fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
exprzACx m n : (x ^ m) ^ n = (x ^ n) ^ m. Proof. by rewrite !exprz_exp mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprzAC
exprz_outx n (nux : x \isn't a GRing.unit) (hn : 0 <= n) : x ^ (- n) = x ^ n. Proof. by case: (intP n) hn=> //= m; rewrite -exprnN -exprVn invr_out. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_out
exprz_pMzlx m n : 0 <= n -> (x *~ m) ^ n = x ^ n *~ (m ^ n). Proof. by elim: n=> [|n ihn|n _] // _; rewrite !exprSz ihn // mulrzAr mulrzAl -mulrzA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_pMzl
exprz_pintlm n (hn : 0 <= n) : m%:~R ^ n = (m ^ n)%:~R :> R. Proof. by rewrite exprz_pMzl // exp1rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_pintl
exprzMzlx m n (ux : x \is a GRing.unit) (um : m%:~R \is a @GRing.unit R): (x *~ m) ^ n = (m%:~R ^ n) * x ^ n :> R. Proof. rewrite -[x *~ _]mulrzl exprMz_comm //; exact/commr_sym/commr_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprzMzl
expNrzx n : (- x) ^ n = (-1) ^ n * x ^ n :> R. Proof. case: n=> [] n; rewrite ?NegzE; first exact: exprNn. by rewrite -!exprz_inv !invrN invr1; apply: exprNn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expNrz
unitr_n0expzx n : n != 0 -> (x ^ n \is a GRing.unit) = (x \is a GRing.unit). Proof. by case: n => *; rewrite ?NegzE -?exprz_inv ?unitrX_pos ?unitrV ?lt0n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
unitr_n0expz
intrV(n : int) : n \in [:: 0; 1; -1] -> n%:~R ^-1 = n%:~R :> R. Proof. by case: (intP n)=> // [|[]|[]] //; rewrite ?rmorphN ?invrN (invr0, invr1). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intrV
rmorphXz(R' : unitRingType) (f : {rmorphism R -> R'}) n : {in GRing.unit, {morph f : x / x ^ n}}. Proof. by case: n => n x Ux; rewrite ?rmorphV ?rpredX ?rmorphXn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
rmorphXz
expfz_eq0x n : (x ^ n == 0) = (n != 0) && (x == 0). Proof. by case: n=> n; rewrite ?NegzE -?exprz_inv ?expf_eq0 ?lt0n ?invr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expfz_eq0
expfz_neq0x n : x != 0 -> x ^ n != 0. Proof. by move=> x_nz; rewrite expfz_eq0; apply/nandP; right. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expfz_neq0
exprzMlx y n (ux : x \is a GRing.unit) (uy : y \is a GRing.unit) : (x * y) ^ n = x ^ n * y ^ n. Proof. by rewrite exprMz_comm //; apply: mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprzMl
expfV(x : R) (i : int) : (x ^ i) ^-1 = (x ^-1) ^ i. Proof. by rewrite invr_expz exprz_inv. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expfV
expfzDrx m n : x != 0 -> x ^ (m + n) = x ^ m * x ^ n. Proof. by move=> hx; rewrite exprzDr ?unitfE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expfzDr
expfz_n0addrx m n : m + n != 0 -> x ^ (m + n) = x ^ m * x ^ n. Proof. have [-> hmn|nx0 _] := eqVneq x 0; last exact: expfzDr. rewrite !exp0rz (negPf hmn). case: (eqVneq m 0) hmn => [->|]; rewrite (mul0r, mul1r) //. by rewrite add0r=> /negPf->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expfz_n0addr
expfzMlx y n : (x * y) ^ n = x ^ n * y ^ n. Proof. have [->|/negPf n0] := eqVneq n 0; first by rewrite !expr0z mulr1. case: (boolP ((x * y) == 0)); rewrite ?mulf_eq0. by case/pred2P=> ->; rewrite ?(mul0r, mulr0, exp0rz, n0). by case/norP=> x0 y0; rewrite exprzMl ?unitfE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expfzMl
fmorphXz(R : unitRingType) (f : {rmorphism F -> R}) n : {morph f : x / x ^ n}. Proof. by case: n => n x; rewrite ?fmorphV rmorphXn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
fmorphXz
exprz_ge0n x (hx : 0 <= x) : (0 <= x ^ n). Proof. by case: n => n; rewrite ?invr_ge0 ?exprn_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_ge0
exprz_gt0n x (hx : 0 < x) : (0 < x ^ n). Proof. by case: n => n; rewrite ?invr_gt0 ?exprn_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_gt0
