|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json
|
|
|
import tempfile
|
|
|
from collections.abc import Callable
|
|
|
from dataclasses import dataclass
|
|
|
from pathlib import Path
|
|
|
from typing import Any
|
|
|
|
|
|
import pytest
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
|
|
|
from lerobot.configs.types import FeatureType, PipelineFeatureType, PolicyFeature
|
|
|
from lerobot.datasets.pipeline_features import aggregate_pipeline_dataset_features
|
|
|
from lerobot.processor import (
|
|
|
DataProcessorPipeline,
|
|
|
EnvTransition,
|
|
|
ProcessorStep,
|
|
|
ProcessorStepRegistry,
|
|
|
TransitionKey,
|
|
|
)
|
|
|
from lerobot.processor.converters import create_transition, identity_transition
|
|
|
from lerobot.utils.constants import ACTION, DONE, OBS_IMAGE, OBS_IMAGES, OBS_STATE, REWARD, TRUNCATED
|
|
|
from tests.conftest import assert_contract_is_typed
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class MockStep(ProcessorStep):
|
|
|
"""Mock pipeline step for testing - demonstrates best practices.
|
|
|
|
|
|
This example shows the proper separation:
|
|
|
- JSON-serializable attributes (name, counter) go in get_config()
|
|
|
- Only torch tensors go in state_dict()
|
|
|
|
|
|
Note: The counter is part of the configuration, so it will be restored
|
|
|
when the step is recreated from config during loading.
|
|
|
"""
|
|
|
|
|
|
name: str = "mock_step"
|
|
|
counter: int = 0
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
"""Add a counter to the complementary_data."""
|
|
|
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
|
|
|
comp_data = {} if comp_data is None else dict(comp_data)
|
|
|
|
|
|
comp_data[f"{self.name}_counter"] = self.counter
|
|
|
self.counter += 1
|
|
|
|
|
|
|
|
|
new_transition = transition.copy()
|
|
|
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
|
|
|
return new_transition
|
|
|
|
|
|
def get_config(self) -> dict[str, Any]:
|
|
|
|
|
|
|
|
|
return {"name": self.name, "counter": self.counter}
|
|
|
|
|
|
def state_dict(self) -> dict[str, torch.Tensor]:
|
|
|
|
|
|
return {}
|
|
|
|
|
|
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
|
|
|
|
|
pass
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
self.counter = 0
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class MockStepWithoutOptionalMethods(ProcessorStep):
|
|
|
"""Mock step that only implements the required __call__ method."""
|
|
|
|
|
|
multiplier: float = 2.0
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
"""Multiply reward by multiplier."""
|
|
|
reward = transition.get(TransitionKey.REWARD)
|
|
|
|
|
|
if reward is not None:
|
|
|
new_transition = transition.copy()
|
|
|
new_transition[TransitionKey.REWARD] = reward * self.multiplier
|
|
|
return new_transition
|
|
|
|
|
|
return transition
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class MockStepWithTensorState(ProcessorStep):
|
|
|
"""Mock step demonstrating mixed JSON attributes and tensor state."""
|
|
|
|
|
|
name: str = "tensor_step"
|
|
|
learning_rate: float = 0.01
|
|
|
window_size: int = 10
|
|
|
|
|
|
def __init__(self, name: str = "tensor_step", learning_rate: float = 0.01, window_size: int = 10):
|
|
|
self.name = name
|
|
|
self.learning_rate = learning_rate
|
|
|
self.window_size = window_size
|
|
|
|
|
|
self.running_mean = torch.zeros(window_size)
|
|
|
self.running_count = torch.tensor(0)
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
"""Update running statistics."""
|
|
|
reward = transition.get(TransitionKey.REWARD)
|
|
|
|
|
|
if reward is not None:
|
|
|
|
|
|
idx = self.running_count % self.window_size
|
|
|
self.running_mean[idx] = reward
|
|
|
self.running_count += 1
|
|
|
|
|
|
return transition
|
|
|
|
|
|
def get_config(self) -> dict[str, Any]:
|
|
|
|
|
|
return {
|
|
|
"name": self.name,
|
|
|
"learning_rate": self.learning_rate,
|
|
|
"window_size": self.window_size,
|
|
|
}
|
|
|
|
|
|
def state_dict(self) -> dict[str, torch.Tensor]:
|
|
|
|
|
|
return {
|
|
|
"running_mean": self.running_mean,
|
|
|
"running_count": self.running_count,
|
|
|
}
|
|
|
|
|
|
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
|
|
self.running_mean = state["running_mean"]
|
|
|
self.running_count = state["running_count"]
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
self.running_mean.zero_()
|
|
|
self.running_count.zero_()
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
def test_empty_pipeline():
|
|
|
"""Test pipeline with no steps."""
|
|
|
pipeline = DataProcessorPipeline([], to_transition=identity_transition, to_output=identity_transition)
|
|
|
|
|
|
transition = create_transition()
|
|
|
result = pipeline(transition)
|
|
|
|
|
|
assert result == transition
|
|
|
assert len(pipeline) == 0
|
|
|
|
|
|
|
|
|
def test_single_step_pipeline():
|
|
|
"""Test pipeline with a single step."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step], to_transition=identity_transition, to_output=identity_transition)
|
|
|
|
|
|
transition = create_transition()
|
|
|
result = pipeline(transition)
|
|
|
|
|
|
assert len(pipeline) == 1
|
|
|
assert result[TransitionKey.COMPLEMENTARY_DATA]["test_step_counter"] == 0
|
|
|
|
|
|
|
|
|
result = pipeline(transition)
|
|
|
assert result[TransitionKey.COMPLEMENTARY_DATA]["test_step_counter"] == 1
|
|
|
|
|
|
|
|
|
def test_multiple_steps_pipeline():
|
|
|
"""Test pipeline with multiple steps."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStep("step2")
|
|
|
pipeline = DataProcessorPipeline(
|
|
|
[step1, step2], to_transition=identity_transition, to_output=identity_transition
|
|
|
)
|
|
|
|
|
|
transition = create_transition()
|
|
|
result = pipeline(transition)
|
|
|
|
|
|
assert len(pipeline) == 2
|
|
|
assert result[TransitionKey.COMPLEMENTARY_DATA]["step1_counter"] == 0
|
|
|
assert result[TransitionKey.COMPLEMENTARY_DATA]["step2_counter"] == 0
|
|
|
|
|
|
|
|
|
def test_invalid_transition_format():
|
|
|
"""Test pipeline with invalid transition format."""
