fact
stringlengths
8
1.54k
type
stringclasses
19 values
library
stringclasses
8 values
imports
listlengths
1
10
filename
stringclasses
98 values
symbolic_name
stringlengths
1
42
docstring
stringclasses
1 value
int_spec(x : int) : int -> Type := | ZintNull of x = 0 : int_spec x 0 | ZintPos n of x = n.+1 : int_spec x n.+1 | ZintNeg n of x = - (n.+1)%:Z : int_spec x (- n.+1).
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
int_spec
intPx : int_spec x x. Proof. by move: x=> [] []; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intP
addzC: commutative addz. Proof. by move=> [] m [] n //=; rewrite addnC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
addzC
add0z: left_id 0 addz. Proof. by do 2?case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
add0z
oppzK: involutive oppz. Proof. by do 2?case. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
oppzK
oppzD: {morph oppz : m n / m + n}. Proof. by move=> [[|n]|n] [[|m]|m] /=; rewrite ?addn0 ?subn0 ?addnS //; rewrite !NegzE !ltnS !subSS; case: ltngtP => [?|?|->]; rewrite ?subnn // ?oppzK ?subnS ?prednK // subn_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
oppzD
add1Pz(n : int) : 1 + (n - 1) = n. Proof. by case: (intP n)=> // n' /= _; rewrite ?(subn1, addn0). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
add1Pz
subSz1(n : int) : 1 + n - 1 = n. Proof. by apply: (inv_inj oppzK); rewrite addzC !oppzD oppzK [_ - n]addzC add1Pz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
subSz1
addSnz(m : nat) (n : int) : m.+1%N + n = 1 + (m + n). Proof. move: m n=> [|m] [] [|n] //=; rewrite ?add1n ?subn1 // !(ltnS, subSS). case: ltngtP=> hnm /=; rewrite ?hnm ?subnn //. by rewrite subnS add1n prednK ?subn_gt0. by rewrite ltnS leqn0 subn_eq0 leqNgt hnm /= subnS subn1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
addSnz
addSz(m n : int) : (1 + m) + n = 1 + (m + n). Proof. case: m => [] m; first by rewrite -PoszD add1n addSnz. rewrite !NegzE; apply: (inv_inj oppzK). rewrite !oppzD !oppzK addSnz [-1%:Z + _]addzC addSnz add1Pz. by rewrite [-1%:Z + _]addzC subSz1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
addSz
addPz(m n : int) : (m - 1) + n = (m + n) - 1. Proof. by apply: (inv_inj oppzK); rewrite !oppzD oppzK [_ + 1]addzC addSz addzC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
addPz
addzA: associative addz. Proof. elim=> [|m ihm|m ihm] n p; first by rewrite !add0z. by rewrite -add1n PoszD !addSz ihm. by rewrite -add1n addnC PoszD oppzD !addPz ihm. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
addzA
addNz: left_inverse (0:int) oppz addz. Proof. by do 3?elim. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
addNz
predn_int(n : nat) : 0 < n -> n.-1%:Z = n - 1. Proof. by case: n => //= n _; rewrite subn1. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
predn_int
Mixin:= GRing.isZmodule.Build int addzA addzC add0z addNz.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Mixin
Definition_ := intZmod.Mixin. HB.instance Definition _ := GRing.isNmodMorphism.Build nat int Posz (erefl, intZmod.PoszD). Local Open Scope ring_scope.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Definition
PoszD: {morph Posz : n m / (n + m)%N >-> n + m}. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
PoszD
NegzE(n : nat) : Negz n = -(n.+1)%:Z. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
NegzE
int_rect(P : int -> Type) : P 0 -> (forall n : nat, P n -> P (n.+1)%N) -> (forall n : nat, P (- (n%:Z)) -> P (- (n.+1%N%:Z))) -> forall n : int, P n. Proof. by move=> P0 hPp hPn []; elim=> [|n ihn]//; do ?[apply: hPn | apply: hPp]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
int_rect
int_rec:= int_rect.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
int_rec
int_ind:= int_rect.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
int_ind
int_spec(x : int) : int -> Type := | ZintNull : int_spec x 0 | ZintPos n : int_spec x n.+1 | ZintNeg n : int_spec x (- (n.+1)%:Z).
