hackathon-dataset_caramelos / tests /processor /test_normalize_processor.py
paulagb's picture
Upload folder using huggingface_hub
f61b9bc verified
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import Mock
import numpy as np
import pytest
import torch
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from lerobot.processor import (
DataProcessorPipeline,
IdentityProcessorStep,
NormalizerProcessorStep,
TransitionKey,
UnnormalizerProcessorStep,
hotswap_stats,
)
from lerobot.processor.converters import create_transition, identity_transition, to_tensor
from lerobot.utils.constants import ACTION, OBS_IMAGE, OBS_STATE, OBS_STR
from lerobot.utils.utils import auto_select_torch_device
def test_numpy_conversion():
stats = {
OBS_IMAGE: {
"mean": np.array([0.5, 0.5, 0.5]),
"std": np.array([0.2, 0.2, 0.2]),
}
}
tensor_stats = to_tensor(stats)
assert isinstance(tensor_stats[OBS_IMAGE]["mean"], torch.Tensor)
assert isinstance(tensor_stats[OBS_IMAGE]["std"], torch.Tensor)
assert torch.allclose(tensor_stats[OBS_IMAGE]["mean"], torch.tensor([0.5, 0.5, 0.5]))
assert torch.allclose(tensor_stats[OBS_IMAGE]["std"], torch.tensor([0.2, 0.2, 0.2]))
def test_tensor_conversion():
stats = {
ACTION: {
"mean": torch.tensor([0.0, 0.0]),
"std": torch.tensor([1.0, 1.0]),
}
}
tensor_stats = to_tensor(stats)
assert tensor_stats[ACTION]["mean"].dtype == torch.float32
assert tensor_stats[ACTION]["std"].dtype == torch.float32
def test_scalar_conversion():
stats = {
"reward": {
"mean": 0.5,
"std": 0.1,
}
}
tensor_stats = to_tensor(stats)
assert torch.allclose(tensor_stats["reward"]["mean"], torch.tensor(0.5))
assert torch.allclose(tensor_stats["reward"]["std"], torch.tensor(0.1))
def test_list_conversion():
stats = {
OBS_STATE: {
"min": [0.0, -1.0, -2.0],
"max": [1.0, 1.0, 2.0],
}
}
tensor_stats = to_tensor(stats)
assert torch.allclose(tensor_stats[OBS_STATE]["min"], torch.tensor([0.0, -1.0, -2.0]))
assert torch.allclose(tensor_stats[OBS_STATE]["max"], torch.tensor([1.0, 1.0, 2.0]))
def test_unsupported_type():
stats = {
"bad_key": {
"mean": "string_value",
}
}
with pytest.raises(TypeError, match="Unsupported type"):
to_tensor(stats)
# Helper functions to create feature maps and norm maps
def _create_observation_features():
return {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
}
def _create_observation_norm_map():
return {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.STATE: NormalizationMode.MIN_MAX,
}
# Fixtures for observation normalisation tests using NormalizerProcessorStep
@pytest.fixture
def observation_stats():
return {
OBS_IMAGE: {
"mean": np.array([0.5, 0.5, 0.5]),
"std": np.array([0.2, 0.2, 0.2]),
},
OBS_STATE: {
"min": np.array([0.0, -1.0]),
"max": np.array([1.0, 1.0]),
},
}
@pytest.fixture
def observation_normalizer(observation_stats):
"""Return a NormalizerProcessorStep that only has observation stats (no action)."""
features = _create_observation_features()
norm_map = _create_observation_norm_map()
return NormalizerProcessorStep(features=features, norm_map=norm_map, stats=observation_stats)
def test_mean_std_normalization(observation_normalizer):
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
normalized_transition = observation_normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Check mean/std normalization
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
assert torch.allclose(normalized_obs[OBS_IMAGE], expected_image)
def test_min_max_normalization(observation_normalizer):
observation = {
OBS_STATE: torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
normalized_transition = observation_normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Check min/max normalization to [-1, 1]
# For state[0]: 2 * (0.5 - 0.0) / (1.0 - 0.0) - 1 = 0.0
# For state[1]: 2 * (0.0 - (-1.0)) / (1.0 - (-1.0)) - 1 = 0.0
expected_state = torch.tensor([0.0, 0.0])
assert torch.allclose(normalized_obs[OBS_STATE], expected_state, atol=1e-6)
def test_quantile_normalization():
"""Test QUANTILES mode using 1st-99th percentiles."""
features = {
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.STATE: NormalizationMode.QUANTILES,
}
stats = {
"observation.state": {
"q01": np.array([0.1, -0.8]), # 1st percentile
"q99": np.array([0.9, 0.8]), # 99th percentile
},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
"observation.state": torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Check quantile normalization to [-1, 1]
# For state[0]: 2 * (0.5 - 0.1) / (0.9 - 0.1) - 1 = 2 * 0.4 / 0.8 - 1 = 0.0
# For state[1]: 2 * (0.0 - (-0.8)) / (0.8 - (-0.8)) - 1 = 2 * 0.8 / 1.6 - 1 = 0.0
expected_state = torch.tensor([0.0, 0.0])
assert torch.allclose(normalized_obs["observation.state"], expected_state, atol=1e-6)
def test_quantile10_normalization():
"""Test QUANTILE10 mode using 10th-90th percentiles."""