|
|
|
pipeline = DataProcessorPipeline([MockStep()])
|
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match="EnvTransition must be a dictionary"):
|
|
|
pipeline((None, None, 0.0, False, False, {}, {}))
|
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match="EnvTransition must be a dictionary"):
|
|
|
pipeline("not a dict")
|
|
|
|
|
|
|
|
|
def test_step_through():
|
|
|
"""Test step_through method with dict input."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStep("step2")
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
transition = create_transition()
|
|
|
|
|
|
results = list(pipeline.step_through(transition))
|
|
|
|
|
|
assert len(results) == 3
|
|
|
assert results[0] == transition
|
|
|
assert "step1_counter" in results[1][TransitionKey.COMPLEMENTARY_DATA]
|
|
|
assert "step2_counter" in results[2][TransitionKey.COMPLEMENTARY_DATA]
|
|
|
|
|
|
|
|
|
for result in results:
|
|
|
assert isinstance(result, dict)
|
|
|
assert all(isinstance(k, TransitionKey) for k in result)
|
|
|
|
|
|
|
|
|
def test_step_through_with_dict():
|
|
|
"""Test step_through method with dict input."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStep("step2")
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
batch = {
|
|
|
OBS_IMAGE: None,
|
|
|
ACTION: None,
|
|
|
REWARD: 0.0,
|
|
|
DONE: False,
|
|
|
TRUNCATED: False,
|
|
|
"info": {},
|
|
|
}
|
|
|
|
|
|
results = list(pipeline.step_through(batch))
|
|
|
|
|
|
assert len(results) == 3
|
|
|
|
|
|
|
|
|
for result in results:
|
|
|
assert isinstance(result, dict)
|
|
|
|
|
|
for key in result:
|
|
|
assert key in [
|
|
|
TransitionKey.OBSERVATION,
|
|
|
TransitionKey.ACTION,
|
|
|
TransitionKey.REWARD,
|
|
|
TransitionKey.DONE,
|
|
|
TransitionKey.TRUNCATED,
|
|
|
TransitionKey.INFO,
|
|
|
TransitionKey.COMPLEMENTARY_DATA,
|
|
|
]
|
|
|
|
|
|
|
|
|
assert results[1].get(TransitionKey.COMPLEMENTARY_DATA, {}).get("step1_counter") == 0
|
|
|
assert results[2].get(TransitionKey.COMPLEMENTARY_DATA, {}).get("step1_counter") == 0
|
|
|
assert results[2].get(TransitionKey.COMPLEMENTARY_DATA, {}).get("step2_counter") == 0
|
|
|
|
|
|
|
|
|
def test_step_through_no_hooks():
|
|
|
"""Test that step_through doesn't execute hooks."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
hook_calls = []
|
|
|
|
|
|
def tracking_hook(idx: int, transition: EnvTransition):
|
|
|
hook_calls.append(f"hook_called_step_{idx}")
|
|
|
|
|
|
|
|
|
pipeline.register_before_step_hook(tracking_hook)
|
|
|
pipeline.register_after_step_hook(tracking_hook)
|
|
|
|
|
|
|
|
|
transition = create_transition()
|
|
|
results = list(pipeline.step_through(transition))
|
|
|
|
|
|
|
|
|
assert len(results) == 2
|
|
|
assert results[1][TransitionKey.COMPLEMENTARY_DATA]["test_step_counter"] == 0
|
|
|
|
|
|
|
|
|
assert len(hook_calls) == 0
|
|
|
|
|
|
|
|
|
hook_calls.clear()
|
|
|
pipeline(transition)
|
|
|
|
|
|
|
|
|
assert len(hook_calls) == 2
|
|
|
assert hook_calls == ["hook_called_step_0", "hook_called_step_0"]
|
|
|
|
|
|
|
|
|
def test_indexing():
|
|
|
"""Test pipeline indexing."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStep("step2")
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
|
|
|
assert pipeline[0] is step1
|
|
|
assert pipeline[1] is step2
|
|
|
|
|
|
|
|
|
sub_pipeline = pipeline[0:1]
|
|
|
assert isinstance(sub_pipeline, DataProcessorPipeline)
|
|
|
assert len(sub_pipeline) == 1
|
|
|
assert sub_pipeline[0] is step1
|
|
|
|
|
|
|
|
|
def test_hooks():
|
|
|
"""Test before/after step hooks."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
before_calls = []
|
|
|
after_calls = []
|
|
|
|
|
|
def before_hook(idx: int, transition: EnvTransition):
|
|
|
before_calls.append(idx)
|
|
|
|
|
|
def after_hook(idx: int, transition: EnvTransition):
|
|
|
after_calls.append(idx)
|
|
|
|
|
|
pipeline.register_before_step_hook(before_hook)
|
|
|
pipeline.register_after_step_hook(after_hook)
|
|
|
|
|
|
transition = create_transition()
|
|
|
pipeline(transition)
|
|
|
|
|
|
assert before_calls == [0]
|
|
|
assert after_calls == [0]
|
|
|
|
|
|
|
|
|
def test_unregister_hooks():
|
|
|
"""Test unregistering hooks from the pipeline."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
|
|
|
before_calls = []
|
|
|
|
|
|
def before_hook(idx: int, transition: EnvTransition):
|
|
|
before_calls.append(idx)
|
|
|
|
|
|
pipeline.register_before_step_hook(before_hook)
|
|
|
|
|
|
|
|
|
transition = create_transition()
|
|
|
pipeline(transition)
|
|
|
assert len(before_calls) == 1
|
|
|
|
|
|
|
|
|
pipeline.unregister_before_step_hook(before_hook)
|
|
|
before_calls.clear()
|
|
|
pipeline(transition)
|
|
|
assert len(before_calls) == 0
|
|
|
|
|
|
|
|
|
after_calls = []
|
|
|
|
|
|
def after_hook(idx: int, transition: EnvTransition):
|
|
|
after_calls.append(idx)
|
|
|
|
|
|
pipeline.register_after_step_hook(after_hook)
|
|
|
pipeline(transition)
|
|
|
assert len(after_calls) == 1
|
|
|
|
|
|
pipeline.unregister_after_step_hook(after_hook)
|
|
|
after_calls.clear()
|
|
|
pipeline(transition)
|
|
|
assert len(after_calls) == 0
|
|
|
|
|
|
|
|
|
def test_unregister_nonexistent_hook():
|
|
|
"""Test error handling when unregistering hooks that don't exist."""
|
|
|
pipeline = DataProcessorPipeline([MockStep()])
|
|
|
|
|
|
def some_hook(idx: int, transition: EnvTransition):
|
|
|
pass
|
|
|
|
|
|
def reset_hook():
|
|
|
pass
|
|
|
|
|
|
|
|
|
with pytest.raises(ValueError, match="not found in before_step_hooks"):
|
|
|
pipeline.unregister_before_step_hook(some_hook)
|
|
|
|
|
|
with pytest.raises(ValueError, match="not found in after_step_hooks"):
|
|
|
pipeline.unregister_after_step_hook(some_hook)
|
|
|
|
|
|
|
|
|
def test_multiple_hooks_and_selective_unregister():
|
|
|
"""Test registering multiple hooks and selectively unregistering them."""
|
|
|
pipeline = DataProcessorPipeline([MockStep("step1"), MockStep("step2")])
|
|
|
|
|
|
calls_1 = []
|
|
|
calls_2 = []
|
|
|
calls_3 = []
|
|
|
|
|
|
def hook1(idx: int, transition: EnvTransition):
|
|
|
calls_1.append(f"hook1_step{idx}")
|
|
|
|
|
|
def hook2(idx: int, transition: EnvTransition):
|
|
|
calls_2.append(f"hook2_step{idx}")
|
|
|
|
|
|
def hook3(idx: int, transition: EnvTransition):
|
|
|
calls_3.append(f"hook3_step{idx}")
|
|
|
|
|
|
|
|
|
pipeline.register_before_step_hook(hook1)
|
|
|
pipeline.register_before_step_hook(hook2)
|
|
|
pipeline.register_before_step_hook(hook3)
|
|
|
|
|
|
|
|
|
transition = create_transition()
|
|
|
pipeline(transition)
|
|
|
|
|
|
assert calls_1 == ["hook1_step0", "hook1_step1"]
|
|
|
assert calls_2 == ["hook2_step0", "hook2_step1"]
|
|
|
assert calls_3 == ["hook3_step0", "hook3_step1"]
|
|
|
|
|
|
|
|
|
calls_1.clear()
|
|
|
calls_2.clear()
|
|
|
calls_3.clear()
|
|
|
|
|
|
|
|
|
pipeline.unregister_before_step_hook(hook2)
|
|
|
|
|
|
|
|
|
pipeline(transition)
|
|
|
|
|
|
assert calls_1 == ["hook1_step0", "hook1_step1"]
|
|
|
assert calls_2 == []
|
|
|
assert calls_3 == ["hook3_step0", "hook3_step1"]
|
|
|
|
|
|
|
|
|
def test_hook_execution_order_documentation():
|
|
|
"""Test and document that hooks are executed sequentially in registration order."""
|
|
|
pipeline = DataProcessorPipeline([MockStep("step")])
|
|
|
|
|
|
execution_order = []
|
|
|
|
|
|
def hook_a(idx: int, transition: EnvTransition):
|
|
|
execution_order.append("A")
|
|
|
|
|
|
def hook_b(idx: int, transition: EnvTransition):
|
|
|
execution_order.append("B")
|
|
|
|
|
|
def hook_c(idx: int, transition: EnvTransition):
|
|
|
execution_order.append("C")
|
|
|
|
|
|
|
|
|
pipeline.register_before_step_hook(hook_a)
|
|
|
pipeline.register_before_step_hook(hook_b)
|
|
|
pipeline.register_before_step_hook(hook_c)
|
|
|
|
|
|
transition = create_transition()
|
|
|
pipeline(transition)
|
|
|
|
|
|
|
|
|
assert execution_order == ["A", "B", "C"]
|
|
|
|
|
|
|
|
|
pipeline.unregister_before_step_hook(hook_b)
|
|
|
execution_order.clear()
|
|
|
|
|
|
pipeline(transition)
|
|
|
assert execution_order == ["A", "C"]
|
|
|
|
|
|
|
|
|
pipeline.register_before_step_hook(hook_b)
|
|
|
execution_order.clear()
|
|
|
|
|
|
pipeline(transition)
|
|
|
assert execution_order == ["A", "C", "B"]
|
|
|
|
|
|
|
|
|
def test_save_and_load_pretrained():
|
|
|
"""Test saving and loading pipeline.
|
|
|
|
|
|
This test demonstrates that JSON-serializable attributes (like counter)
|
|
|
are saved in the config and restored when the step is recreated.
|
|
|
"""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStep("step2")
|
|
|
|
|
|
|
|
|
step1.counter = 5
|
|
|
step2.counter = 10
|
|
|
|
|
|
pipeline = DataProcessorPipeline([step1, step2], name="TestPipeline")
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
config_path = Path(tmp_dir) / "testpipeline.json"
|
|
|
assert config_path.exists()
|
|
|
|
|
|
|
|
|
with open(config_path) as f:
|
|
|
config = json.load(f)
|
|
|
|
|
|
assert config["name"] == "TestPipeline"
|
|
|
assert len(config["steps"]) == 2
|
|
|
|
|
|
|
|
|
assert config["steps"][0]["config"]["counter"] == 5
|
|
|
assert config["steps"][1]["config"]["counter"] == 10
|
|
|
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="testpipeline.json")
|
|
|
|
|
|
assert loaded_pipeline.name == "TestPipeline"
|
|
|
assert len(loaded_pipeline) == 2
|
|
|
|
|
|
|
|
|
assert loaded_pipeline.steps[0].counter == 5
|
|
|
assert loaded_pipeline.steps[1].counter == 10
|
|
|
|
|
|
|
|
|
def test_step_without_optional_methods():
|
|
|
"""Test pipeline with steps that don't implement optional methods."""
