|
import logging |
|
from typing import Sequence, Set, Tuple, Union |
|
|
|
import networkx as nx |
|
from pie_modules.document.processing import ( |
|
RegexPartitioner, |
|
RelationArgumentSorter, |
|
TextSpanTrimmer, |
|
) |
|
from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan |
|
from pytorch_ie.core import Document |
|
from pytorch_ie.documents import ( |
|
TextDocumentWithLabeledSpansAndBinaryRelations, |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, |
|
) |
|
|
|
from pie_datasets.builders import BratBuilder, BratConfig |
|
from pie_datasets.builders.brat import BratDocumentWithMergedSpans |
|
from pie_datasets.core.dataset import DocumentConvertersType |
|
from pie_datasets.document.processing import Caster, Pipeline |
|
|
|
URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip" |
|
SPLIT_PATHS = {"train": "compiled_corpus"} |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _merge_spans_via_relation( |
|
spans: Sequence[LabeledSpan], |
|
relations: Sequence[BinaryRelation], |
|
link_relation_label: str, |
|
create_multi_spans: bool = True, |
|
) -> Tuple[Union[Set[LabeledSpan], Set[LabeledMultiSpan]], Set[BinaryRelation]]: |
|
|
|
g = nx.Graph() |
|
link_relations = [] |
|
other_relations = [] |
|
for rel in relations: |
|
if rel.label == link_relation_label: |
|
link_relations.append(rel) |
|
|
|
if ( |
|
not (isinstance(rel.head, LabeledSpan) or isinstance(rel.tail, LabeledSpan)) |
|
or rel.head.label == rel.tail.label |
|
): |
|
g.add_edge(rel.head, rel.tail) |
|
else: |
|
logger.debug( |
|
f"spans to merge do not have the same label, do not merge them: {rel.head}, {rel.tail}" |
|
) |
|
else: |
|
other_relations.append(rel) |
|
|
|
span_mapping = {} |
|
connected_components: Set[LabeledSpan] |
|
for connected_components in nx.connected_components(g): |
|
|
|
label = list(span.label for span in connected_components)[0] |
|
connected_components_sorted = sorted(connected_components, key=lambda span: span.start) |
|
if create_multi_spans: |
|
new_span = LabeledMultiSpan( |
|
slices=tuple((span.start, span.end) for span in connected_components_sorted), |
|
label=label, |
|
) |
|
else: |
|
new_span = LabeledSpan( |
|
start=min(span.start for span in connected_components_sorted), |
|
end=max(span.end for span in connected_components_sorted), |
|
label=label, |
|
) |
|
for span in connected_components_sorted: |
|
span_mapping[span] = new_span |
|
for span in spans: |
|
if span not in span_mapping: |
|
if create_multi_spans: |
|
span_mapping[span] = LabeledMultiSpan( |
|
slices=((span.start, span.end),), label=span.label, score=span.score |
|
) |
|
else: |
|
span_mapping[span] = LabeledSpan( |
|
start=span.start, end=span.end, label=span.label, score=span.score |
|
) |
|
|
|
new_spans = set(span_mapping.values()) |
|
new_relations = { |
|
BinaryRelation( |
|
head=span_mapping[rel.head], |
|
tail=span_mapping[rel.tail], |
|
label=rel.label, |
|
score=rel.score, |
|
) |
|
for rel in other_relations |
|
} |
|
|
|
return new_spans, new_relations |
|
|
|
|
|
class SpansWithRelationsMerger: |
|
"""Merge spans that are connected via a specific relation type. |
|
|
|
Args: |
|
relation_layer: The name of the layer that contains the relations. |
|
link_relation_label: The label of the relations that connect the spans. |
|
create_multi_spans: If True, the merged spans are LabeledMultiSpans, otherwise LabeledSpans. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
relation_layer: str, |
|
link_relation_label: str, |
|
result_document_type: type[Document], |
|
result_field_mapping: dict[str, str], |
|
create_multi_spans: bool = True, |
|
): |
|
self.relation_layer = relation_layer |
|
self.link_relation_label = link_relation_label |
|
self.create_multi_spans = create_multi_spans |
|
self.result_document_type = result_document_type |
|
self.result_field_mapping = result_field_mapping |
|
|
|
def __call__(self, document: Document) -> Document: |
|
relations: Sequence[BinaryRelation] = document[self.relation_layer] |
|