Variant
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
int_spec
intPx : int_spec x x. Proof. by move: x=> [] [] *; rewrite ?NegzE; constructor. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intP
oppzD:= @opprD int.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
oppzD
subzn(m n : nat) : (n <= m)%N -> m%:Z - n%:Z = (m - n)%N. Proof. elim: n=> //= [|n ihn] hmn; first by rewrite subr0 subn0. rewrite subnS -addn1 !PoszD opprD addrA ihn 1?ltnW //. by rewrite intZmod.predn_int // subn_gt0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
subzn
subzSS(m n : nat) : m.+1%:Z - n.+1%:Z = m%:Z - n%:Z. Proof. by elim: n m=> [|n ihn] m //; rewrite !subzn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
subzSS
mulz(m n : int) := match m, n with | Posz m', Posz n' => (m' * n')%N%:Z | Negz m', Negz n' => (m'.+1%N * n'.+1%N)%N%:Z | Posz m', Negz n' => - (m' * (n'.+1%N))%N%:Z | Negz n', Posz m' => - (m' * (n'.+1%N))%N%:Z end. Local Notation "*%Z" := (@mulz) : int_scope. Local Notation "x * y" := (mulz x y) : int_scope.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz
mul0z: left_zero 0 *%Z. Proof. by case=> [n|[|n]] //=; rewrite muln0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mul0z
mulzC: commutative mulz. Proof. by move=> [] m [] n //=; rewrite mulnC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulzC
mulz0: right_zero 0 *%Z. Proof. by move=> x; rewrite mulzC mul0z. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz0
mulzN(m n : int) : (m * (- n))%Z = - (m * n)%Z. Proof. by case: (intP m)=> {m} [|m|m]; rewrite ?mul0z //; case: (intP n)=> {n} [|n|n]; rewrite ?mulz0 //= mulnC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulzN
mulNz(m n : int) : ((- m) * n)%Z = - (m * n)%Z. Proof. by rewrite mulzC mulzN mulzC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulNz
mulzA: associative mulz. Proof. by move=> [] m [] n [] p; rewrite ?NegzE ?(mulnA,mulNz,mulzN,opprK) //= ?mulnA. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulzA
mul1z: left_id 1%Z mulz. Proof. by case=> [[|n]|n] //=; rewrite ?mul1n// plusE addn0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mul1z
mulzS(x : int) (n : nat) : (x * n.+1%:Z)%Z = x + (x * n)%Z. Proof. by case: (intP x)=> [|m'|m'] //=; [rewrite mulnS|rewrite mulSn -opprD]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulzS
mulz_addl: left_distributive mulz (+%R). Proof. move=> x y z; elim: z=> [|n|n]; first by rewrite !(mul0z,mulzC). by rewrite !mulzS=> ->; rewrite !addrA [X in X + _]addrAC. rewrite !mulzN !mulzS -!opprD=> /oppr_inj->. by rewrite !addrA [X in X + _]addrAC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulz_addl
nonzero1z: 1%Z != 0. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nonzero1z
comMixin:= GRing.Zmodule_isComNzRing.Build int mulzA mulzC mul1z mulz_addl nonzero1z.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
comMixin
Definition_ := intRing.comMixin.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Definition
PoszM: {morph Posz : n m / (n * m)%N >-> n * m}. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
PoszM
intS(n : nat) : n.+1%:Z = 1 + n%:Z. Proof. by rewrite -PoszD. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intS
predn_int(n : nat) : (0 < n)%N -> n.-1%:Z = n%:Z - 1. Proof. exact: intZmod.predn_int. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
predn_int
Definition_ := GRing.isMonoidMorphism.Build nat int Posz (erefl, PoszM).
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Definition
unitz:= [qualify a n : int | (n == 1) || (n == -1)].
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
unitz
invzn : int := n.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
invz
mulVz: {in unitz, left_inverse 1%R invz *%R}. Proof. by move=> n /pred2P[] ->. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulVz
mulzn_eq1m (n : nat) : (m * n == 1) = (m == 1) && (n == 1). Proof. by case: m => m /=; [rewrite -PoszM [_==_]muln_eq1 | case: n]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulzn_eq1
unitzPlm n : n * m = 1 -> m \is a unitz. Proof. rewrite qualifE => /eqP. by case: m => m; rewrite ?NegzE ?mulrN -?mulNr mulzn_eq1 => /andP[_ /eqP->]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
unitzPl
invz_out: {in [predC unitz], invz =1 id}. Proof. exact. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
invz_out
idomain_axiomzm n : m * n = 0 -> (m == 0) || (n == 0). Proof. by case: m n => [[|m]|m] [[|n]|n]. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
idomain_axiomz
comMixin:= GRing.ComNzRing_hasMulInverse.Build int mulVz unitzPl invz_out.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
comMixin
Definition_ := intUnitRing.comMixin. HB.instance Definition _ := GRing.ComUnitRing_isIntegral.Build int intUnitRing.idomain_axiomz.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Definition
abszm := match m with Posz p => p | Negz n => n.+1 end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
absz