exprz_gte0:= (exprz_ge0, exprz_gt0).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_gte0
ler_wpiXz2lx (x0 : 0 <= x) (x1 : x <= 1) : {in >= 0 &, {homo exprz x : x y /~ x <= y}}. Proof. move=> [] m [] n; rewrite -!topredE /= ?oppr_cp0 ?ltz_nat // => _ _. by rewrite lez_nat -?exprnP => /ler_wiXn2l; apply. Qed. Fact ler_wpeXz2l x (x1 : 1 <= x) : {in >= 0 &, {homo exprz x : x y / x <= y}}. Proof. move=> [] m [] n; rewrite -!topredE /= ?oppr_cp0 ?ltz_nat // => _ _. by rewrite lez_nat -?exprnP=> /ler_weXn2l; apply. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wpiXz2l
pexprz_eq1x n (x0 : 0 <= x) : (x ^ n == 1) = ((n == 0) || (x == 1)). Proof. case: n=> n; rewrite ?NegzE -?exprz_inv ?oppr_eq0 pexprn_eq1 // ?invr_eq1 //. by rewrite invr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pexprz_eq1
ler_wpXz2rn (hn : 0 <= n) : {in >= 0 & , {homo (@exprz R)^~ n : x y / x <= y}}. Proof. by case: n hn=> // n _; exact: lerXn2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wpXz2r
ler_wniXz2lx (x0 : 0 <= x) (x1 : x <= 1) : {in < 0 &, {homo exprz x : x y /~ x <= y}}. Proof. move=> [] m [] n; rewrite ?NegzE -!topredE /= ?oppr_cp0 ?ltz_nat // => _ _. rewrite lerN2 lez_nat -?invr_expz=> hmn; have := x0. rewrite le0r=> /predU1P [->|lx0]; first by rewrite !exp0rz invr0. by rewrite lef_pV2 -?topredE /= ?exprz_gt0 // ler_wiXn2l. Qed. Fact ler_wneXz2l x (x1 : 1 <= x) : {in <= 0 &, {homo exprz x : x y / x <= y}}. Proof. move=> m n hm hn /= hmn. rewrite -lef_pV2 -?topredE /= ?exprz_gt0 ?(lt_le_trans ltr01) //. by rewrite !invr_expz ler_wpeXz2l ?lerN2 -?topredE //= oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wniXz2l
ler_weXz2lx (x1 : 1 <= x) : {homo exprz x : x y / x <= y}. Proof. move=> m n /= hmn; case: (lerP 0 m)=> [|/ltW] hm. by rewrite ler_wpeXz2l // [_ \in _](le_trans hm). case: (lerP n 0)=> [|/ltW] hn. by rewrite ler_wneXz2l // [_ \in _](le_trans hmn). apply: (@le_trans _ _ (x ^ 0)); first by rewrite ler_wneXz2l. by rewrite ler_wpeXz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_weXz2l
ieexprIzx (x0 : 0 < x) (nx1 : x != 1) : injective (exprz x). Proof. apply: wlog_lt=> // m n hmn; first by move=> hmn'; rewrite hmn. move=> /(f_equal ( *%R^~ (x ^ (- n)))). rewrite -!expfzDr ?gt_eqF // subrr expr0z=> /eqP. by rewrite pexprz_eq1 ?(ltW x0) // (negPf nx1) subr_eq0 orbF=> /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ieexprIz
ler_piXz2lx (x0 : 0 < x) (x1 : x < 1) : {in >= 0 &, {mono exprz x : x y /~ x <= y}}. Proof. apply: (le_nmono_in (inj_nhomo_lt_in _ _)). by move=> n m hn hm /=; apply: ieexprIz; rewrite // lt_eqF. by apply: ler_wpiXz2l; rewrite ?ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_piXz2l
ltr_piXz2lx (x0 : 0 < x) (x1 : x < 1) : {in >= 0 &, {mono exprz x : x y /~ x < y}}. Proof. exact: (leW_nmono_in (ler_piXz2l _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_piXz2l
ler_niXz2lx (x0 : 0 < x) (x1 : x < 1) : {in < 0 &, {mono exprz x : x y /~ x <= y}}. Proof. apply: (le_nmono_in (inj_nhomo_lt_in _ _)). by move=> n m hn hm /=; apply: ieexprIz; rewrite // lt_eqF. by apply: ler_wniXz2l; rewrite ?ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_niXz2l
ltr_niXz2lx (x0 : 0 < x) (x1 : x < 1) : {in < 0 &, {mono (exprz x) : x y /~ x < y}}. Proof. exact: (leW_nmono_in (ler_niXz2l _ _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_niXz2l
ler_eXz2lx (x1 : 1 < x) : {mono exprz x : x y / x <= y}. Proof. apply: (le_mono (inj_homo_lt _ _)). by apply: ieexprIz; rewrite ?(lt_trans ltr01) // gt_eqF. by apply: ler_weXz2l; rewrite ?ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_eXz2l
ltr_eXz2lx (x1 : 1 < x) : {mono exprz x : x y / x < y}. Proof. exact: (leW_mono (ler_eXz2l _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_eXz2l