spans: Sequence[LabeledSpan] = document[self.relation_layer].target_layer |
|
|
|
new_spans, new_relations = _merge_spans_via_relation( |
|
spans=spans, |
|
relations=relations, |
|
link_relation_label=self.link_relation_label, |
|
create_multi_spans=self.create_multi_spans, |
|
) |
|
|
|
result = document.copy(with_annotations=False).as_type(new_type=self.result_document_type) |
|
span_layer_name = document[self.relation_layer].target_name |
|
result_span_layer_name = self.result_field_mapping[span_layer_name] |
|
result_relation_layer_name = self.result_field_mapping[self.relation_layer] |
|
result[result_span_layer_name].extend(new_spans) |
|
result[result_relation_layer_name].extend(new_relations) |
|
|
|
return result |
|
|
|
|
|
def get_common_pipeline_steps(target_document_type: type[Document]) -> dict: |
|
return dict( |
|
cast=Caster( |
|
document_type=target_document_type, |
|
field_mapping={"spans": "labeled_spans", "relations": "binary_relations"}, |
|
), |
|
trim_adus=TextSpanTrimmer(layer="labeled_spans"), |
|
sort_symmetric_relation_arguments=RelationArgumentSorter( |
|
relation_layer="binary_relations", |
|
label_whitelist=["parts_of_same", "semantically_same"], |
|
), |
|
) |
|
|
|
|
|
def get_common_pipeline_steps_with_merge_multi_spans( |
|
target_document_type: type[Document], |
|
) -> dict: |
|
return dict( |
|
merge_spans=SpansWithRelationsMerger( |
|
relation_layer="relations", |
|
link_relation_label="parts_of_same", |
|
create_multi_spans=False, |
|
result_document_type=target_document_type, |
|
result_field_mapping={"spans": "labeled_spans", "relations": "binary_relations"}, |
|
), |
|
trim_adus=TextSpanTrimmer(layer="labeled_spans"), |
|
sort_symmetric_relation_arguments=RelationArgumentSorter( |
|
relation_layer="binary_relations", |
|
label_whitelist=["parts_of_same", "semantically_same"], |
|
), |
|
) |
|
|
|
|
|
class SciArgConfig(BratConfig): |
|
def __init__( |
|
self, |
|
name: str, |
|
resolve_parts_of_same: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__(name=name, merge_fragmented_spans=True, **kwargs) |
|
self.resolve_parts_of_same = resolve_parts_of_same |
|
|
|
|
|
class SciArg(BratBuilder): |
|
BASE_DATASET_PATH = "DFKI-SLT/brat" |
|
BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1" |
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
SciArgConfig(name=BratBuilder.DEFAULT_CONFIG_NAME), |
|
SciArgConfig(name="resolve_parts_of_same", resolve_parts_of_same=True), |
|
] |
|
DOCUMENT_TYPES = { |
|
BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans, |
|
"resolve_parts_of_same": BratDocumentWithMergedSpans, |
|
} |
|
|
|
|
|
BASE_BUILDER_KWARGS_DICT = { |
|
dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS} |
|
for dataset_variant in ["default", "resolve_parts_of_same", None] |
|
} |
|
|
|
@property |
|
def document_converters(self) -> DocumentConvertersType: |
|
regex_partitioner = RegexPartitioner( |
|
partition_layer_name="labeled_partitions", |
|
pattern="<([^>/]+)>.*</\\1>", |
|
label_group_id=1, |
|
label_whitelist=["Title", "Abstract", "H1"], |
|
skip_initial_partition=True, |
|
strip_whitespace=True, |
|
) |
|
if not self.config.resolve_parts_of_same: |
|
return { |
|
TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline( |
|
**get_common_pipeline_steps(TextDocumentWithLabeledSpansAndBinaryRelations) |
|
), |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline( |
|
**get_common_pipeline_steps( |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions |
|
), |
|
add_partitions=regex_partitioner, |
|
), |
|
} |
|
else: |
|
return { |
|
TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline( |
|
**get_common_pipeline_steps_with_merge_multi_spans( |
|
TextDocumentWithLabeledSpansAndBinaryRelations |
|
) |
|
), |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline( |
|
**get_common_pipeline_steps_with_merge_multi_spans( |
|
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions |
|
), |
|
add_partitions=regex_partitioner, |
|
), |
|
|
|
|
|
} |
|
|