Update dataset files
Browse files- README.md +55 -3
- argmicro.py +92 -42
- requirements.txt +1 -1
README.md
CHANGED
@@ -1,3 +1,55 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# PIE Dataset Card for "argmicro"
|
2 |
+
|
3 |
+
This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
|
4 |
+
[ArgMicro Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/argmicro).
|
5 |
+
|
6 |
+
## Dataset Variants
|
7 |
+
|
8 |
+
The dataset contains two `BuilderConfig`'s:
|
9 |
+
|
10 |
+
- `de`: with the original texts collection in German
|
11 |
+
- `en`: with the English-translated texts
|
12 |
+
|
13 |
+
## Data Schema
|
14 |
+
|
15 |
+
The document type for this dataset is `ArgMicroDocument` which defines the following data fields:
|
16 |
+
|
17 |
+
- `text` (str)
|
18 |
+
- `id` (str, optional)
|
19 |
+
- `topic_id` (str, optional)
|
20 |
+
- `metadata` (dictionary, optional)
|
21 |
+
|
22 |
+
and the following annotation layers:
|
23 |
+
|
24 |
+
- `stance` (annotation type: `Label`)
|
25 |
+
- description: A document may contain one of these `stance` labels: `pro`, `con`, `unclear`, or no label when it is undefined (see [here](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L35) for reference).
|
26 |
+
- `edus` (annotation type: `Span`, target: `text`)
|
27 |
+
- `adus` (annotation type: `LabeledAnnotationCollection`, target: `edus`)
|
28 |
+
- description: each element of `adus` may consist of several entries from `edus`, so we require `LabeledAnnotationCollection` as annotation type. This is originally indicated by `seg` edges in the data.
|
29 |
+
- `LabeledAnnotationCollection` has the following fields:
|
30 |
+
- `annotations` (annotation type: `Span`, target: `text`)
|
31 |
+
- `label` (str, optional), values: `opp`, `pro` (see [here](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L36))
|
32 |
+
- `relations` (annotation type: `MultiRelation`, target: `adus`)
|
33 |
+
- description: Undercut (`und`) relations originally target other relations (i.e. edges), but we let them target the `head` of the targeted relation instead. The original state can be deterministically reconstructed by taking the label into account. Furthermore, the head of additional source (`add`) relations are integrated into the head of the target relation (note that this propagates along `und` relations). We model this with `MultiRelation`s whose `head` and `tail` are of type `LabeledAnnotationCollection`.
|
34 |
+
- `MultiRelation` has the following fields:
|
35 |
+
- `head` (tuple, annotation type: `LabeledAnnotationCollection`, target: `adus`)
|
36 |
+
- `tail` (tuple, annotation type: `LabeledAnnotationCollection`, target: `adus`)
|
37 |
+
- `label` (str, optional), values: `sup`, `exa`, `reb`, `und` (see [here](https://huggingface.co/datasets/DFKI-SLT/argmicro/blob/main/argmicro.py#L37) for reference, but note that helper relations `seg` and `add` are not there anymore, see above).
|
38 |
+
|
39 |
+
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/annotations.py) for the annotation type definitions.
|
40 |
+
|
41 |
+
## Document Converters
|
42 |
+
|
43 |
+
The dataset provides document converters for the following target document types:
|
44 |
+
|
45 |
+
- `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
|
46 |
+
- `LabeledSpans`, converted from `ArgMicroDocument`'s `adus`
|
47 |
+
- labels: `opp`, `pro`
|
48 |
+
- if an ADU contains multiple spans (i.e. EDUs), we take the start of the first EDU and the end of the last EDU as the boundaries of the new `LabeledSpan`. We also raise exceptions if any newly created `LabeledSpan`s overlap.
|
49 |
+
- `BinraryRelations`, converted from `ArgMicroDocument`'s `relations`
|
50 |
+
- labels: `sup`, `reb`, `und`, `joint`, `exa`
|
51 |
+
- if the `head` or `tail` consists of multiple `adus`, then we build `BinaryRelation`s with all `head`-`tail` combinations and take the label from the original relation. Then, we build `BinaryRelations`' with label `joint` between each component that previously belongs to the same `head` or `tail`, respectively.
|
52 |
+
- `metadata`, we keep the `ArgMicroDocument`'s `metadata`, but `stance` and `topic_id`.
|
53 |
+
|
54 |
+
See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
|
55 |
+
definitions.