lezm n := match m, n with | Posz m', Posz n' => (m' <= n')%N | Posz m', Negz n' => false | Negz m', Posz n' => true | Negz m', Negz n' => (n' <= m')%N end.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lez
ltzm n := match m, n with | Posz m', Posz n' => (m' < n')%N | Posz m', Negz n' => false | Negz m', Posz n' => true | Negz m', Negz n' => (n' < m')%N end. Fact lez_add m n : lez 0 m -> lez 0 n -> lez 0 (m + n). Proof. by case: m n => [] m [] n. Qed. Fact lez_mul m n : lez 0 m -> lez 0 n -> lez 0 (m * n). Proof. by case: m n => [] m [] n. Qed. Fact lez_anti m : lez 0 m -> lez m 0 -> m = 0. Proof. by case: m; first case. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltz
subz_ge0m n : lez 0 (n - m) = lez m n. Proof. case: (intP m); case: (intP n)=> // {}m {}n /=; rewrite ?ltnS -?opprD ?opprB ?subzSS; case: leqP=> // hmn; by [ rewrite subzn // | rewrite -opprB subzn ?(ltnW hmn) //; move: hmn; rewrite -subn_gt0; case: (_ - _)%N]. Qed. Fact lez_total m n : lez m n || lez n m. Proof. by move: m n => [] m [] n //=; apply: leq_total. Qed. Fact normzN m : normz (- m) = normz m. Proof. by case: m => // -[]. Qed. Fact gez0_norm m : lez 0 m -> normz m = m. Proof. by case: m. Qed. Fact ltz_def m n : (ltz m n) = (n != m) && (lez m n). Proof. by move: m n => [] m [] n //=; rewrite (ltn_neqAle, leq_eqVlt) // eq_sym. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
subz_ge0
Mixin:= Num.IntegralDomain_isLeReal.Build int lez_add lez_mul lez_anti subz_ge0 (lez_total 0) normzN gez0_norm ltz_def.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Mixin
Definition_ := intOrdered.Mixin.
HB.instance
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
Definition
lez_natm n : (m <= n :> int) = (m <= n)%N. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lez_nat
ltz_natm n : (m < n :> int) = (m < n)%N. Proof. by rewrite ltnNge ltNge lez_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltz_nat
ltez_nat:= (lez_nat, ltz_nat).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltez_nat
leNz_natm n : (- m%:Z <= n). Proof. by case: m. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
leNz_nat
ltNz_natm n : (- m%:Z < n) = (m != 0) || (n != 0). Proof. by move: m n=> [|?] []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltNz_nat
lteNz_nat:= (leNz_nat, ltNz_nat).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lteNz_nat
lezN_natm n : (m%:Z <= - n%:Z) = (m == 0) && (n == 0). Proof. by move: m n=> [|?] []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lezN_nat
ltzN_natm n : (m%:Z < - n%:Z) = false. Proof. by move: m n=> [|?] []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltzN_nat
le0z_natn : 0 <= n :> int. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
le0z_nat
lez0_natn : n <= 0 :> int = (n == 0 :> nat). Proof. by elim: n. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lez0_nat
ltezN_nat:= (lezN_nat, ltzN_nat).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltezN_nat
ltez_natE:= (ltez_nat, lteNz_nat, ltezN_nat, le0z_nat, lez0_nat).
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltez_natE
gtz0_ge1x : (0 < x) = (1 <= x). Proof. by case: (intP x). Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
gtz0_ge1
lez1Dx y : (1 + x <= y) = (x < y). Proof. by rewrite -subr_gt0 gtz0_ge1 lterBDr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lez1D
lezD1x y : (x + 1 <= y) = (x < y). Proof. by rewrite addrC lez1D. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
lezD1
ltz1Dx y : (x < 1 + y) = (x <= y). Proof. by rewrite -lez1D lerD2l. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltz1D
ltzD1x y : (x < y + 1) = (x <= y). Proof. by rewrite -lezD1 lerD2r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ltzD1
intmul(R : zmodType) (x : R) (n : int) := match n with | Posz n => (x *+ n)%R | Negz n => (x *- (n.+1))%R end. Arguments intmul : simpl never.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intmul
intr:= ( *~%R 1).
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intr
pmulrn(R : zmodType) (x : R) (n : nat) : x *+ n = x *~ n%:Z. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
pmulrn
nmulrn(R : zmodType) (x : R) (n : nat) : x *- n = x *~ - n%:Z. Proof. by case: n; rewrite // oppr0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
nmulrn
zmodule(M : Type) : Type := M. Local Notation "M ^z" := (zmodule M) (format "M ^z") : type_scope. Local Coercion Posz : nat >-> int. Variable M : zmodType. Implicit Types m n : int. Implicit Types x y z : M. Fact mulrzA_C m n x : (x *~ n) *~ m = x *~ (m * n). Proof. elim: m=> [|m _|m _]; elim: n=> [|n _|n _]; rewrite /intmul //=; rewrite ?(muln0, mulr0n, mul0rn, oppr0, mulNrn, opprK) //; do ?by rewrite mulnC mulrnA. * by rewrite -mulrnA mulnC. * by rewrite -mulrnA. Qed. Fact mulrzAC m n x : (x *~ n) *~ m = (x *~ m) *~ n. Proof. by rewrite !mulrzA_C mulrC. Qed. Fact mulr1z (x : M) : x *~ 1 = x. Proof. by []. Qed. Fact mulrzDl m : {morph ( *~%R^~ m : M -> M) : x y / x + y}. Proof. by case: m => m x y; rewrite /intmul mulrnDl // opprD. Qed.