ler_wnXz2rn (hn : n <= 0) : {in > 0 & , {homo (@exprz R)^~ n : x y /~ x <= y}}. Proof. move=> x y /= hx hy hxy; rewrite -lef_pV2 ?[_ \in _]exprz_gt0 //. by rewrite !invr_expz ler_wpXz2r ?[_ \in _]ltW // oppr_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wnXz2r
pexpIrzn (n0 : n != 0) : {in >= 0 &, injective ((@exprz R)^~ n)}. Proof. move=> x y; rewrite ![_ \in _]le0r=> /predU1P [-> _ /eqP|hx]. by rewrite exp0rz ?(negPf n0) eq_sym expfz_eq0=> /andP [_ /eqP->]. case/predU1P=> [-> /eqP|hy]. by rewrite exp0rz ?(negPf n0) expfz_eq0=> /andP [_ /eqP]. move=> /(f_equal ( *%R^~ (y ^ (- n)))) /eqP. rewrite -expfzDr ?(gt_eqF hy) // subrr expr0z -exprz_inv -expfzMl. rewrite pexprz_eq1 ?(negPf n0) /= ?mulr_ge0 ?invr_ge0 ?ltW //. by rewrite (can2_eq (mulrVK _) (mulrK _)) ?unitfE ?(gt_eqF hy) // mul1r=> /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pexpIrz
nexpIrzn (n0 : n != 0) : {in <= 0 &, injective ((@exprz R)^~ n)}. Proof. move=> x y; rewrite ![_ \in _]le_eqVlt => /predU1P [-> _ /eqP|hx]. by rewrite exp0rz ?(negPf n0) eq_sym expfz_eq0=> /andP [_ /eqP->]. case/predU1P=> [-> /eqP|hy]. by rewrite exp0rz ?(negPf n0) expfz_eq0=> /andP [_ /eqP]. move=> /(f_equal ( *%R^~ (y ^ (- n)))) /eqP. rewrite -expfzDr ?(lt_eqF hy) // subrr expr0z -exprz_inv -expfzMl. rewrite pexprz_eq1 ?(negPf n0) /= ?mulr_le0 ?invr_le0 ?ltW //. by rewrite (can2_eq (mulrVK _) (mulrK _)) ?unitfE ?(lt_eqF hy) // mul1r=> /eqP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nexpIrz
ler_pXz2rn (hn : 0 < n) : {in >= 0 & , {mono ((@exprz R)^~ n) : x y / x <= y}}. Proof. apply: le_mono_in (inj_homo_lt_in _ _). by move=> x y hx hy /=; apply: pexpIrz; rewrite // gt_eqF. by apply: ler_wpXz2r; rewrite ltW. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_pXz2r
ltr_pXz2rn (hn : 0 < n) : {in >= 0 & , {mono ((@exprz R)^~ n) : x y / x < y}}. Proof. exact: leW_mono_in (ler_pXz2r _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_pXz2r
ler_nXz2rn (hn : n < 0) : {in > 0 & , {mono ((@exprz R)^~ n) : x y /~ x <= y}}. Proof. apply: le_nmono_in (inj_nhomo_lt_in _ _); last first. by apply: ler_wnXz2r; rewrite ltW. by move=> x y hx hy /=; apply: pexpIrz; rewrite ?[_ \in _]ltW ?lt_eqF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_nXz2r
ltr_nXz2rn (hn : n < 0) : {in > 0 & , {mono ((@exprz R)^~ n) : x y /~ x < y}}. Proof. exact: leW_nmono_in (ler_nXz2r _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_nXz2r
eqrXz2n x y : n != 0 -> 0 <= x -> 0 <= y -> (x ^ n == y ^ n) = (x == y). Proof. by move=> *; rewrite (inj_in_eq (pexpIrz _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
eqrXz2
sgzx : int := if x == 0 then 0 else if x < 0 then -1 else 1.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz
sgz_defx : sgz x = (-1) ^+ (x < 0)%R *+ (x != 0). Proof. by rewrite /sgz; case: (_ == _); case: (_ < _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_def
sgrEzx : sgr x = (sgz x)%:~R. Proof. by rewrite !(fun_if intr). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgrEz
gtr0_sgzx : 0 < x -> sgz x = 1. Proof. by move=> x_gt0; rewrite /sgz lt_neqAle andbC eq_le lt_geF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
gtr0_sgz
ltr0_sgzx : x < 0 -> sgz x = -1. Proof. by move=> x_lt0; rewrite /sgz eq_sym eq_le x_lt0 lt_geF. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr0_sgz
sgz0: sgz (0 : R) = 0. Proof. by rewrite /sgz eqxx. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz0
sgz1: sgz (1 : R) = 1. Proof. by rewrite gtr0_sgz // ltr01. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz1
sgzN1: sgz (-1 : R) = -1. Proof. by rewrite ltr0_sgz // ltrN10. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgzN1
sgzE:= (sgz0, sgz1, sgzN1).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgzE
