|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
HLGD is a binary classification dataset consisting of 20,056 labeled news headlines pairs indicating |
|
whether the two headlines describe the same underlying world event or not. |
|
""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{Laban2021NewsHG, |
|
title={News Headline Grouping as a Challenging NLU Task}, |
|
author={Philippe Laban and Lucas Bandarkar}, |
|
booktitle={NAACL 2021}, |
|
publisher = {Association for Computational Linguistics}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
HLGD is a binary classification dataset consisting of 20,056 labeled news headlines pairs indicating |
|
whether the two headlines describe the same underlying world event or not. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/tingofurro/headline_grouping" |
|
_LICENSE = "Apache-2.0 License" |
|
_DOWNLOAD_URL = "https://github.com/tingofurro/headline_grouping/releases/download/0.1/hlgd_classification_0.1.zip" |
|
|
|
|
|
class HLGD(datasets.GeneratorBasedBuilder): |
|
"""Headline Grouping Dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"timeline_id": datasets.features.ClassLabel(names=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), |
|
"headline_a": datasets.Value("string"), |
|
"headline_b": datasets.Value("string"), |
|
"date_a": datasets.Value("string"), |
|
"date_b": datasets.Value("string"), |
|
"url_a": datasets.Value("string"), |
|
"url_b": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["same_event", "different_event"]), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.json"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, "test.json"), "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "dev.json"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath, split |
|
): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
dataset_split = json.load(f) |
|
|
|
for id_, row in enumerate(dataset_split): |
|
yield id_, { |
|
"timeline_id": row["timeline_id"], |
|
"headline_a": row["headline_a"], |
|
"headline_b": row["headline_b"], |
|
"date_a": row["date_a"], |
|
"date_b": row["date_b"], |
|
"url_a": row["url_a"], |
|
"url_b": row["url_b"], |
|
"label": row["label"], |
|
} |
|
|