Definition
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
zmodule
mulrzBl_nat(m n : nat) x : x *~ (m%:Z - n%:Z) = x *~ m - x *~ n. Proof. wlog/subnK <-: m n / (n <= m)%N; last by rewrite -!pmulrn PoszD mulrnDr !addrK. have [hmn|/ltnW hmn] := leqP n m; first exact. by rewrite -[in LHS]opprB -[RHS]opprB subzn // -nmulrn pmulrn -subzn // => ->. Qed. Fact mulrzDr x : {morph *~%R x : m n / m + n}. Proof. by case=> []m []n; rewrite ?NegzE /intmul /= -/(intmul _ _) -?opprD; rewrite -?[- _ + _]addrC ?mulrzBl_nat // -mulrnDr // addnS. Qed. HB.instance Definition _ := GRing.Zmodule.on M^z. HB.instance Definition _ := @GRing.Zmodule_isLmodule.Build _ M^z (fun n x => x *~ n) mulrzA_C mulr1z mulrzDl mulrzDr.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzBl_nat
scalezrEn x : n *: (x : M^z) = x *~ n. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
scalezrE
mulrzAx m n : x *~ (m * n) = x *~ m *~ n. Proof. by rewrite -!scalezrE scalerA mulrC. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzA
mulr0zx : x *~ 0 = 0. Proof. by []. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulr0z
mul0rzn : 0 *~ n = 0 :> M. Proof. by rewrite -scalezrE scaler0. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mul0rz
mulrNzx n : x *~ (- n) = - (x *~ n). Proof. by rewrite -scalezrE scaleNr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrNz
mulrN1zx : x *~ (- 1) = - x. Proof. by rewrite -scalezrE scaleN1r. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrN1z
mulNrzx n : (- x) *~ n = - (x *~ n). Proof. by rewrite -scalezrE scalerN. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulNrz
mulrzBrx m n : x *~ (m - n) = x *~ m - x *~ n. Proof. by rewrite -scalezrE scalerBl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzBr
mulrzBlx y n : (x - y) *~ n = x *~ n - y *~ n. Proof. by rewrite -scalezrE scalerBr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzBl
mulrz_nat(n : nat) x : x *~ n%:R = x *+ n. Proof. by rewrite -scalezrE scaler_nat. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_nat
mulrz_sumr: forall x I r (P : pred I) F, x *~ (\sum_(i <- r | P i) F i) = \sum_(i <- r | P i) x *~ F i. Proof. by rewrite -/M^z; apply: scaler_suml. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_sumr
mulrz_suml: forall n I r (P : pred I) (F : I -> M), (\sum_(i <- r | P i) F i) *~ n= \sum_(i <- r | P i) F i *~ n. Proof. by rewrite -/M^z; apply: scaler_sumr. Qed. HB.instance Definition _ (x : M) := GRing.isZmodMorphism.Build int M ( *~%R x) (@mulrzBr x).
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrz_suml
mulrzDl_tmp:= mulrzDl. #[deprecated(since="mathcomp 2.3.0", note="Use mulrzDr instead.")]
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzDl_tmp
mulrzDr_tmp:= mulrzDr.
Notation
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzDr_tmp
ffunMzE(I : finType) (M : zmodType) (f : {ffun I -> M}) z x : (f *~ z) x = f x *~ z. Proof. by case: z => n; rewrite ?ffunE ffunMnE. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
ffunMzE
intz(n : int) : n%:~R = n. Proof. by case: n => n; rewrite ?NegzE /intmul/= -(rmorphMn Posz)/= natn. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
intz
natz(n : nat) : n%:R = n%:Z :> int. Proof. by rewrite pmulrn intz. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
natz
mulrzAln x y : (x *~ n) * y = (x * y) *~ n. Proof. by case: n => n; rewrite ?mulNr mulrnAl. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzAl
mulrzArn x y : x * (y *~ n) = (x * y) *~ n. Proof. by case: n => n; rewrite ?mulrN mulrnAr. Qed.
Lemma
algebra
[ "From HB Require Import structures", "From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat choice seq", "From mathcomp Require Import fintype finfun bigop order ssralg countalg ssrnum", "From mathcomp Require Import poly" ]
algebra/ssrint.v
mulrzAr