sgz_sgrx : sgz (sgr x) = sgz x. Proof. by rewrite !(fun_if sgz) !sgzE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_sgr
normr_sgzx : `|sgz x| = (x != 0). Proof. by rewrite sgz_def -mulr_natr normrMsign normr_nat natz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
normr_sgz
normr_sgx : `|sgr x| = (x != 0)%:~R. Proof. by rewrite sgr_def -mulr_natr normrMsign normr_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
normr_sg
sgz_intm : sgz (m%:~R : R) = sgz m. Proof. by rewrite /sgz intr_eq0 ltrz0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_int
sgrz(n : int) : sgr n = sgz n. Proof. by rewrite sgrEz intz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgrz
intr_sgm : (sgr m)%:~R = sgr (m%:~R) :> R. Proof. by rewrite sgrz -sgz_int -sgrEz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intr_sg
sgz_id(x : R) : sgz (sgz x) = sgz x. Proof. by rewrite !(fun_if (@sgz _)). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_id
sgz_cp0x : ((sgz x == 1) = (0 < x)) * ((sgz x == -1) = (x < 0)) * ((sgz x == 0) = (x == 0)). Proof. by rewrite /sgz; case: ltrgtP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_cp0
sgz_valx : bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> bool -> R -> R -> int -> Set := | SgzNull of x = 0 : sgz_val x true true true true false false true false false true false false true false false true false false 0 0 0 | SgzPos of x > 0 : sgz_val x false false true false false true false false true false false true false false true false false true x 1 1 | SgzNeg of x < 0 : sgz_val x false true false false true false false true false false true false false true false false true false (-x) (-1) (-1).
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_val
sgzPx : sgz_val x (0 == x) (x <= 0) (0 <= x) (x == 0) (x < 0) (0 < x) (0 == sgr x) (-1 == sgr x) (1 == sgr x) (sgr x == 0) (sgr x == -1) (sgr x == 1) (0 == sgz x) (-1 == sgz x) (1 == sgz x) (sgz x == 0) (sgz x == -1) (sgz x == 1) `|x| (sgr x) (sgz x). Proof. rewrite ![_ == sgz _]eq_sym ![_ == sgr _]eq_sym !sgr_cp0 !sgz_cp0. by rewrite /sgz; case: sgrP; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgzP
sgzNx : sgz (- x) = - sgz x. Proof. by rewrite /sgz oppr_eq0 oppr_lt0; case: ltrgtP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgzN
mulz_sgx : sgz x * sgz x = (x != 0)%:~R. Proof. by case: sgzP; rewrite ?(mulr0, mulr1, mulrNN). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz_sg
mulz_sg_eq1x y : (sgz x * sgz y == 1) = (x != 0) && (sgz x == sgz y). Proof. do 2?case: sgzP=> _; rewrite ?(mulr0, mulr1, mulrN1, opprK, oppr0, eqxx); by rewrite ?[0 == 1]eq_sym ?oner_eq0 //= eqr_oppLR oppr0 oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz_sg_eq1
mulz_sg_eqN1x y : (sgz x * sgz y == -1) = (x != 0) && (sgz x == - sgz y). Proof. by rewrite -eqr_oppLR -mulrN -sgzN mulz_sg_eq1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz_sg_eqN1
sgzMx y : sgz (x * y) = sgz x * sgz y. Proof. rewrite -sgz_sgr -(sgz_sgr x) -(sgz_sgr y) sgrM. by case: sgrP; case: sgrP; rewrite /sgz ?(mulNr, mul0r, mul1r); rewrite ?(oppr_eq0, oppr_cp0, eqxx, ltxx, ltr01, ltr10, oner_eq0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgzM
sgzX(n : nat) x : sgz (x ^+ n) = (sgz x) ^+ n. Proof. by elim: n => [|n IHn]; rewrite ?sgz1 // !exprS sgzM IHn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgzX
sgz_eq0x : (sgz x == 0) = (x == 0). Proof. by rewrite sgz_cp0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_eq0
sgz_odd(n : nat) x : x != 0 -> (sgz x) ^+ n = (sgz x) ^+ (odd n). Proof. by case: sgzP => //=; rewrite ?expr1n // signr_odd. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_odd
sgz_gt0x : (sgz x > 0) = (x > 0). Proof. by case: sgzP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_gt0
sgz_lt0x : (sgz x < 0) = (x < 0). Proof. by case: sgzP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_lt0
