fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
mulrzlx n : n%:~R * x = x *~ n. Proof. by rewrite mulrzAl mul1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzl
mulrzrx n : x * n%:~R = x *~ n. Proof. by rewrite mulrzAr mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzr
mulNrNzn x : (- x) *~ (- n) = x *~ n. Proof. by rewrite mulNrz mulrNz opprK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulNrNz
mulrbzx (b : bool) : x *~ b = (if b then x else 0). Proof. by case: b. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrbz
intrNn : (- n)%:~R = - n%:~R :> R. Proof. exact: mulrNz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intrN
intrDm n : (m + n)%:~R = m%:~R + n%:~R :> R. Proof. exact: mulrzDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intrD
intrBm n : (m - n)%:~R = m%:~R - n%:~R :> R. Proof. exact: mulrzBr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intrB
intrMm n : (m * n)%:~R = m%:~R * n%:~R :> R. Proof. by rewrite mulrzA -mulrzr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intrM
intmul1_is_monoid_morphism: monoid_morphism ( *~%R (1 : R)). Proof. by split; move=> // x y /=; rewrite ?intrD ?mulrNz ?intrM. Qed. #[warning="-deprecated-since-mathcomp-2.5.0", deprecated(since="mathcomp 2.5.0", note="use `intmul1_is_monoid_morphism` instead")]
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intmul1_is_monoid_morphism
intmul1_is_multiplicative:= (fun g => (g.2,g.1)) intmul1_is_monoid_morphism. HB.instance Definition _ := GRing.isMonoidMorphism.Build int R ( *~%R 1) intmul1_is_monoid_morphism.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intmul1_is_multiplicative
mulr2zn : n *~ 2 = n + n. Proof. exact: mulr2n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulr2z
mulrzzm n : m *~ n = m * n. Proof. by rewrite -mulrzr intz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzz
mulz2n : n * 2%:Z = n + n. Proof. by rewrite -mulrzz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz2
mul2zn : 2%:Z * n = n + n. Proof. by rewrite mulrC -mulrzz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mul2z
scaler_intn v : n%:~R *: v = v *~ n. Proof. by case: n => n; rewrite /intmul ?scaleNr scaler_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
scaler_int
scalerMzla v n : (a *: v) *~ n = (a *~ n) *: v. Proof. by rewrite -mulrzl -scaler_int scalerA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
scalerMzl
scalerMzra v n : (a *: v) *~ n = a *: (v *~ n). Proof. by rewrite -!scaler_int !scalerA mulrzr mulrzl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
scalerMzr
mulrz_int(M : zmodType) (n : int) (x : M) : x *~ n%:~R = x *~ n. Proof. by rewrite -scalezrE scaler_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_int
raddfMzn : {morph f : x / x *~ n}. Proof. by case: n=> n x; rewrite 1?raddfN raddfMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
raddfMz
rmorphMz: forall n, {morph f : x / x *~ n}. Proof. exact: raddfMz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
rmorphMz
rmorph_int: forall n, f n%:~R = n%:~R. Proof. by move=> n; rewrite rmorphMz rmorph1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
rmorph_int
linearMn: forall n, {morph f : x / x *~ n}. Proof. exact: raddfMz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
linearMn
raddf_int_scalable(aV rV : lmodType int) (f : {additive aV -> rV}) : scalable f. Proof. by move=> z u; rewrite -[z]intz !scaler_int raddfMz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