|
|
|
step = MockStepWithoutOptionalMethods(multiplier=3.0)
|
|
|
pipeline = DataProcessorPipeline(
|
|
|
[step], to_transition=identity_transition, to_output=identity_transition
|
|
|
)
|
|
|
|
|
|
transition = create_transition(reward=2.0)
|
|
|
result = pipeline(transition)
|
|
|
|
|
|
assert result[TransitionKey.REWARD] == 6.0
|
|
|
|
|
|
|
|
|
pipeline.reset()
|
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json"
|
|
|
)
|
|
|
assert len(loaded_pipeline) == 1
|
|
|
|
|
|
|
|
|
def test_mixed_json_and_tensor_state():
|
|
|
"""Test step with both JSON attributes and tensor state."""
|
|
|
step = MockStepWithTensorState(name="stats", learning_rate=0.05, window_size=5)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
|
|
|
for i in range(10):
|
|
|
transition = create_transition(reward=float(i))
|
|
|
pipeline(transition)
|
|
|
|
|
|
|
|
|
assert step.running_count.item() == 10
|
|
|
assert step.learning_rate == 0.05
|
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
config_path = Path(tmp_dir) / "dataprocessorpipeline.json"
|
|
|
state_path = Path(tmp_dir) / "dataprocessorpipeline_step_0.safetensors"
|
|
|
assert config_path.exists()
|
|
|
assert state_path.exists()
|
|
|
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json"
|
|
|
)
|
|
|
loaded_step = loaded_pipeline.steps[0]
|
|
|
|
|
|
|
|
|
assert loaded_step.name == "stats"
|
|
|
assert loaded_step.learning_rate == 0.05
|
|
|
assert loaded_step.window_size == 5
|
|
|
|
|
|
|
|
|
assert loaded_step.running_count.item() == 10
|
|
|
assert torch.allclose(loaded_step.running_mean, step.running_mean)
|
|
|
|
|
|
|
|
|
class MockModuleStep(ProcessorStep, nn.Module):
|
|
|
"""Mock step that inherits from nn.Module to test state_dict handling of module parameters."""
|
|
|
|
|
|
def __init__(self, input_dim: int = 10, hidden_dim: int = 5):
|
|
|
super().__init__()
|
|
|
self.input_dim = input_dim
|
|
|
self.hidden_dim = hidden_dim
|
|
|
self.linear = nn.Linear(input_dim, hidden_dim)
|
|
|
self.running_mean = nn.Parameter(torch.zeros(hidden_dim), requires_grad=False)
|
|
|
self.counter = 0
|
|
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
|
return self.linear(x)
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
"""Process transition and update running mean."""
|
|
|
obs = transition.get(TransitionKey.OBSERVATION)
|
|
|
|
|
|
if obs is not None and isinstance(obs, torch.Tensor):
|
|
|
|
|
|
processed = self.forward(obs[:, : self.input_dim])
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
self.running_mean.mul_(0.9).add_(processed.mean(dim=0), alpha=0.1)
|
|
|
|
|
|
self.counter += 1
|
|
|
|
|
|
return transition
|
|
|
|
|
|
def get_config(self) -> dict[str, Any]:
|
|
|
return {
|
|
|
"input_dim": self.input_dim,
|
|
|
"hidden_dim": self.hidden_dim,
|
|
|
"counter": self.counter,
|
|
|
}
|
|
|
|
|
|
def state_dict(self) -> dict[str, torch.Tensor]:
|
|
|
"""Override to return all module parameters and buffers."""
|
|
|
|
|
|
return nn.Module.state_dict(self)
|
|
|
|
|
|
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
|
|
"""Override to load all module parameters and buffers."""
|
|
|
|
|
|
nn.Module.load_state_dict(self, state)
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
self.running_mean.zero_()
|
|
|
self.counter = 0
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
class MockNonModuleStepWithState(ProcessorStep):
|
|
|
"""Mock step that explicitly does NOT inherit from nn.Module but has tensor state.
|
|
|
|
|
|
This tests the state_dict/load_state_dict path for regular classes.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, name: str = "non_module_step", feature_dim: int = 10):
|
|
|
self.name = name
|
|
|
self.feature_dim = feature_dim
|
|
|
|
|
|
|
|
|
self.weights = torch.randn(feature_dim, feature_dim)
|
|
|
self.bias = torch.zeros(feature_dim)
|
|
|
self.running_stats = torch.zeros(feature_dim)
|
|
|
self.step_count = torch.tensor(0)
|
|
|
|
|
|
|
|
|
self.config_value = 42
|
|
|
self.history = []
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
"""Process transition using tensor operations."""
|
|
|
obs = transition.get(TransitionKey.OBSERVATION)
|
|
|
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
|
|
|
|
|
|
if obs is not None and isinstance(obs, torch.Tensor) and obs.numel() >= self.feature_dim:
|
|
|
|
|
|
flat_obs = obs.flatten()[: self.feature_dim]
|
|
|
|
|
|
|
|
|
output = torch.matmul(self.weights.T, flat_obs) + self.bias
|
|
|
|
|
|
|
|
|
self.running_stats = 0.9 * self.running_stats + 0.1 * output
|
|
|
self.step_count += 1
|
|
|
|
|
|
|
|
|
comp_data = {} if comp_data is None else dict(comp_data)
|
|
|
comp_data[f"{self.name}_mean_output"] = output.mean().item()
|
|
|
comp_data[f"{self.name}_steps"] = self.step_count.item()
|
|
|
|
|
|
|
|
|
new_transition = transition.copy()
|
|
|
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
|
|
|
return new_transition
|
|
|
|
|
|
return transition
|
|
|
|
|
|
def get_config(self) -> dict[str, Any]:
|
|
|
return {
|
|
|
"name": self.name,
|
|
|
"feature_dim": self.feature_dim,
|
|
|
"config_value": self.config_value,
|
|
|
}
|
|
|
|
|
|
def state_dict(self) -> dict[str, torch.Tensor]:
|
|
|
"""Return only tensor state."""
|
|
|
return {
|
|
|
"weights": self.weights,
|
|
|
"bias": self.bias,
|
|
|
"running_stats": self.running_stats,
|
|
|
"step_count": self.step_count,
|
|
|
}
|
|
|
|
|
|
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
|
|
"""Load tensor state."""
|
|
|
self.weights = state["weights"]
|
|
|
self.bias = state["bias"]
|
|
|
self.running_stats = state["running_stats"]
|
|
|
self.step_count = state["step_count"]
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
"""Reset statistics but keep learned parameters."""
|
|
|
self.running_stats.zero_()
|
|
|
self.step_count.zero_()
|
|
|
self.history.clear()
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class MockStepWithNonSerializableParam(ProcessorStep):
|
|
|
"""Mock step that requires a non-serializable parameter."""
|
|
|
|
|
|
def __init__(self, name: str = "mock_env_step", multiplier: float = 1.0, env: Any = None):
|
|
|
self.name = name
|
|
|
|
|
|
if isinstance(multiplier, str):
|
|
|
raise ValueError(f"multiplier must be a number, got string '{multiplier}'")
|
|
|
if not isinstance(multiplier, (int | float)):
|
|
|
raise TypeError(f"multiplier must be a number, got {type(multiplier).__name__}")
|
|
|
self.multiplier = float(multiplier)
|
|
|
self.env = env
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
reward = transition.get(TransitionKey.REWARD)
|
|
|
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
|
|
|
|
|
|
|
|
|
if self.env is not None:
|
|
|
comp_data = {} if comp_data is None else dict(comp_data)
|
|
|
comp_data[f"{self.name}_env_info"] = str(self.env)
|
|
|
|
|
|
|
|
|
new_transition = transition.copy()
|
|
|
if reward is not None:
|
|
|
new_transition[TransitionKey.REWARD] = reward * self.multiplier
|
|
|
|
|
|
if comp_data:
|
|
|
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
|
|
|
|
|
|
return new_transition
|
|
|
|
|
|
def get_config(self) -> dict[str, Any]:
|
|
|
|
|
|
return {
|
|
|
"name": self.name,
|
|
|
"multiplier": self.multiplier,
|
|
|
}
|
|
|
|
|
|
def state_dict(self) -> dict[str, torch.Tensor]:
|
|
|
return {}
|
|
|
|
|
|
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
|
|
pass
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
pass
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
@ProcessorStepRegistry.register("registered_mock_step")
|
|
|
@dataclass
|
|
|
class RegisteredMockStep(ProcessorStep):
|
|
|
"""Mock step registered in the registry."""
|
|
|
|
|
|
value: int = 42
|
|
|
device: str = "cpu"
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
|
|
|
|
|
|
comp_data = {} if comp_data is None else dict(comp_data)
|
|
|
comp_data["registered_step_value"] = self.value
|
|
|
comp_data["registered_step_device"] = self.device
|
|
|
|
|
|
new_transition = transition.copy()
|
|
|
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
|
|
|
return new_transition
|
|
|
|
|
|
def get_config(self) -> dict[str, Any]:
|
|
|
return {
|
|
|
"value": self.value,
|
|
|
"device": self.device,
|
|
|
}
|
|
|
|
|
|
def state_dict(self) -> dict[str, torch.Tensor]:
|
|
|
return {}
|
|
|
|
|
|
def load_state_dict(self, state: dict[str, torch.Tensor]) -> None:
|
|
|
pass
|
|
|
|
|
|
def reset(self) -> None:
|
|
|
pass
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
|
|
|
class MockEnvironment:
|
|
|
"""Mock environment for testing non-serializable parameters."""