|
argmicro.py
CHANGED
@@ -1,29 +1,29 @@
|
|
|
|
1 |
import dataclasses
|
|
|
2 |
from collections import defaultdict
|
3 |
-
from
|
|
|
4 |
|
5 |
import datasets
|
6 |
-
|
7 |
-
from pytorch_ie.annotations import Span
|
8 |
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
|
9 |
-
from pytorch_ie.documents import
|
|
|
|
|
|
|
10 |
|
11 |
-
from
|
12 |
|
13 |
-
log =
|
14 |
|
15 |
|
16 |
def dl2ld(dict_of_lists):
|
17 |
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
|
18 |
|
19 |
|
20 |
-
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None
|
21 |
-
|
22 |
-
keys = list_of_dicts[0].keys()
|
23 |
-
if as_list:
|
24 |
-
return [[d[k] for d in list_of_dicts] for k in keys]
|
25 |
-
else:
|
26 |
-
return {k: [d[k] for d in list_of_dicts] for k in keys}
|
27 |
|
28 |
|
29 |
@dataclasses.dataclass(frozen=True)
|
@@ -42,7 +42,7 @@ class MultiRelation(Annotation):
|
|
42 |
@dataclasses.dataclass
|
43 |
class ArgMicroDocument(TextBasedDocument):
|
44 |
topic_id: Optional[str] = None
|
45 |
-
stance:
|
46 |
edus: AnnotationList[Span] = annotation_field(target="text")
|
47 |
adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
|
48 |
relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
|
@@ -50,17 +50,19 @@ class ArgMicroDocument(TextBasedDocument):
|
|
50 |
|
51 |
def example_to_document(
|
52 |
example: Dict[str, Any],
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
) -> ArgMicroDocument:
|
57 |
-
stance =
|
58 |
document = ArgMicroDocument(
|
59 |
id=example["id"],
|
60 |
text=example["text"],
|
61 |
topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
|
62 |
-
stance=stance if stance != "UNDEFINED" else None,
|
63 |
)
|
|
|
|
|
|
|
64 |
# build EDUs
|
65 |
edus_dict = {
|
66 |
edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
|
@@ -69,7 +71,7 @@ def example_to_document(
|
|
69 |
adu_id2edus = defaultdict(list)
|
70 |
edges_multi_source = defaultdict(dict)
|
71 |
for edge in dl2ld(example["edges"]):
|
72 |
-
edge_type =
|
73 |
if edge_type == "seg":
|
74 |
adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
|
75 |
elif edge_type == "add":
|
@@ -84,7 +86,7 @@ def example_to_document(
|
|
84 |
edges_multi_source[edge["id"]]["src"].append(edge["src"])
|
85 |
adus_dict = {}
|
86 |
for adu in dl2ld(example["adus"]):
|
87 |
-
adu_type =
|
88 |
adu_edus = adu_id2edus[adu["id"]]
|
89 |
adus_dict[adu["id"]] = LabeledAnnotationCollection(
|
90 |
annotations=tuple(adu_edus), label=adu_type
|
@@ -116,27 +118,28 @@ def example_to_document(
|
|
116 |
document.metadata["rel_seg_ids"] = {
|
117 |
edge["src"]: edge["id"]
|
118 |
for edge in dl2ld(example["edges"])
|
119 |
-
if
|
120 |
}
|
121 |
document.metadata["rel_add_ids"] = {
|
122 |
edge["src"]: edge["id"]
|
123 |
for edge in dl2ld(example["edges"])
|
124 |
-
if
|
125 |
}
|
126 |
return document
|
127 |
|
128 |
|
129 |
def document_to_example(
|
130 |
document: ArgMicroDocument,
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
) -> Dict[str, Any]:
|
|
|
135 |
result = {
|
136 |
"id": document.id,
|
137 |
"text": document.text,
|
138 |
"topic_id": document.topic_id or "UNDEFINED",
|
139 |
-
"stance":
|
140 |
}
|
141 |
|
142 |
# construct EDUs
|
@@ -150,7 +153,7 @@ def document_to_example(
|
|
150 |
|
151 |
# construct ADUs
|
152 |
adus = {
|
153 |
-
adu: {"id": adu_id, "type":
|
154 |
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
|
155 |
}
|
156 |
result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
|
@@ -176,7 +179,7 @@ def document_to_example(
|
|
176 |
"id": rel_id,
|
177 |
"src": source_id,
|
178 |
"trg": target_id,
|
179 |
-
"type":
|
180 |
}
|
181 |
edges.append(edge)
|
182 |
# if it is an additional support, we need to change the source to the relation that connects the source
|
@@ -187,7 +190,7 @@ def document_to_example(
|
|
187 |
"id": edge_id,
|
188 |
"src": source_id,
|
189 |
"trg": rel_id,
|
190 |
-
"type":
|
191 |
}
|
192 |
edges.append(edge)
|
193 |
|
@@ -200,7 +203,7 @@ def document_to_example(
|
|
200 |
"id": edge_id,
|
201 |
"src": source_id,
|
202 |
"trg": target_id,
|
203 |
-
"type":
|
204 |
}
|
205 |
edges.append(edge)
|