raddf_int_scalable
commrMz(x y : R) n : GRing.comm x y -> GRing.comm x (y *~ n). Proof. by rewrite /GRing.comm=> com_xy; rewrite mulrzAr mulrzAl com_xy. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
commrMz
commr_int(x : R) n : GRing.comm x n%:~R. Proof. exact/commrMz/commr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
commr_int
sumMz: forall I r (P : pred I) F, (\sum_(i <- r | P i) F i)%N%:~R = \sum_(i <- r | P i) ((F i)%:~R) :> R. Proof. exact: rmorph_sum. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
sumMz
prodMz: forall I r (P : pred I) F, (\prod_(i <- r | P i) F i)%N%:~R = \prod_(i <- r | P i) ((F i)%:~R) :> R. Proof. exact: rmorph_prod. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
prodMz
pFrobenius_autMzx n : (x *~ n)^f = x^f *~ n. Proof. case: n=> n /=; first exact: pFrobenius_autMn. by rewrite !NegzE !mulrNz pFrobenius_autN pFrobenius_autMn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pFrobenius_autMz
pFrobenius_aut_intn : (n%:~R)^f = n%:~R. Proof. by rewrite pFrobenius_autMz pFrobenius_aut1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pFrobenius_aut_int
Frobenius_autMz:= (pFrobenius_autMz) (only parsing). #[deprecated(since="mathcomp 2.4.0", note="Use pFrobenius_aut_int instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Frobenius_autMz
Frobenius_aut_int:= (pFrobenius_aut_int) (only parsing).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Frobenius_aut_int
rmorphzP(f : {rmorphism int -> R}) : f =1 ( *~%R 1). Proof. by move=> n; rewrite -[n in LHS]intz rmorph_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
rmorphzP
ler_pMz2rn (hn : 0 < n) : {mono *~%R^~ n :x y / x <= y :> R}. Proof. by move=> x y; case: n hn=> [[]|] // n _; rewrite ler_pMn2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_pMz2r
ltr_pMz2rn (hn : 0 < n) : {mono *~%R^~ n : x y / x < y :> R}. Proof. exact: leW_mono (ler_pMz2r _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_pMz2r
ler_nMz2rn (hn : n < 0) : {mono *~%R^~ n : x y /~ x <= y :> R}. Proof. by move=> x y /=; rewrite -![_ *~ n]mulNrNz ler_pMz2r (oppr_cp0, lerN2). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_nMz2r
ltr_nMz2rn (hn : n < 0) : {mono *~%R^~ n : x y /~ x < y :> R}. Proof. exact: leW_nmono (ler_nMz2r _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_nMz2r
ler_wpMz2rn (hn : 0 <= n) : {homo *~%R^~ n : x y / x <= y :> R}. Proof. by move=> x y xy; case: n hn=> [] // n _; rewrite ler_wMn2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wpMz2r
ler_wnMz2rn (hn : n <= 0) : {homo *~%R^~ n : x y /~ x <= y :> R}. Proof. by move=> x y xy /=; rewrite -lerN2 -!mulrNz ler_wpMz2r // oppr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wnMz2r
mulrz_ge0x n (x0 : 0 <= x) (n0 : 0 <= n) : 0 <= x *~ n. Proof. by rewrite -(mul0rz _ n) ler_wpMz2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_ge0
mulrz_le0x n (x0 : x <= 0) (n0 : n <= 0) : 0 <= x *~ n. Proof. by rewrite -(mul0rz _ n) ler_wnMz2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_le0
mulrz_ge0_le0x n (x0 : 0 <= x) (n0 : n <= 0) : x *~ n <= 0. Proof. by rewrite -(mul0rz _ n) ler_wnMz2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_ge0_le0
mulrz_le0_ge0x n (x0 : x <= 0) (n0 : 0 <= n) : x *~ n <= 0. Proof. by rewrite -(mul0rz _ n) ler_wpMz2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_le0_ge0