features = {
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.STATE: NormalizationMode.QUANTILE10,
}
stats = {
"observation.state": {
"q10": np.array([0.2, -0.6]), # 10th percentile
"q90": np.array([0.8, 0.6]), # 90th percentile
},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
"observation.state": torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Check quantile normalization to [-1, 1]
# For state[0]: 2 * (0.5 - 0.2) / (0.8 - 0.2) - 1 = 2 * 0.3 / 0.6 - 1 = 0.0
# For state[1]: 2 * (0.0 - (-0.6)) / (0.6 - (-0.6)) - 1 = 2 * 0.6 / 1.2 - 1 = 0.0
expected_state = torch.tensor([0.0, 0.0])
assert torch.allclose(normalized_obs["observation.state"], expected_state, atol=1e-6)
def test_quantile_unnormalization():
"""Test that quantile normalization can be reversed properly."""
features = {
"action": PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.ACTION: NormalizationMode.QUANTILES,
}
stats = {
"action": {
"q01": np.array([0.1, -0.8]),
"q99": np.array([0.9, 0.8]),
},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
# Test round-trip normalization
original_action = torch.tensor([0.5, 0.0])
transition = create_transition(action=original_action)
# Normalize then unnormalize
normalized = normalizer(transition)
unnormalized = unnormalizer(normalized)
# Should recover original values
recovered_action = unnormalized[TransitionKey.ACTION]
assert torch.allclose(recovered_action, original_action, atol=1e-6)
def test_quantile_division_by_zero():
"""Test quantile normalization handles edge case where q01 == q99."""
features = {
"observation.state": PolicyFeature(FeatureType.STATE, (1,)),
}
norm_map = {
FeatureType.STATE: NormalizationMode.QUANTILES,
}
stats = {
"observation.state": {
"q01": np.array([0.5]), # Same value
"q99": np.array([0.5]), # Same value -> division by zero case
},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
"observation.state": torch.tensor([0.5]),
}
transition = create_transition(observation=observation)
# Should not crash and should handle gracefully
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# When quantiles are identical, should normalize to 0 (due to epsilon handling)
assert torch.isfinite(normalized_obs["observation.state"]).all()
def test_quantile_partial_stats():
"""Test that quantile normalization handles missing quantile stats by raising."""
features = {
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.STATE: NormalizationMode.QUANTILES,
}
# Missing q99 - should pass through unchanged
stats_partial = {
"observation.state": {
"q01": np.array([0.1, -0.8]), # Only q01, missing q99
},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats_partial)
observation = {
"observation.state": torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
with pytest.raises(ValueError, match="QUANTILES normalization mode requires q01 and q99 stats"):
_ = normalizer(transition)
def test_quantile_mixed_with_other_modes():
"""Test quantile normalization mixed with other normalization modes."""
features = {
"observation.image": PolicyFeature(FeatureType.VISUAL, (3,)),
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
"action": PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD, # Standard normalization
FeatureType.STATE: NormalizationMode.QUANTILES, # Quantile normalization
FeatureType.ACTION: NormalizationMode.QUANTILE10, # Different quantile mode
}
stats = {
"observation.image": {"mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2]},
"observation.state": {"q01": [0.1, -0.8], "q99": [0.9, 0.8]},
"action": {"q10": [0.2, -0.6], "q90": [0.8, 0.6]},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
"observation.state": torch.tensor([0.5, 0.0]), # Should use QUANTILES
}
action = torch.tensor([0.5, 0.0]) # Should use QUANTILE10
transition = create_transition(observation=observation, action=action)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
normalized_action = normalized_transition[TransitionKey.ACTION]
# Image should be mean/std normalized: (0.7 - 0.5) / 0.2 = 1.0, etc.
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
assert torch.allclose(normalized_obs["observation.image"], expected_image)
# State should be quantile normalized: 2 * (0.5 - 0.1) / (0.9 - 0.1) - 1 = 0.0, etc.
expected_state = torch.tensor([0.0, 0.0])
assert torch.allclose(normalized_obs["observation.state"], expected_state, atol=1e-6)
# Action should be quantile10 normalized: 2 * (0.5 - 0.2) / (0.8 - 0.2) - 1 = 0.0, etc.
expected_action = torch.tensor([0.0, 0.0])
assert torch.allclose(normalized_action, expected_action, atol=1e-6)
def test_quantile_with_missing_stats():
"""Test that quantile normalization handles completely missing stats gracefully."""