|
|
|
|
|
|
def __init__(self, name: str):
|
|
|
self.name = name
|
|
|
|
|
|
def __str__(self):
|
|
|
return f"MockEnvironment({self.name})"
|
|
|
|
|
|
|
|
|
def test_from_pretrained_with_overrides():
|
|
|
"""Test loading processor with parameter overrides."""
|
|
|
|
|
|
env_step = MockStepWithNonSerializableParam(name="env_step", multiplier=2.0)
|
|
|
registered_step = RegisteredMockStep(value=100, device="cpu")
|
|
|
|
|
|
pipeline = DataProcessorPipeline([env_step, registered_step], name="TestOverrides")
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
mock_env = MockEnvironment("test_env")
|
|
|
|
|
|
|
|
|
overrides = {
|
|
|
"MockStepWithNonSerializableParam": {
|
|
|
"env": mock_env,
|
|
|
"multiplier": 3.0,
|
|
|
},
|
|
|
"registered_mock_step": {"device": "cuda", "value": 200},
|
|
|
}
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="testoverrides.json",
|
|
|
overrides=overrides,
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
|
|
|
assert len(loaded_pipeline) == 2
|
|
|
assert loaded_pipeline.name == "TestOverrides"
|
|
|
|
|
|
|
|
|
transition = create_transition(reward=1.0)
|
|
|
result = loaded_pipeline(transition)
|
|
|
|
|
|
|
|
|
comp_data = result[TransitionKey.COMPLEMENTARY_DATA]
|
|
|
assert "env_step_env_info" in comp_data
|
|
|
assert comp_data["env_step_env_info"] == "MockEnvironment(test_env)"
|
|
|
assert comp_data["registered_step_value"] == 200
|
|
|
assert comp_data["registered_step_device"] == "cuda"
|
|
|
|
|
|
|
|
|
assert result[TransitionKey.REWARD] == 3.0
|
|
|
|
|
|
|
|
|
def test_from_pretrained_with_partial_overrides():
|
|
|
"""Test loading processor with overrides for only some steps."""
|
|
|
step1 = MockStepWithNonSerializableParam(name="step1", multiplier=1.0)
|
|
|
step2 = MockStepWithNonSerializableParam(name="step2", multiplier=2.0)
|
|
|
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {"MockStepWithNonSerializableParam": {"multiplier": 5.0}}
|
|
|
|
|
|
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides=overrides,
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
transition = create_transition(reward=1.0)
|
|
|
result = loaded_pipeline(transition)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert result[TransitionKey.REWARD] == 25.0
|
|
|
|
|
|
|
|
|
def test_from_pretrained_invalid_override_key():
|
|
|
"""Test that invalid override keys raise KeyError."""
|
|
|
step = MockStepWithNonSerializableParam()
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {"NonExistentStep": {"param": "value"}}
|
|
|
|
|
|
with pytest.raises(KeyError, match="Override keys.*do not match any step"):
|
|
|
DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json", overrides=overrides
|
|
|
)
|
|
|
|
|
|
|
|
|
def test_from_pretrained_multiple_invalid_override_keys():
|
|
|
"""Test that multiple invalid override keys are reported."""
|
|
|
step = MockStepWithNonSerializableParam()
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {"NonExistentStep1": {"param": "value1"}, "NonExistentStep2": {"param": "value2"}}
|
|
|
|
|
|
with pytest.raises(KeyError) as exc_info:
|
|
|
DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json", overrides=overrides
|
|
|
)
|
|
|
|
|
|
error_msg = str(exc_info.value)
|
|
|
assert "NonExistentStep1" in error_msg
|
|
|
assert "NonExistentStep2" in error_msg
|
|
|
assert "Available step keys" in error_msg
|
|
|
|
|
|
|
|
|
def test_from_pretrained_registered_step_override():
|
|
|
"""Test overriding registered steps using registry names."""
|
|
|
registered_step = RegisteredMockStep(value=50, device="cpu")
|
|
|
pipeline = DataProcessorPipeline([registered_step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {"registered_mock_step": {"value": 999, "device": "cuda"}}
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides=overrides,
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
|
|
|
transition = create_transition()
|
|
|
result = loaded_pipeline(transition)
|
|
|
|
|
|
comp_data = result[TransitionKey.COMPLEMENTARY_DATA]
|
|
|
assert comp_data["registered_step_value"] == 999
|
|
|
assert comp_data["registered_step_device"] == "cuda"
|
|
|
|
|
|
|
|
|
def test_from_pretrained_mixed_registered_and_unregistered():
|
|
|
"""Test overriding both registered and unregistered steps."""
|
|
|
unregistered_step = MockStepWithNonSerializableParam(name="unregistered", multiplier=1.0)
|
|
|
registered_step = RegisteredMockStep(value=10, device="cpu")
|
|
|
|
|
|
pipeline = DataProcessorPipeline([unregistered_step, registered_step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
mock_env = MockEnvironment("mixed_test")
|
|
|
|
|
|
overrides = {
|
|
|
"MockStepWithNonSerializableParam": {"env": mock_env, "multiplier": 4.0},
|
|
|
"registered_mock_step": {"value": 777},
|
|
|
}
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides=overrides,
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
|
|
|
transition = create_transition(reward=2.0)
|
|
|
result = loaded_pipeline(transition)
|
|
|
|
|
|
comp_data = result[TransitionKey.COMPLEMENTARY_DATA]
|
|
|
assert comp_data["unregistered_env_info"] == "MockEnvironment(mixed_test)"
|
|
|
assert comp_data["registered_step_value"] == 777
|
|
|
assert result[TransitionKey.REWARD] == 8.0
|
|
|
|
|
|
|
|
|
def test_from_pretrained_no_overrides():
|
|
|
"""Test that from_pretrained works without overrides (backward compatibility)."""
|
|
|
step = MockStepWithNonSerializableParam(name="no_override", multiplier=3.0)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
assert len(loaded_pipeline) == 1
|
|
|
|
|
|
|
|
|
transition = create_transition(reward=1.0)
|
|
|
result = loaded_pipeline(transition)
|
|
|
|
|
|
assert result[TransitionKey.REWARD] == 3.0
|
|
|
|
|
|
|
|
|
def test_from_pretrained_empty_overrides():
|
|
|
"""Test that from_pretrained works with empty overrides dict."""
|
|
|
step = MockStepWithNonSerializableParam(multiplier=2.0)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides={},
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
assert len(loaded_pipeline) == 1
|
|
|
|
|
|
|
|
|
transition = create_transition(reward=1.0)
|
|
|
result = loaded_pipeline(transition)
|
|
|
|
|
|
assert result[TransitionKey.REWARD] == 2.0
|
|
|
|
|
|
|
|
|
def test_from_pretrained_override_instantiation_error():
|
|
|
"""Test that instantiation errors with overrides are properly reported."""
|
|
|
step = MockStepWithNonSerializableParam(multiplier=1.0)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {
|
|
|
"MockStepWithNonSerializableParam": {
|
|
|
"multiplier": "invalid_type"
|
|
|
}
|
|
|
}
|
|
|
|
|
|
with pytest.raises(ValueError, match="Failed to instantiate processor step"):
|
|
|
DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json", overrides=overrides
|
|
|
)
|
|
|
|
|
|
|
|
|
def test_from_pretrained_with_state_and_overrides():
|
|
|
"""Test that overrides work correctly with steps that have tensor state."""
|
|
|
step = MockStepWithTensorState(name="tensor_step", learning_rate=0.01, window_size=5)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
|
|
|
for i in range(10):
|
|
|
transition = create_transition(reward=float(i))
|
|
|
pipeline(transition)
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {
|
|
|
"MockStepWithTensorState": {
|
|
|
"learning_rate": 0.05,
|
|
|
"window_size": 3,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
loaded_pipeline = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json", overrides=overrides
|
|
|
)
|
|
|
loaded_step = loaded_pipeline.steps[0]
|
|
|
|
|
|
|
|
|
assert loaded_step.learning_rate == 0.05
|
|
|
assert loaded_step.window_size == 3
|
|
|
|
|
|
|
|
|
assert loaded_step.running_count.item() == 10
|
|
|
|
|
|
|
|
|
|
|
|
assert loaded_step.running_mean.shape[0] == 5
|
|
|
|
|
|
|
|
|
def test_from_pretrained_override_error_messages():
|
|
|
"""Test that error messages for override failures are helpful."""
|
|
|
step1 = MockStepWithNonSerializableParam(name="step1")
|
|
|
step2 = RegisteredMockStep()
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {"WrongStepName": {"param": "value"}}
|
|
|
|
|
|
with pytest.raises(KeyError) as exc_info:
|
|
|
DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json", overrides=overrides
|
|
|
)
|
|
|
|
|
|
error_msg = str(exc_info.value)
|
|
|
assert "WrongStepName" in error_msg
|
|
|
assert "Available step keys" in error_msg
|
|
|
assert "MockStepWithNonSerializableParam" in error_msg
|
|
|
assert "registered_mock_step" in error_msg
|
|
|
|
|
|
|
|
|
def test_repr_empty_processor():
|
|
|
"""Test __repr__ with empty processor."""