pmulrz_lgt0x n (n0 : 0 < n) : 0 < x *~ n = (0 < x). Proof. by rewrite -(mul0rz _ n) ltr_pMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_lgt0
nmulrz_lgt0x n (n0 : n < 0) : 0 < x *~ n = (x < 0). Proof. by rewrite -(mul0rz _ n) ltr_nMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_lgt0
pmulrz_llt0x n (n0 : 0 < n) : x *~ n < 0 = (x < 0). Proof. by rewrite -(mul0rz _ n) ltr_pMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_llt0
nmulrz_llt0x n (n0 : n < 0) : x *~ n < 0 = (0 < x). Proof. by rewrite -(mul0rz _ n) ltr_nMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_llt0
pmulrz_lge0x n (n0 : 0 < n) : 0 <= x *~ n = (0 <= x). Proof. by rewrite -(mul0rz _ n) ler_pMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_lge0
nmulrz_lge0x n (n0 : n < 0) : 0 <= x *~ n = (x <= 0). Proof. by rewrite -(mul0rz _ n) ler_nMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_lge0
pmulrz_lle0x n (n0 : 0 < n) : x *~ n <= 0 = (x <= 0). Proof. by rewrite -(mul0rz _ n) ler_pMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_lle0
nmulrz_lle0x n (n0 : n < 0) : x *~ n <= 0 = (0 <= x). Proof. by rewrite -(mul0rz _ n) ler_nMz2r // mul0rz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_lle0
ler_wpMz2lx (hx : 0 <= x) : {homo *~%R x : x y / x <= y}. Proof. by move=> m n /= hmn; rewrite -subr_ge0 -mulrzBr mulrz_ge0 // subr_ge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wpMz2l
ler_wnMz2lx (hx : x <= 0) : {homo *~%R x : x y /~ x <= y}. Proof. by move=> m n /= hmn; rewrite -subr_ge0 -mulrzBr mulrz_le0 // subr_le0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_wnMz2l
ler_pMz2lx (hx : 0 < x) : {mono *~%R x : x y / x <= y}. Proof. move=> m n /=; rewrite real_mono ?num_real // => {m n}. by move=> m n /= hmn; rewrite -subr_gt0 -mulrzBr pmulrz_lgt0 // subr_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_pMz2l
ler_nMz2lx (hx : x < 0) : {mono *~%R x : x y /~ x <= y}. Proof. move=> m n /=; rewrite real_nmono ?num_real // => {m n}. by move=> m n /= hmn; rewrite -subr_gt0 -mulrzBr nmulrz_lgt0 // subr_lt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_nMz2l
ltr_pMz2lx (hx : 0 < x) : {mono *~%R x : x y / x < y}. Proof. exact: leW_mono (ler_pMz2l _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_pMz2l
ltr_nMz2lx (hx : x < 0) : {mono *~%R x : x y /~ x < y}. Proof. exact: leW_nmono (ler_nMz2l _). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_nMz2l
pmulrz_rgt0x n (x0 : 0 < x) : 0 < x *~ n = (0 < n). Proof. by rewrite -(mulr0z x) ltr_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_rgt0
nmulrz_rgt0x n (x0 : x < 0) : 0 < x *~ n = (n < 0). Proof. by rewrite -(mulr0z x) ltr_nMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_rgt0
pmulrz_rlt0x n (x0 : 0 < x) : x *~ n < 0 = (n < 0). Proof. by rewrite -(mulr0z x) ltr_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_rlt0
nmulrz_rlt0x n (x0 : x < 0) : x *~ n < 0 = (0 < n). Proof. by rewrite -(mulr0z x) ltr_nMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_rlt0
pmulrz_rge0x n (x0 : 0 < x) : 0 <= x *~ n = (0 <= n). Proof. by rewrite -(mulr0z x) ler_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_rge0
nmulrz_rge0x n (x0 : x < 0) : 0 <= x *~ n = (n <= 0). Proof. by rewrite -(mulr0z x) ler_nMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_rge0
pmulrz_rle0x n (x0 : 0 < x) : x *~ n <= 0 = (n <= 0). Proof. by rewrite -(mulr0z x) ler_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrz_rle0
nmulrz_rle0x n (x0 : x < 0) : x *~ n <= 0 = (0 <= n). Proof. by rewrite -(mulr0z x) ler_nMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrz_rle0