sgz_ge0x : (sgz x >= 0) = (x >= 0). Proof. by case: sgzP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_ge0
sgz_le0x : (sgz x <= 0) = (x <= 0). Proof. by case: sgzP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_le0
sgz_smulx y : sgz (y *~ (sgz x)) = (sgz x) * (sgz y). Proof. by rewrite -mulrzl sgzM -sgrEz sgz_sgr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_smul
sgrMzm x : sgr (x *~ m) = sgr x *~ sgr m. Proof. by rewrite -mulrzr sgrM -intr_sg mulrzr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgrMz
sgz_eq(R R' : realDomainType) (x : R) (y : R') : (sgz x == sgz y) = ((x == 0) == (y == 0)) && ((0 < x) == (0 < y)). Proof. by do 2!case: sgzP. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sgz_eq
intr_sign(R : pzRingType) s : ((-1) ^+ s)%:~R = (-1) ^+ s :> R. Proof. exact: rmorph_sign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intr_sign
absz_nat(n : nat) : `|n| = n. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz_nat
abszE(m : int) : `|m| = `|m|%R :> int. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszE
absz0: `|0%R| = 0. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz0
abszNm : `|- m| = `|m|. Proof. by case: (normrN m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszN
absz_eq0m : (`|m| == 0) = (m == 0%R). Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz_eq0
absz_gt0m : (`|m| > 0) = (m != 0%R). Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz_gt0
absz1: `|1%R| = 1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz1
abszN1: `|-1%R| = 1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszN1
absz_idm : `|(`|m|)| = `|m|. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz_id
abszMm1 m2 : `|(m1 * m2)%R| = `|m1| * `|m2|. Proof. by case: m1 m2 => [[|m1]|m1] [[|m2]|m2] //=; rewrite ?mulnS mulnC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszM
abszX(n : nat) m : `|m ^+ n| = `|m| ^ n. Proof. by elim: n => // n ihn; rewrite exprS expnS abszM ihn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszX
absz_sgm : `|sgr m| = (m != 0%R). Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz_sg
gez0_absm : (0 <= m)%R -> `|m| = m :> int. Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
gez0_abs
gtz0_absm : (0 < m)%R -> `|m| = m :> int. Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
gtz0_abs
lez0_absm : (m <= 0)%R -> `|m| = - m :> int. Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lez0_abs
ltz0_absm : (m < 0)%R -> `|m| = - m :> int. Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltz0_abs
lez_absm : m <= `|m|%N :> int. Proof. by case: (intP m). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lez_abs
absz_signs : `|(-1) ^+ s| = 1. Proof. by rewrite abszX exp1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz_sign
abszMsigns m : `|((-1) ^+ s * m)%R| = `|m|. Proof. by rewrite abszM absz_sign mul1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszMsign
mulz_sign_absm : ((-1) ^+ (m < 0)%R * `|m|%:Z)%R = m. Proof. by rewrite abszE mulr_sign_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz_sign_abs
mulz_Nsign_absm : ((-1) ^+ (0 < m)%R * `|m|%:Z)%R = - m. Proof. by rewrite abszE mulr_Nsign_norm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz_Nsign_abs
intEsignm : m = ((-1) ^+ (m < 0)%R * `|m|%:Z)%R. Proof. exact: numEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intEsign
abszEsignm : `|m|%:Z = ((-1) ^+ (m < 0)%R * m)%R. Proof. exact: normrEsign. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszEsign
intEsgm : m = (sgz m * `|m|%:Z)%R. Proof. by rewrite -sgrz -numEsg. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intEsg
abszEsgm : (`|m|%:Z = sgz m * m)%R. Proof. by rewrite -sgrz -normrEsg. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
abszEsg