|
|
|
pipeline = DataProcessorPipeline()
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='DataProcessorPipeline', steps=0: [])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_single_step():
|
|
|
"""Test __repr__ with single step."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='DataProcessorPipeline', steps=1: [MockStep])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_multiple_steps_under_limit():
|
|
|
"""Test __repr__ with 2-3 steps (all shown)."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStepWithoutOptionalMethods()
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='DataProcessorPipeline', steps=2: [MockStep, MockStepWithoutOptionalMethods])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
step3 = MockStepWithTensorState()
|
|
|
pipeline = DataProcessorPipeline([step1, step2, step3])
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='DataProcessorPipeline', steps=3: [MockStep, MockStepWithoutOptionalMethods, MockStepWithTensorState])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_many_steps_truncated():
|
|
|
"""Test __repr__ with more than 3 steps (truncated with ellipsis)."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStepWithoutOptionalMethods()
|
|
|
step3 = MockStepWithTensorState()
|
|
|
step4 = MockModuleStep()
|
|
|
step5 = MockNonModuleStepWithState()
|
|
|
|
|
|
pipeline = DataProcessorPipeline([step1, step2, step3, step4, step5])
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='DataProcessorPipeline', steps=5: [MockStep, MockStepWithoutOptionalMethods, ..., MockNonModuleStepWithState])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_with_custom_name():
|
|
|
"""Test __repr__ with custom processor name."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step], name="CustomProcessor")
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='CustomProcessor', steps=1: [MockStep])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_with_seed():
|
|
|
"""Test __repr__ with seed parameter."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='DataProcessorPipeline', steps=1: [MockStep])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_with_custom_name_and_seed():
|
|
|
"""Test __repr__ with both custom name and seed."""
|
|
|
step1 = MockStep("step1")
|
|
|
step2 = MockStepWithoutOptionalMethods()
|
|
|
pipeline = DataProcessorPipeline([step1, step2], name="MyProcessor")
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = (
|
|
|
"DataProcessorPipeline(name='MyProcessor', steps=2: [MockStep, MockStepWithoutOptionalMethods])"
|
|
|
)
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_without_seed():
|
|
|
"""Test __repr__ when seed is explicitly None (should not show seed)."""
|
|
|
step = MockStep("test_step")
|
|
|
pipeline = DataProcessorPipeline([step], name="TestProcessor")
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='TestProcessor', steps=1: [MockStep])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_various_step_types():
|
|
|
"""Test __repr__ with different types of steps to verify class name extraction."""
|
|
|
step1 = MockStep()
|
|
|
step2 = MockStepWithTensorState()
|
|
|
step3 = MockModuleStep()
|
|
|
step4 = MockNonModuleStepWithState()
|
|
|
|
|
|
pipeline = DataProcessorPipeline([step1, step2, step3, step4], name="MixedSteps")
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='MixedSteps', steps=4: [MockStep, MockStepWithTensorState, ..., MockNonModuleStepWithState])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
def test_repr_edge_case_long_names():
|
|
|
"""Test __repr__ handles steps with long class names properly."""
|
|
|
step1 = MockStepWithNonSerializableParam()
|
|
|
step2 = MockStepWithoutOptionalMethods()
|
|
|
step3 = MockStepWithTensorState()
|
|
|
step4 = MockNonModuleStepWithState()
|
|
|
|
|
|
pipeline = DataProcessorPipeline([step1, step2, step3, step4], name="LongNames")
|
|
|
repr_str = repr(pipeline)
|
|
|
|
|
|
expected = "DataProcessorPipeline(name='LongNames', steps=4: [MockStepWithNonSerializableParam, MockStepWithoutOptionalMethods, ..., MockNonModuleStepWithState])"
|
|
|
assert repr_str == expected
|
|
|
|
|
|
|
|
|
|
|
|
def test_save_with_custom_config_filename():
|
|
|
"""Test saving processor with custom config filename."""
|
|
|
step = MockStep("test")
|
|
|
pipeline = DataProcessorPipeline([step], name="TestProcessor")
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
|
|
pipeline.save_pretrained(tmp_dir, config_filename="my_custom_config.json")
|
|
|
|
|
|
|
|
|
config_path = Path(tmp_dir) / "my_custom_config.json"
|
|
|
assert config_path.exists()
|
|
|
|
|
|
|
|
|
with open(config_path) as f:
|
|
|
config = json.load(f)
|
|
|
assert config["name"] == "TestProcessor"
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="my_custom_config.json")
|
|
|
assert loaded.name == "TestProcessor"
|
|
|
|
|
|
|
|
|
def test_multiple_processors_same_directory():
|
|
|
"""Test saving multiple processors to the same directory with different config files."""
|
|
|
|
|
|
preprocessor = DataProcessorPipeline([MockStep("pre1"), MockStep("pre2")], name="preprocessor")
|
|
|
|
|
|
postprocessor = DataProcessorPipeline(
|
|
|
[MockStepWithoutOptionalMethods(multiplier=0.5)], name="postprocessor"
|
|
|
)
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
|
|
preprocessor.save_pretrained(tmp_dir)
|
|
|
postprocessor.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
assert (Path(tmp_dir) / "preprocessor.json").exists()
|
|
|
assert (Path(tmp_dir) / "postprocessor.json").exists()
|
|
|
|
|
|
|
|
|
loaded_pre = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="preprocessor.json")
|
|
|
loaded_post = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="postprocessor.json")
|
|
|
|
|
|
assert loaded_pre.name == "preprocessor"
|
|
|
assert loaded_post.name == "postprocessor"
|
|
|
assert len(loaded_pre) == 2
|
|
|
assert len(loaded_post) == 1
|
|
|
|
|
|
|
|
|
def test_explicit_config_filename_loading():
|
|
|
"""Test explicit config filename loading (no more auto-detection)."""
|
|
|
step = MockStepWithTensorState()
|
|
|
pipeline = DataProcessorPipeline([step], name="SingleConfig")
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="singleconfig.json")
|
|
|
assert loaded.name == "SingleConfig"
|
|
|
|
|
|
|
|
|
def test_explicit_config_selection_with_multiple_configs():
|
|
|
"""Test explicit config selection when multiple configs exist."""
|
|
|
proc1 = DataProcessorPipeline([MockStep()], name="processor1")
|
|
|
proc2 = DataProcessorPipeline([MockStep()], name="processor2")
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
proc1.save_pretrained(tmp_dir)
|
|
|
proc2.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded1 = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="processor1.json")
|
|
|
loaded2 = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="processor2.json")
|
|
|
|
|
|
assert loaded1.name == "processor1"
|
|
|
assert loaded2.name == "processor2"
|
|
|
|
|
|
|
|
|
def test_state_file_naming_with_indices():
|
|
|
"""Test that state files include pipeline name and step indices to avoid conflicts."""
|
|
|
|
|
|
step1 = MockStepWithTensorState(name="norm1", window_size=5)
|
|
|
step2 = MockStepWithTensorState(name="norm2", window_size=10)
|
|
|
step3 = MockModuleStep(input_dim=5)
|
|
|
|
|
|
pipeline = DataProcessorPipeline([step1, step2, step3])
|
|
|
|
|
|
|
|
|
for i in range(5):
|
|
|
transition = create_transition(observation=torch.randn(2, 5), reward=float(i))
|
|
|
pipeline(transition)
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
state_files = sorted(Path(tmp_dir).glob("*.safetensors"))
|
|
|
assert len(state_files) == 3
|
|
|
|
|
|
|
|
|
expected_names = [
|
|
|
"dataprocessorpipeline_step_0.safetensors",
|
|
|
"dataprocessorpipeline_step_1.safetensors",
|
|
|
"dataprocessorpipeline_step_2.safetensors",
|
|
|
]
|
|
|
actual_names = [f.name for f in state_files]
|
|
|
assert actual_names == expected_names
|
|
|
|
|
|
|
|
|
def test_state_file_naming_with_registry():
|
|
|
"""Test state file naming for registered steps includes pipeline name, index and registry name."""
|
|
|
|
|
|
|
|
|
@ProcessorStepRegistry.register("test_stateful_step")
|
|
|
@dataclass
|
|
|
class TestStatefulStep(ProcessorStep):
|
|
|
value: int = 0
|
|
|
|
|
|
def __init__(self, value: int = 0):
|
|
|
self.value = value
|
|
|
self.state_tensor = torch.randn(3, 3)
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def get_config(self):
|
|
|
return {"value": self.value}
|
|
|
|
|
|
def state_dict(self):
|
|
|
return {"state_tensor": self.state_tensor}
|
|
|
|
|
|
def load_state_dict(self, state):
|
|
|
self.state_tensor = state["state_tensor"]
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
try:
|
|
|
|
|
|
step1 = TestStatefulStep(1)
|
|
|
step2 = TestStatefulStep(2)
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
state_files = sorted(Path(tmp_dir).glob("*.safetensors"))
|
|
|
assert len(state_files) == 2
|
|
|
|
|
|
|
|
|
expected_names = [
|
|
|
"dataprocessorpipeline_step_0_test_stateful_step.safetensors",
|
|
|
"dataprocessorpipeline_step_1_test_stateful_step.safetensors",
|
|
|
]
|
|
|
actual_names = [f.name for f in state_files]
|
|
|
assert actual_names == expected_names
|
|
|
|
|
|
finally:
|
|
|
|
|
|
ProcessorStepRegistry.unregister("test_stateful_step")
|
|
|
|
|
|
|
|
|
|
|
|
def test_override_with_nested_config():
|
|
|
"""Test overrides with nested configuration dictionaries."""