206 |
|
@@ -210,24 +213,71 @@ def document_to_example(
|
|
210 |
return result
|
211 |
|
212 |
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
DOCUMENT_TYPE = ArgMicroDocument
|
215 |
|
|
|
|
|
|
|
|
|
216 |
BASE_DATASET_PATH = "DFKI-SLT/argmicro"
|
|
|
217 |
|
218 |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
|
219 |
|
220 |
def _generate_document_kwargs(self, dataset):
|
221 |
return {
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"
|
225 |
}
|
226 |
|
227 |
-
def _generate_document(self, example,
|
228 |
-
return example_to_document(
|
229 |
-
example,
|
230 |
-
adu_type_int2str=adu_type_int2str,
|
231 |
-
edge_type_int2str=edge_type_int2str,
|
232 |
-
stance_int2str=stance_int2str,
|
233 |
-
)
|
|
|
1 |
+
import copy
|
2 |
import dataclasses
|
3 |
+
import logging
|
4 |
from collections import defaultdict
|
5 |
+
from itertools import combinations
|
6 |
+
from typing import Any, Dict, List, Optional, Set, Tuple
|
7 |
|
8 |
import datasets
|
9 |
+
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
|
|
|
10 |
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
|
11 |
+
from pytorch_ie.documents import (
|
12 |
+
TextBasedDocument,
|
13 |
+
TextDocumentWithLabeledSpansAndBinaryRelations,
|
14 |
+
)
|
15 |
|
16 |
+
from pie_datasets import GeneratorBasedBuilder
|
17 |
|
18 |
+
log = logging.getLogger(__name__)
|
19 |
|
20 |
|
21 |
def dl2ld(dict_of_lists):
|
22 |
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
|
23 |
|
24 |
|
25 |
+
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
|
26 |
+
return {k: [d[k] for d in list_of_dicts] for k in keys}
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
@dataclasses.dataclass(frozen=True)
|
|
|
42 |
@dataclasses.dataclass
|
43 |
class ArgMicroDocument(TextBasedDocument):
|
44 |
topic_id: Optional[str] = None
|
45 |
+
stance: AnnotationList[Label] = annotation_field()
|
46 |
edus: AnnotationList[Span] = annotation_field(target="text")
|
47 |
adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
|
48 |
relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
|
|
|
50 |
|
51 |
def example_to_document(
|
52 |
example: Dict[str, Any],
|
53 |
+
adu_type_label: datasets.ClassLabel,
|
54 |
+
edge_type_label: datasets.ClassLabel,
|
55 |
+
stance_label: datasets.ClassLabel,
|
56 |
) -> ArgMicroDocument:
|
57 |
+
stance = stance_label.int2str(example["stance"])
|
58 |
document = ArgMicroDocument(
|
59 |
id=example["id"],
|
60 |
text=example["text"],
|
61 |
topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
|
|
|
62 |
)
|
63 |
+
if stance != "UNDEFINED":
|
64 |
+
document.stance.append(Label(label=stance))
|
65 |
+
|
66 |
# build EDUs
|
67 |
edus_dict = {
|
68 |
edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
|
|
|
71 |
adu_id2edus = defaultdict(list)
|
72 |
edges_multi_source = defaultdict(dict)
|
73 |
for edge in dl2ld(example["edges"]):
|
74 |
+
edge_type = edge_type_label.int2str(edge["type"])
|
75 |
if edge_type == "seg":
|
76 |
adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
|
77 |
elif edge_type == "add":
|
|
|
86 |
edges_multi_source[edge["id"]]["src"].append(edge["src"])
|
87 |
adus_dict = {}
|
88 |
for adu in dl2ld(example["adus"]):
|
89 |
+
adu_type = adu_type_label.int2str(adu["type"])
|
90 |
adu_edus = adu_id2edus[adu["id"]]
|
91 |
adus_dict[adu["id"]] = LabeledAnnotationCollection(
|
92 |
annotations=tuple(adu_edus), label=adu_type
|
|
|
118 |
document.metadata["rel_seg_ids"] = {
|
119 |
edge["src"]: edge["id"]
|
120 |
for edge in dl2ld(example["edges"])
|
121 |
+
if edge_type_label.int2str(edge["type"]) == "seg"
|
122 |
}
|
123 |
document.metadata["rel_add_ids"] = {
|
124 |
edge["src"]: edge["id"]
|
125 |
for edge in dl2ld(example["edges"])
|
126 |
+
if edge_type_label.int2str(edge["type"]) == "add"
|
127 |
}
|
128 |
return document
|
129 |
|
130 |
|
131 |
def document_to_example(
|
132 |
document: ArgMicroDocument,
|
133 |
+
adu_type_label: datasets.ClassLabel,
|
134 |
+
edge_type_label: datasets.ClassLabel,
|
135 |
+
stance_label: datasets.ClassLabel,
|
136 |
) -> Dict[str, Any]:
|
137 |
+
stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