mulrIzx (hx : x != 0) : injective ( *~%R x). Proof. move=> y z; rewrite -![x *~ _]mulrzr => /(mulfI hx). by apply: inc_inj y z; exact: ler_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrIz
ler_intm n : (m%:~R <= n%:~R :> R) = (m <= n). Proof. by rewrite ler_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler_int
ltr_intm n : (m%:~R < n%:~R :> R) = (m < n). Proof. by rewrite ltr_pMz2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr_int
eqr_intm n : (m%:~R == n%:~R :> R) = (m == n). Proof. by rewrite (inj_eq (mulrIz _)) ?oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
eqr_int
ler0zn : (0 <= n%:~R :> R) = (0 <= n). Proof. by rewrite pmulrz_rge0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler0z
ltr0zn : (0 < n%:~R :> R) = (0 < n). Proof. by rewrite pmulrz_rgt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr0z
lerz0n : (n%:~R <= 0 :> R) = (n <= 0). Proof. by rewrite pmulrz_rle0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lerz0
ltrz0n : (n%:~R < 0 :> R) = (n < 0). Proof. by rewrite pmulrz_rlt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltrz0
ler1z(n : int) : (1 <= n%:~R :> R) = (1 <= n). Proof. by rewrite -[1]/(1%:~R) ler_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ler1z
ltr1z(n : int) : (1 < n%:~R :> R) = (1 < n). Proof. by rewrite -[1]/(1%:~R) ltr_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltr1z
lerz1n : (n%:~R <= 1 :> R) = (n <= 1). Proof. by rewrite -[1]/(1%:~R) ler_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lerz1
ltrz1n : (n%:~R < 1 :> R) = (n < 1). Proof. by rewrite -[1]/(1%:~R) ltr_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltrz1
intr_eq0n : (n%:~R == 0 :> R) = (n == 0). Proof. by rewrite -(mulr0z 1) (inj_eq (mulrIz _)) // oner_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intr_eq0
mulrz_eq0x n : (x *~ n == 0) = ((n == 0) || (x == 0)). Proof. by rewrite -mulrzl mulf_eq0 intr_eq0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_eq0
mulrz_neq0x n : x *~ n != 0 = ((n != 0) && (x != 0)). Proof. by rewrite mulrz_eq0 negb_or. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_neq0
realzn : (n%:~R : R) \in Num.real. Proof. by rewrite -topredE /Num.real /= ler0z lerz0 le_total. Qed. Hint Resolve realz : core.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
realz
intr_inj:= @mulrIz 1 (oner_neq0 R).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intr_inj
exprz(R : unitRingType) (x : R) (n : int) := match n with | Posz n => x ^+ n | Negz n => x ^- (n.+1) end. Arguments exprz : simpl never.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz
exprnPx (n : nat) : x ^+ n = x ^ n. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprnP
exprnNx (n : nat) : x ^- n = x ^ (-n%:Z). Proof. by case: n=> //; rewrite oppr0 expr0 invr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprnN
expr0zx : x ^ 0 = 1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expr0z
expr1zx : x ^ 1 = x. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
expr1z
exprN1x : x ^ (-1) = x^-1. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprN1
invr_expzx n : (x ^ n)^-1 = x ^ (- n). Proof. by case: (intP n)=> // [|m]; rewrite ?opprK ?expr0z ?invr1 // invrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
invr_expz
exprz_invx n : (x^-1) ^ n = x ^ (- n). Proof. by case: (intP n)=> // m; rewrite -[_ ^ (- _)]exprVn ?opprK ?invrK. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_inv