|
|
|
|
|
|
@ProcessorStepRegistry.register("complex_config_step")
|
|
|
@dataclass
|
|
|
class ComplexConfigStep(ProcessorStep):
|
|
|
name: str = "complex"
|
|
|
simple_param: int = 42
|
|
|
nested_config: dict = None
|
|
|
|
|
|
def __post_init__(self):
|
|
|
if self.nested_config is None:
|
|
|
self.nested_config = {"level1": {"level2": "default"}}
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
comp_data = transition.get(TransitionKey.COMPLEMENTARY_DATA, {})
|
|
|
comp_data = dict(comp_data)
|
|
|
comp_data["config_value"] = self.nested_config.get("level1", {}).get("level2", "missing")
|
|
|
|
|
|
new_transition = transition.copy()
|
|
|
new_transition[TransitionKey.COMPLEMENTARY_DATA] = comp_data
|
|
|
return new_transition
|
|
|
|
|
|
def get_config(self):
|
|
|
return {"name": self.name, "simple_param": self.simple_param, "nested_config": self.nested_config}
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
try:
|
|
|
step = ComplexConfigStep()
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides={"complex_config_step": {"nested_config": {"level1": {"level2": "overridden"}}}},
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
|
|
|
transition = create_transition()
|
|
|
result = loaded(transition)
|
|
|
assert result[TransitionKey.COMPLEMENTARY_DATA]["config_value"] == "overridden"
|
|
|
finally:
|
|
|
ProcessorStepRegistry.unregister("complex_config_step")
|
|
|
|
|
|
|
|
|
def test_override_preserves_defaults():
|
|
|
"""Test that overrides only affect specified parameters."""
|
|
|
step = MockStepWithNonSerializableParam(name="test", multiplier=2.0)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides={
|
|
|
"MockStepWithNonSerializableParam": {
|
|
|
"multiplier": 5.0
|
|
|
}
|
|
|
},
|
|
|
)
|
|
|
|
|
|
|
|
|
loaded_step = loaded.steps[0]
|
|
|
assert loaded_step.name == "test"
|
|
|
assert loaded_step.multiplier == 5.0
|
|
|
|
|
|
|
|
|
def test_override_type_validation():
|
|
|
"""Test that type errors in overrides are caught properly."""
|
|
|
step = MockStepWithTensorState(learning_rate=0.01)
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
overrides = {
|
|
|
"MockStepWithTensorState": {
|
|
|
"window_size": "not_an_int"
|
|
|
}
|
|
|
}
|
|
|
|
|
|
with pytest.raises(ValueError, match="Failed to instantiate"):
|
|
|
DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir, config_filename="dataprocessorpipeline.json", overrides=overrides
|
|
|
)
|
|
|
|
|
|
|
|
|
def test_override_with_callables():
|
|
|
"""Test overriding with callable objects."""
|
|
|
|
|
|
@ProcessorStepRegistry.register("callable_step")
|
|
|
@dataclass
|
|
|
class CallableStep(ProcessorStep):
|
|
|
name: str = "callable_step"
|
|
|
transform_fn: Any = None
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
obs = transition.get(TransitionKey.OBSERVATION)
|
|
|
if obs is not None and self.transform_fn is not None:
|
|
|
processed_obs = {}
|
|
|
for k, v in obs.items():
|
|
|
processed_obs[k] = self.transform_fn(v)
|
|
|
|
|
|
new_transition = transition.copy()
|
|
|
new_transition[TransitionKey.OBSERVATION] = processed_obs
|
|
|
return new_transition
|
|
|
return transition
|
|
|
|
|
|
def get_config(self):
|
|
|
return {"name": self.name}
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
try:
|
|
|
step = CallableStep()
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
def double_values(x):
|
|
|
if isinstance(x, (int | float | torch.Tensor)):
|
|
|
return x * 2
|
|
|
return x
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides={"callable_step": {"transform_fn": double_values}},
|
|
|
to_transition=identity_transition,
|
|
|
to_output=identity_transition,
|
|
|
)
|
|
|
|
|
|
|
|
|
transition = create_transition(observation={"value": torch.tensor(5.0)})
|
|
|
result = loaded(transition)
|
|
|
assert result[TransitionKey.OBSERVATION]["value"].item() == 10.0
|
|
|
finally:
|
|
|
ProcessorStepRegistry.unregister("callable_step")
|
|
|
|
|
|
|
|
|
def test_override_multiple_same_class_warning():
|
|
|
"""Test behavior when multiple steps of same class exist."""
|
|
|
step1 = MockStepWithNonSerializableParam(name="step1", multiplier=1.0)
|
|
|
step2 = MockStepWithNonSerializableParam(name="step2", multiplier=2.0)
|
|
|
pipeline = DataProcessorPipeline([step1, step2])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides={"MockStepWithNonSerializableParam": {"multiplier": 10.0}},
|
|
|
)
|
|
|
|
|
|
|
|
|
assert loaded.steps[0].multiplier == 10.0
|
|
|
assert loaded.steps[1].multiplier == 10.0
|
|
|
|
|
|
|
|
|
assert loaded.steps[0].name == "step1"
|
|
|
assert loaded.steps[1].name == "step2"
|
|
|
|
|
|
|
|
|
def test_config_filename_special_characters():
|
|
|
"""Test config filenames with special characters are sanitized."""
|
|
|
|
|
|
pipeline = DataProcessorPipeline([MockStep()], name="My/Processor\\With:Special*Chars")
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
json_files = list(Path(tmp_dir).glob("*.json"))
|
|
|
assert len(json_files) == 1
|
|
|
|
|
|
|
|
|
expected_name = "my_processor_with_special_chars.json"
|
|
|
assert json_files[0].name == expected_name
|
|
|
|
|
|
|
|
|
def test_state_file_naming_with_multiple_processors():
|
|
|
"""Test that state files are properly prefixed with pipeline names to avoid conflicts."""
|
|
|
|
|
|
step1 = MockStepWithTensorState(name="norm", window_size=5)
|
|
|
preprocessor = DataProcessorPipeline([step1], name="PreProcessor")
|
|
|
|
|
|
step2 = MockStepWithTensorState(name="norm", window_size=10)
|
|
|
postprocessor = DataProcessorPipeline([step2], name="PostProcessor")
|
|
|
|
|
|
|
|
|
for i in range(3):
|
|
|
transition = create_transition(reward=float(i))
|
|
|
preprocessor(transition)
|
|
|
postprocessor(transition)
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
|
|
|
preprocessor.save_pretrained(tmp_dir)
|
|
|
postprocessor.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
assert (Path(tmp_dir) / "preprocessor.json").exists()
|
|
|
assert (Path(tmp_dir) / "postprocessor.json").exists()
|
|
|
assert (Path(tmp_dir) / "preprocessor_step_0.safetensors").exists()
|
|
|
assert (Path(tmp_dir) / "postprocessor_step_0.safetensors").exists()
|
|
|
|
|
|
|
|
|
loaded_pre = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="preprocessor.json")
|
|
|
loaded_post = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="postprocessor.json")
|
|
|
|
|
|
assert loaded_pre.name == "PreProcessor"
|
|
|
assert loaded_post.name == "PostProcessor"
|
|
|
assert loaded_pre.steps[0].window_size == 5
|
|
|
assert loaded_post.steps[0].window_size == 10
|
|
|
|
|
|
|
|
|
def test_override_with_device_strings():
|
|
|
"""Test overriding device parameters with string values."""
|
|
|
|
|
|
@ProcessorStepRegistry.register("device_aware_step")
|
|
|
@dataclass
|
|
|
class DeviceAwareStep(ProcessorStep):
|
|
|
device: str = "cpu"
|
|
|
|
|
|
def __init__(self, device: str = "cpu"):
|
|
|
self.device = device
|
|
|
self.buffer = torch.zeros(10, device=device)
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def get_config(self):
|
|
|
return {"device": str(self.device)}
|
|
|
|
|
|
def state_dict(self):
|
|
|
return {"buffer": self.buffer}
|
|
|
|
|
|
def load_state_dict(self, state):
|
|
|
self.buffer = state["buffer"]
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
return features
|
|
|
|
|
|
try:
|
|
|
step = DeviceAwareStep(device="cpu")
|
|
|
pipeline = DataProcessorPipeline([step])
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
loaded = DataProcessorPipeline.from_pretrained(
|
|
|
tmp_dir,
|
|
|
config_filename="dataprocessorpipeline.json",
|
|
|
overrides={"device_aware_step": {"device": "cuda:0"}},
|
|
|
)
|
|
|
|
|
|
loaded_step = loaded.steps[0]
|
|
|
assert loaded_step.device == "cuda:0"
|
|
|
|
|
|
|
|
|
|
|
|
finally:
|
|
|
ProcessorStepRegistry.unregister("device_aware_step")
|
|
|
|
|
|
|
|
|
def test_from_pretrained_nonexistent_path():
|
|
|
"""Test error handling when loading from non-existent sources."""
