|
from dataclasses import dataclass |
|
from typing import Any, Dict |
|
|
|
import datasets |
|
from pytorch_ie.annotations import Label |
|
from pytorch_ie.documents import TextDocumentWithLabel |
|
|
|
from pie_datasets import GeneratorBasedBuilder |
|
|
|
|
|
@dataclass |
|
class ImdbDocument(TextDocumentWithLabel): |
|
pass |
|
|
|
|
|
def example_to_document(example: Dict[str, Any], labels: datasets.ClassLabel) -> ImdbDocument: |
|
text = example["text"] |
|
document = ImdbDocument(text=text) |
|
label_id = example["label"] |
|
if label_id < 0: |
|
return document |
|
|
|
label = labels.int2str(label_id) |
|
label_annotation = Label(label=label) |
|
document.label.append(label_annotation) |
|
|
|
return document |
|
|
|
|
|
def document_to_example(document: ImdbDocument, labels: datasets.ClassLabel) -> Dict[str, Any]: |
|
if len(document.label) > 0: |
|
label_id = labels.str2int(document.label[0].label) |
|
else: |
|
label_id = -1 |
|
|
|
return { |
|
"text": document.text, |
|
"label": label_id, |
|
} |
|
|
|
|
|
class Imdb(GeneratorBasedBuilder): |
|
DOCUMENT_TYPE = ImdbDocument |
|
|
|
BASE_DATASET_PATH = "imdb" |
|
BASE_DATASET_REVISION = "9c6ede893febf99215a29cc7b72992bb1138b06b" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0"), |
|
description="IMDB sentiment classification dataset", |
|
), |
|
] |
|
|
|
DOCUMENT_CONVERTERS = {TextDocumentWithLabel: {}} |
|
|
|
def _generate_document_kwargs(self, dataset) -> Dict[str, Any]: |
|
return {"labels": dataset.features["label"]} |
|
|
|
def _generate_document(self, example, **kwargs) -> ImdbDocument: |
|
return example_to_document(example, **kwargs) |
|
|
|
def _generate_example_kwargs(self, dataset) -> Dict[str, Any]: |
|
return {"labels": dataset.features["label"]} |
|
|
|
def _generate_example(self, document: ImdbDocument, **kwargs) -> Dict[str, Any]: |
|
return document_to_example(document, **kwargs) |
|
|