(file_path / f"{prefix}_doc_idx.npy", allow_pickle=True, mmap_mode="r")
|
293 |
+
sample_idx = np.load(file_path / f"{prefix}_sample_idx.npy", allow_pickle=True, mmap_mode="r")
|
294 |
+
shuffle_idx = np.load(file_path / f"{prefix}_shuffle_idx.npy", allow_pickle=True, mmap_mode="r")
|
295 |
+
indexed_dataset = MMapIndexedDataset(str(document_path / "pile_20B_tokenizer_text_document"), skip_warmup=True)
|
296 |
+
|
297 |
+
ds = GPT2Dataset(indexed_dataset=indexed_dataset, doc_idx=doc_idx, sample_idx=sample_idx, shuffle_idx=shuffle_idx)
|
298 |
+
|
299 |
+
# check seqlen is correct
|
300 |
+
print("Seq length ==", len(ds[0]["text"]))
|
301 |
+
print("Num batches ==", len(ds) / 1024, "(should be 143k)")
|
302 |
+
|
303 |
+
return ds
|