italian_tweets_500k / italian_tweets_1M.py
pere's picture
first with data loader
e0ec849
raw
history blame
3.04 kB
"""Norwegian Colossal Corpus v2 dataset."""
import gzip
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\\nItalian tweets."""
_DATA_URL = "https://huggingface.co/datasets/pere/italian_tweets_1M/resolve/main/data/{split_suffix}-shard-{index:04d}-of-{n_shards:04d}.json.gz"
_N_SHARDS_PER_SPLIT = {
"train": 1, "validation": 1
}
class italian_tweets_1MConfig(datasets.BuilderConfig):
"""BuilderConfig for NbNn."""
def __init__(self, *args, **kwargs):
"""BuilderConfig for NbNn.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name="italian_tweets_1M",
**kwargs,
)
class italian_tweets_1M(datasets.GeneratorBasedBuilder):
"""Norwegian Colossal Corpus v2."""
BUILDER_CONFIGS = [italian_tweets_1MConfig()]
BUILDER_CONFIG_CLASS = italian_tweets_1MConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"doc_type": datasets.Value("string"),
"publish_year": datasets.Value("int32"),
"lang_fasttext": datasets.Value("string"),
"lang_fasttext_conf": datasets.Value("string"),
"text": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_urls = {}
for split in ["train", "validation"]:
data_urls[split] = [
_DATA_URL.format(
language=self.config.name,
split_suffix=split,
index=index,
n_shards=_N_SHARDS_PER_SPLIT[split],
)
for index in range(1, _N_SHARDS_PER_SPLIT[split] + 1)
]
train_downloaded_files = dl_manager.download(data_urls["train"])
validation_downloaded_files = dl_manager.download(data_urls["validation"])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
),
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1