|
138 |
result = {
|
139 |
"id": document.id,
|
140 |
"text": document.text,
|
141 |
"topic_id": document.topic_id or "UNDEFINED",
|
142 |
+
"stance": stance_label.str2int(stance),
|
143 |
}
|
144 |
|
145 |
# construct EDUs
|
|
|
153 |
|
154 |
# construct ADUs
|
155 |
adus = {
|
156 |
+
adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
|
157 |
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
|
158 |
}
|
159 |
result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
|
|
|
179 |
"id": rel_id,
|
180 |
"src": source_id,
|
181 |
"trg": target_id,
|
182 |
+
"type": edge_type_label.str2int(rel.label),
|
183 |
}
|
184 |
edges.append(edge)
|
185 |
# if it is an additional support, we need to change the source to the relation that connects the source
|
|
|
190 |
"id": edge_id,
|
191 |
"src": source_id,
|
192 |
"trg": rel_id,
|
193 |
+
"type": edge_type_label.str2int("add"),
|
194 |
}
|
195 |
edges.append(edge)
|
196 |
|
|
|
203 |
"id": edge_id,
|
204 |
"src": source_id,
|
205 |
"trg": target_id,
|
206 |
+
"type": edge_type_label.str2int("seg"),
|
207 |
}
|
208 |
edges.append(edge)
|
209 |
|
|
|
213 |
return result
|
214 |
|
215 |
|
216 |
+
def convert_to_text_document_with_labeled_spans_and_binary_relations(
|
217 |
+
doc: ArgMicroDocument,
|
218 |
+
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
|
219 |
+
# convert adus to entities
|
220 |
+
entities = []
|
221 |
+
adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
|
222 |
+
for adu in doc.adus:
|
223 |
+
edus: Set[Span] = set(adu.annotations)
|
224 |
+
start = min(edu.start for edu in edus)
|
225 |
+
end = max(edu.end for edu in edus)
|
226 |
+
# assert there are no edus overlapping with the adu, but not part of it
|
227 |
+
for edu in doc.edus:
|
228 |
+
if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
|
229 |
+
raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
|
230 |
+
entity = LabeledSpan(start=start, end=end, label=adu.label)
|
231 |
+
entities.append(entity)
|
232 |
+
adu2entity[adu] = entity
|
233 |
+
relations = []
|
234 |
+
for relation in doc.relations:
|
235 |
+
# add all possible combinations of heads and tails
|
236 |
+
for head in relation.heads:
|
237 |
+
for tail in relation.tails:
|
238 |
+
rel = BinaryRelation(
|
239 |
+
label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
|
240 |
+
)
|
241 |
+
relations.append(rel)
|
242 |
+
# also add the relations between the heads themselves
|
243 |
+
for head1, head2 in combinations(relation.heads, 2):
|
244 |
+
rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
|
245 |
+
relations.append(rel)
|
246 |
+
# also add the reverse relation
|
247 |
+
rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
|
248 |
+
relations.append(rel)
|
249 |
+
|
250 |
+
metadata = copy.deepcopy(doc.metadata)
|
251 |
+
if len(doc.stance) > 0:
|
252 |
+
metadata["stance"] = doc.stance[0].label
|
253 |
+
metadata["topic"] = doc.topic_id
|
254 |
+
result = TextDocumentWithLabeledSpansAndBinaryRelations(
|
255 |
+
text=doc.text, id=doc.id, metadata=doc.metadata
|
256 |
+
)
|
257 |
+
result.labeled_spans.extend(entities)
|
258 |
+
result.binary_relations.extend(relations)
|
259 |
+
|
260 |
+
return result
|
261 |
+
|
262 |
+
|
263 |
+
class ArgMicro(GeneratorBasedBuilder):
|
264 |
DOCUMENT_TYPE = ArgMicroDocument
|
265 |
|
266 |
+
DOCUMENT_CONVERTERS = {
|
267 |
+
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
|
268 |
+
}
|
269 |
+
|
270 |
BASE_DATASET_PATH = "DFKI-SLT/argmicro"
|
271 |
+
BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
|
272 |
|
273 |
BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
|
274 |
|
275 |
def _generate_document_kwargs(self, dataset):
|
276 |
return {
|
277 |
+
"adu_type_label": dataset.features["adus"].feature["type"],
|
278 |
+
"edge_type_label": dataset.features["edges"].feature["type"],
|
279 |
+
"stance_label": dataset.features["stance"],
|
280 |
}
|
281 |
|
282 |
+
def _generate_document(self, example, **kwargs):
|
283 |
+
return example_to_document(example, **kwargs)
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
pie-datasets>=0.3.3,<0.9.0
|