exp1rzn : 1 ^ n = 1 :> R. Proof. by case: (intP n)=> // m; rewrite -?exprz_inv ?invr1; apply: expr1n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exp1rz
exprSzx (n : nat) : x ^ n.+1 = x * x ^ n. Proof. exact: exprS. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprSz
exprSzrx (n : nat) : x ^ n.+1 = x ^ n * x. Proof. exact: exprSr. Qed. Fact exprzD_nat x (m n : nat) : x ^ (m%:Z + n) = x ^ m * x ^ n. Proof. exact: exprD. Qed. Fact exprzD_Nnat x (m n : nat) : x ^ (-m%:Z + -n%:Z) = x ^ (-m%:Z) * x ^ (-n%:Z). Proof. by rewrite -opprD -!exprz_inv exprzD_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprSzr
exprzD_ssx m n : (0 <= m) && (0 <= n) || (m <= 0) && (n <= 0) -> x ^ (m + n) = x ^ m * x ^ n. Proof. case: (intP m)=> {m} [|m|m]; case: (intP n)=> {n} [|n|n] //= _; by rewrite ?expr0z ?mul1r ?exprzD_nat ?exprzD_Nnat ?sub0r ?addr0 ?mulr1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprzD_ss
exp0rzn : 0 ^ n = (n == 0)%:~R :> R. Proof. by case: (intP n)=> // m; rewrite -?exprz_inv ?invr0 exprSz mul0r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exp0rz
commrXzx y n : GRing.comm x y -> GRing.comm x (y ^ n). Proof. rewrite /GRing.comm; elim: n x y=> [|n ihn|n ihn] x y com_xy //=. * by rewrite expr0z mul1r mulr1. * by rewrite -exprnP commrX //. rewrite -exprz_inv -exprnP commrX //. case: (boolP (y \is a GRing.unit))=> uy; last by rewrite invr_out. by apply/eqP; rewrite (can2_eq (mulrVK _) (mulrK _)) // -mulrA com_xy mulKr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
commrXz
exprMz_commx y n : x \is a GRing.unit -> y \is a GRing.unit -> GRing.comm x y -> (x * y) ^ n = x ^ n * y ^ n. Proof. move=> ux uy com_xy; elim: n => [|n _|n _]; first by rewrite expr0z mulr1. by rewrite -!exprnP exprMn_comm. rewrite -!exprnN -!exprVn com_xy -exprMn_comm ?invrM//. exact/commrV/commr_sym/commrV. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprMz_comm
commrXz_wmullsx y n : 0 <= n -> GRing.comm x y -> (x * y) ^ n = x ^ n * y ^ n. Proof. move=> n0 com_xy; elim: n n0 => [|n _|n _] //; first by rewrite expr0z mulr1. by rewrite -!exprnP exprMn_comm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
commrXz_wmulls
unitrXzx n (ux : x \is a GRing.unit) : x ^ n \is a GRing.unit. Proof. case: (intP n)=> {n} [|n|n]; rewrite ?expr0z ?unitr1 ?unitrX //. by rewrite -invr_expz unitrV unitrX. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
unitrXz
exprzDrx (ux : x \is a GRing.unit) m n : x ^ (m + n) = x ^ m * x ^ n. Proof. move: n m; apply: wlog_le=> n m hnm. by rewrite addrC hnm commrXz //; exact/commr_sym/commrXz. case: (intP m) hnm=> {m} [|m|m]; rewrite ?mul1r ?add0r //; case: (intP n)=> {n} [|n|n _]; rewrite ?mulr1 ?addr0 //; do ?by rewrite exprzD_ss. rewrite -invr_expz subzSS !exprSzr invrM ?unitrX // -mulrA mulVKr //. case: (leqP n m)=> [|/ltnW] hmn; rewrite -{2}(subnK hmn) exprzD_nat -subzn //. by rewrite mulrK ?unitrX. by rewrite invrM ?unitrXz // mulVKr ?unitrXz // -opprB -invr_expz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprzDr
exprz_expx m n : (x ^ m) ^ n = (x ^ (m * n)). Proof. wlog: n / 0 <= n. by case: n=> [n -> //|n]; rewrite ?NegzE mulrN -?invr_expz=> -> /=. elim: n x m=> [|n ihn|n ihn] x m // _; first by rewrite mulr0 !expr0z. rewrite exprSz ihn // intS mulrDr mulr1 exprzD_ss //. by case: (intP m)=> // m'; rewrite ?oppr_le0 //. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
exprz_exp