|
|
|
from huggingface_hub.errors import HfHubHTTPError
|
|
|
|
|
|
|
|
|
with pytest.raises(FileNotFoundError):
|
|
|
DataProcessorPipeline.from_pretrained("/path/that/does/not/exist", config_filename="processor.json")
|
|
|
|
|
|
|
|
|
with pytest.raises(FileNotFoundError):
|
|
|
DataProcessorPipeline.from_pretrained("user/repo/extra/path", config_filename="processor.json")
|
|
|
|
|
|
|
|
|
with pytest.raises((FileNotFoundError, HfHubHTTPError)):
|
|
|
DataProcessorPipeline.from_pretrained(
|
|
|
"nonexistent-user/nonexistent-repo", config_filename="processor.json"
|
|
|
)
|
|
|
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir, pytest.raises(FileNotFoundError):
|
|
|
|
|
|
DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="processor.json")
|
|
|
|
|
|
|
|
|
def test_save_load_with_custom_converter_functions():
|
|
|
"""Test that custom to_transition and to_output functions are NOT saved."""
|
|
|
|
|
|
def custom_to_transition(batch):
|
|
|
|
|
|
return {
|
|
|
TransitionKey.OBSERVATION: batch.get("obs"),
|
|
|
TransitionKey.ACTION: batch.get("act"),
|
|
|
TransitionKey.REWARD: batch.get("rew", 0.0),
|
|
|
TransitionKey.DONE: batch.get("done", False),
|
|
|
TransitionKey.TRUNCATED: batch.get("truncated", False),
|
|
|
TransitionKey.INFO: {},
|
|
|
TransitionKey.COMPLEMENTARY_DATA: {},
|
|
|
}
|
|
|
|
|
|
def custom_to_output(transition):
|
|
|
|
|
|
return {
|
|
|
"obs": transition.get(TransitionKey.OBSERVATION),
|
|
|
"act": transition.get(TransitionKey.ACTION),
|
|
|
"rew": transition.get(TransitionKey.REWARD),
|
|
|
"done": transition.get(TransitionKey.DONE),
|
|
|
"truncated": transition.get(TransitionKey.TRUNCATED),
|
|
|
}
|
|
|
|
|
|
|
|
|
pipeline = DataProcessorPipeline(
|
|
|
[MockStep()], to_transition=custom_to_transition, to_output=custom_to_output
|
|
|
)
|
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
|
pipeline.save_pretrained(tmp_dir)
|
|
|
|
|
|
|
|
|
loaded = DataProcessorPipeline.from_pretrained(tmp_dir, config_filename="dataprocessorpipeline.json")
|
|
|
|
|
|
|
|
|
batch = {
|
|
|
OBS_IMAGE: torch.randn(1, 3, 32, 32),
|
|
|
ACTION: torch.randn(1, 7),
|
|
|
REWARD: torch.tensor([1.0]),
|
|
|
DONE: torch.tensor([False]),
|
|
|
TRUNCATED: torch.tensor([False]),
|
|
|
"info": {},
|
|
|
}
|
|
|
|
|
|
|
|
|
result = loaded(batch)
|
|
|
|
|
|
assert OBS_IMAGE in result
|
|
|
|
|
|
|
|
|
class NonCompliantStep:
|
|
|
"""Intentionally non-compliant: missing features."""
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
|
|
|
class NonCallableStep(ProcessorStep):
|
|
|
"""Intentionally non-compliant: missing __call__."""
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
return features
|
|
|
|
|
|
|
|
|
def test_construction_rejects_step_without_call():
|
|
|
"""Test that DataProcessorPipeline rejects steps that don't inherit from ProcessorStep."""
|
|
|
with pytest.raises(
|
|
|
TypeError, match=r"Can't instantiate abstract class NonCallableStep with abstract method __call_"
|
|
|
):
|
|
|
DataProcessorPipeline([NonCallableStep()])
|
|
|
|
|
|
with pytest.raises(TypeError, match=r"must inherit from ProcessorStep"):
|
|
|
DataProcessorPipeline([NonCompliantStep()])
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class FeatureContractAddStep(ProcessorStep):
|
|
|
"""Adds a PolicyFeature"""
|
|
|
|
|
|
key: str = "a"
|
|
|
value: PolicyFeature = PolicyFeature(type=FeatureType.STATE, shape=(1,))
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
features[PipelineFeatureType.OBSERVATION][self.key] = self.value
|
|
|
return features
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class FeatureContractMutateStep(ProcessorStep):
|
|
|
"""Mutates a PolicyFeature"""
|
|
|
|
|
|
key: str = "a"
|
|
|
fn: Callable[[PolicyFeature | None], PolicyFeature] = identity_transition
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
features[PipelineFeatureType.OBSERVATION][self.key] = self.fn(
|
|
|
features[PipelineFeatureType.OBSERVATION].get(self.key)
|
|
|
)
|
|
|
return features
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class FeatureContractBadReturnStep(ProcessorStep):
|
|
|
"""Returns a non-dict"""
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
return ["not-a-dict"]
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class FeatureContractRemoveStep(ProcessorStep):
|
|
|
"""Removes a PolicyFeature"""
|
|
|
|
|
|
key: str
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
features[PipelineFeatureType.OBSERVATION].pop(self.key, None)
|
|
|
return features
|
|
|
|
|
|
|
|
|
def test_features_orders_and_merges(policy_feature_factory):
|
|
|
p = DataProcessorPipeline(
|
|
|
[
|
|
|
FeatureContractAddStep("a", policy_feature_factory(FeatureType.STATE, (1,))),
|
|
|
FeatureContractMutateStep("a", lambda v: PolicyFeature(type=v.type, shape=(3,))),
|
|
|
FeatureContractAddStep("b", policy_feature_factory(FeatureType.ENV, (2,))),
|
|
|
]
|
|
|
)
|
|
|
out = p.transform_features({PipelineFeatureType.OBSERVATION: {}})
|
|
|
assert out[PipelineFeatureType.OBSERVATION]["a"].type == FeatureType.STATE and out[
|
|
|
PipelineFeatureType.OBSERVATION
|
|
|
]["a"].shape == (3,)
|
|
|
assert out[PipelineFeatureType.OBSERVATION]["b"].type == FeatureType.ENV and out[
|
|
|
PipelineFeatureType.OBSERVATION
|
|
|
]["b"].shape == (2,)
|
|
|
assert_contract_is_typed(out)
|
|
|
|
|
|
|
|
|
def test_features_respects_initial_without_mutation(policy_feature_factory):
|
|
|
initial = {
|
|
|
PipelineFeatureType.OBSERVATION: {
|
|
|
"seed": policy_feature_factory(FeatureType.STATE, (7,)),
|
|
|
"nested": policy_feature_factory(FeatureType.ENV, (0,)),
|
|
|
}
|
|
|
}
|
|
|
p = DataProcessorPipeline(
|
|
|
[
|
|
|
FeatureContractMutateStep("seed", lambda v: PolicyFeature(type=v.type, shape=(v.shape[0] + 1,))),
|
|
|
FeatureContractMutateStep(
|
|
|
"nested", lambda v: PolicyFeature(type=v.type, shape=(v.shape[0] + 5,))
|
|
|
),
|
|
|
]
|
|
|
)
|
|
|
out = p.transform_features(initial_features=initial)
|
|
|
|
|
|
assert out[PipelineFeatureType.OBSERVATION]["seed"].shape == (8,)
|
|
|
assert out[PipelineFeatureType.OBSERVATION]["nested"].shape == (5,)
|
|
|
|
|
|
assert initial[PipelineFeatureType.OBSERVATION]["seed"].shape == (7,)
|
|
|
assert initial[PipelineFeatureType.OBSERVATION]["nested"].shape == (0,)
|
|
|
|
|
|
assert_contract_is_typed(out)
|
|
|
|
|
|
|
|
|
def test_features_execution_order_tracking():
|
|
|
class Track(ProcessorStep):
|
|
|
def __init__(self, label):
|
|
|
self.label = label
|
|
|
|
|
|
def __call__(self, transition: EnvTransition) -> EnvTransition:
|
|
|
return transition
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
code = {"A": 1, "B": 2, "C": 3}[self.label]
|
|
|
pf = features[PipelineFeatureType.OBSERVATION].get(
|
|
|
"order", PolicyFeature(type=FeatureType.ENV, shape=())
|
|
|
)
|
|
|
features[PipelineFeatureType.OBSERVATION]["order"] = PolicyFeature(
|
|
|
type=pf.type, shape=pf.shape + (code,)
|
|
|
)
|
|
|
return features
|
|
|
|
|
|
out = DataProcessorPipeline([Track("A"), Track("B"), Track("C")]).transform_features(
|
|
|
initial_features={PipelineFeatureType.OBSERVATION: {}}
|
|
|
)
|
|
|
assert out[PipelineFeatureType.OBSERVATION]["order"].shape == (1, 2, 3)
|
|
|
|
|
|
|
|
|
def test_features_remove_key(policy_feature_factory):
|
|
|
p = DataProcessorPipeline(
|
|
|
[
|
|
|
FeatureContractAddStep("a", policy_feature_factory(FeatureType.STATE, (1,))),
|
|
|
FeatureContractRemoveStep("a"),
|
|
|
]
|
|
|
)
|
|
|
out = p.transform_features({PipelineFeatureType.OBSERVATION: {}})
|
|
|
assert "a" not in out[PipelineFeatureType.OBSERVATION]
|
|
|
|
|
|
|
|
|
def test_features_remove_from_initial(policy_feature_factory):
|
|
|
initial = {
|
|
|
PipelineFeatureType.OBSERVATION: {
|
|
|
"keep": policy_feature_factory(FeatureType.STATE, (1,)),
|
|
|
"drop": policy_feature_factory(FeatureType.STATE, (1,)),
|
|
|
},
|
|
|
}
|
|
|
p = DataProcessorPipeline([FeatureContractRemoveStep("drop")])
|
|
|
out = p.transform_features(initial_features=initial)
|
|
|
assert (
|
|
|
"drop" not in out[PipelineFeatureType.OBSERVATION]
|
|
|
and out[PipelineFeatureType.OBSERVATION]["keep"] == initial[PipelineFeatureType.OBSERVATION]["keep"]
|
|
|
)
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class AddActionEEAndJointFeatures(ProcessorStep):
|
|
|
"""Adds both EE and JOINT action features."""
|
|
|
|
|
|
def __call__(self, tr):
|
|
|
return tr
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
features[PipelineFeatureType.ACTION]["action.ee.x"] = float
|
|
|
features[PipelineFeatureType.ACTION]["action.ee.y"] = float
|
|
|
|
|
|
features[PipelineFeatureType.ACTION]["action.j1.pos"] = float
|
|
|
features[PipelineFeatureType.ACTION]["action.j2.pos"] = float
|
|
|
return features
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class AddObservationStateFeatures(ProcessorStep):
|
|
|
"""Adds state features (and optionally an image spec to test precedence)."""
|
|
|
|
|
|
add_front_image: bool = False
|
|
|
front_image_shape: tuple = (240, 320, 3)
|
|
|
|
|
|
def __call__(self, tr):
|
|
|
return tr
|
|
|
|
|
|
def transform_features(
|
|
|
self, features: dict[PipelineFeatureType, dict[str, PolicyFeature]]
|
|
|
) -> dict[PipelineFeatureType, dict[str, PolicyFeature]]:
|
|
|
|
|
|
features[PipelineFeatureType.OBSERVATION][f"{OBS_STATE}.ee.x"] = float
|
|
|
features[PipelineFeatureType.OBSERVATION][f"{OBS_STATE}.j1.pos"] = float
|
|
|
if self.add_front_image:
|
|
|
features[PipelineFeatureType.OBSERVATION][f"{OBS_IMAGES}.front"] = self.front_image_shape
|
|
|
return features
|
|
|
|
|
|
|
|
|
def test_aggregate_joint_action_only():
|
|
|
rp = DataProcessorPipeline([AddActionEEAndJointFeatures()])
|
|
|
initial = {PipelineFeatureType.OBSERVATION: {"front": (480, 640, 3)}, PipelineFeatureType.ACTION: {}}
|
|
|
|
|
|
out = aggregate_pipeline_dataset_features(
|
|
|
pipeline=rp,
|
|
|
initial_features=initial,
|
|
|
use_videos=True,
|
|
|
patterns=["action.j1.pos", "action.j2.pos"],
|
|
|
)
|
|
|
|
|
|
|
|
|
assert ACTION in out and OBS_STATE not in out
|
|
|
assert out[ACTION]["dtype"] == "float32"
|
|
|
assert set(out[ACTION]["names"]) == {"j1.pos", "j2.pos"}
|
|
|
assert out[ACTION]["shape"] == (len(out[ACTION]["names"]),)
|
|
|
|
|
|
|
|
|
def test_aggregate_ee_action_and_observation_with_videos():
|
|
|
rp = DataProcessorPipeline([AddActionEEAndJointFeatures(), AddObservationStateFeatures()])
|
|
|
initial = {"front": (480, 640, 3), "side": (720, 1280, 3)}
|
|
|
|
|
|
out = aggregate_pipeline_dataset_features(
|
|
|
pipeline=rp,
|
|
|
initial_features={PipelineFeatureType.OBSERVATION: initial, PipelineFeatureType.ACTION: {}},
|
|
|
use_videos=True,
|
|
|
patterns=["action.ee", OBS_STATE],
|
|
|
)
|
|
|
|
|
|
|
|
|
assert ACTION in out
|
|
|
assert set(out[ACTION]["names"]) == {"ee.x", "ee.y"}
|
|
|
assert out[ACTION]["dtype"] == "float32"
|
|
|
|
|
|
|
|
|
assert OBS_STATE in out
|
|
|
assert set(out[OBS_STATE]["names"]) == {"ee.x", "j1.pos"}
|
|
|
assert out[OBS_STATE]["dtype"] == "float32"
|
|
|
|
|
|
|
|
|
for cam in ("front", "side"):
|
|
|
key = f"{OBS_IMAGES}.{cam}"
|
|
|
assert key in out
|
|
|
assert out[key]["dtype"] == "video"
|
|
|
assert out[key]["shape"] == initial[cam]
|
|
|
assert out[key]["names"] == ["height", "width", "channels"]
|
|
|
|
|
|
|
|
|
def test_aggregate_both_action_types():
|
|
|
rp = DataProcessorPipeline([AddActionEEAndJointFeatures()])
|
|
|
out = aggregate_pipeline_dataset_features(
|
|
|
pipeline=rp,
|
|
|
initial_features={PipelineFeatureType.ACTION: {}, PipelineFeatureType.OBSERVATION: {}},
|
|
|
use_videos=True,
|
|
|
patterns=["action.ee", "action.j1", "action.j2.pos"],
|
|
|
)
|
|
|
|
|
|
assert ACTION in out
|
|
|
expected = {"ee.x", "ee.y", "j1.pos", "j2.pos"}
|
|
|
assert set(out[ACTION]["names"]) == expected
|
|
|
assert out[ACTION]["shape"] == (len(expected),)
|
|
|
|
|
|
|
|
|
def test_aggregate_images_when_use_videos_false():
|
|
|
rp = DataProcessorPipeline([AddObservationStateFeatures(add_front_image=True)])
|
|
|
initial = {"back": (480, 640, 3)}
|
|
|
|
|
|
out = aggregate_pipeline_dataset_features(
|
|
|
pipeline=rp,
|
|
|
initial_features={PipelineFeatureType.ACTION: {}, PipelineFeatureType.OBSERVATION: initial},
|
|
|
use_videos=False,
|
|
|
patterns=None,
|
|
|
)
|
|
|
|
|
|
key = f"{OBS_IMAGES}.back"
|
|
|
key_front = f"{OBS_IMAGES}.front"
|
|
|
assert key not in out
|
|
|
assert key_front not in out
|
|
|
|
|
|
|
|
|
def test_aggregate_images_when_use_videos_true():
|
|
|
rp = DataProcessorPipeline([AddObservationStateFeatures(add_front_image=True)])
|
|
|
initial = {"back": (480, 640, 3)}
|
|
|
|
|
|
out = aggregate_pipeline_dataset_features(
|
|
|
pipeline=rp,
|
|
|
initial_features={PipelineFeatureType.OBSERVATION: initial, PipelineFeatureType.ACTION: {}},
|
|
|
use_videos=True,
|
|
|
patterns=None,
|
|
|
)
|
|
|
|
|
|
key = f"{OBS_IMAGES}.front"
|
|
|
key_back = f"{OBS_IMAGES}.back"
|
|
|
assert key in out
|
|
|
assert key_back in out
|
|
|
assert out[key]["dtype"] == "video"
|
|
|
assert out[key_back]["dtype"] == "video"
|
|
|
assert out[key_back]["shape"] == initial["back"]
|
|
|
|
|
|
|
|
|
def test_initial_camera_not_overridden_by_step_image():
|
|
|
|
|
|
|
|
|
rp = DataProcessorPipeline(
|
|
|
[AddObservationStateFeatures(add_front_image=True, front_image_shape=(240, 320, 3))]
|
|
|
)
|
|
|
initial = {"front": (480, 640, 3)}
|
|
|
|
|
|
out = aggregate_pipeline_dataset_features(
|
|
|
pipeline=rp,
|
|
|
initial_features={PipelineFeatureType.ACTION: {}, PipelineFeatureType.OBSERVATION: initial},
|
|
|
use_videos=True,
|
|
|
patterns=[f"{OBS_IMAGES}.front"],
|
|
|
)
|
|
|
|
|
|
key = f"{OBS_IMAGES}.front"
|
|
|
assert key in out
|
|
|
assert out[key]["shape"] == (240, 320, 3)
|
|
|
|