features = {
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.STATE: NormalizationMode.QUANTILES,
}
stats = {} # No stats provided
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
"observation.state": torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Should pass through unchanged when no stats available
assert torch.allclose(normalized_obs["observation.state"], observation["observation.state"])
def test_selective_normalization(observation_stats):
features = _create_observation_features()
norm_map = _create_observation_norm_map()
normalizer = NormalizerProcessorStep(
features=features,
norm_map=norm_map,
stats=observation_stats,
normalize_observation_keys={OBS_IMAGE},
)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.5, 0.0]),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Only image should be normalized
assert torch.allclose(normalized_obs[OBS_IMAGE], (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2)
# State should remain unchanged
assert torch.allclose(normalized_obs[OBS_STATE], observation[OBS_STATE])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
def test_device_compatibility(observation_stats):
features = _create_observation_features()
norm_map = _create_observation_norm_map()
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=observation_stats)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]).cuda(),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
assert normalized_obs[OBS_IMAGE].device.type == "cuda"
def test_from_lerobot_dataset():
# Mock dataset
mock_dataset = Mock()
mock_dataset.meta.stats = {
OBS_IMAGE: {"mean": [0.5], "std": [0.2]},
ACTION: {"mean": [0.0], "std": [1.0]},
}
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
ACTION: PolicyFeature(FeatureType.ACTION, (1,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
normalizer = NormalizerProcessorStep.from_lerobot_dataset(mock_dataset, features, norm_map)
# Both observation and action statistics should be present in tensor stats
assert OBS_IMAGE in normalizer._tensor_stats
assert ACTION in normalizer._tensor_stats
def test_state_dict_save_load(observation_normalizer):
# Save state
state_dict = observation_normalizer.state_dict()
print("State dict:", state_dict)
# Create new normalizer and load state
features = _create_observation_features()
norm_map = _create_observation_norm_map()
new_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats={})
new_normalizer.load_state_dict(state_dict)
# Test that it works the same
observation = {OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3])}
transition = create_transition(observation=observation)
result1 = observation_normalizer(transition)[TransitionKey.OBSERVATION]
result2 = new_normalizer(transition)[TransitionKey.OBSERVATION]
assert torch.allclose(result1[OBS_IMAGE], result2[OBS_IMAGE])
# Fixtures for ActionUnnormalizer tests
@pytest.fixture
def action_stats_mean_std():
return {
"mean": np.array([0.0, 0.0, 0.0]),
"std": np.array([1.0, 2.0, 0.5]),
}
@pytest.fixture
def action_stats_min_max():
return {
"min": np.array([-1.0, -2.0, 0.0]),
"max": np.array([1.0, 2.0, 1.0]),
}
def _create_action_features():
return {
ACTION: PolicyFeature(FeatureType.ACTION, (3,)),
}
def _create_action_norm_map_mean_std():
return {
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
def _create_action_norm_map_min_max():
return {
FeatureType.ACTION: NormalizationMode.MIN_MAX,
}
def test_mean_std_unnormalization(action_stats_mean_std):
features = _create_action_features()
norm_map = _create_action_norm_map_mean_std()
unnormalizer = UnnormalizerProcessorStep(
features=features, norm_map=norm_map, stats={ACTION: action_stats_mean_std}
)
normalized_action = torch.tensor([1.0, -0.5, 2.0])
transition = create_transition(action=normalized_action)
unnormalized_transition = unnormalizer(transition)
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
# action * std + mean
expected = torch.tensor([1.0 * 1.0 + 0.0, -0.5 * 2.0 + 0.0, 2.0 * 0.5 + 0.0])
assert torch.allclose(unnormalized_action, expected)
def test_min_max_unnormalization(action_stats_min_max):
features = _create_action_features()
norm_map = _create_action_norm_map_min_max()
unnormalizer = UnnormalizerProcessorStep(
features=features, norm_map=norm_map, stats={ACTION: action_stats_min_max}
)
# Actions in [-1, 1]
normalized_action = torch.tensor([0.0, -1.0, 1.0])
transition = create_transition(action=normalized_action)
unnormalized_transition = unnormalizer(transition)
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
# Map from [-1, 1] to [min, max]
# (action + 1) / 2 * (max - min) + min
expected = torch.tensor(
[
(0.0 + 1) / 2 * (1.0 - (-1.0)) + (-1.0), # 0.0
(-1.0 + 1) / 2 * (2.0 - (-2.0)) + (-2.0), # -2.0
(1.0 + 1) / 2 * (1.0 - 0.0) + 0.0, # 1.0
]
)
assert torch.allclose(unnormalized_action, expected)
def test_tensor_action_input(action_stats_mean_std):
features = _create_action_features()
norm_map = _create_action_norm_map_mean_std()
unnormalizer = UnnormalizerProcessorStep(
features=features, norm_map=norm_map, stats={ACTION: action_stats_mean_std}
)
normalized_action = torch.tensor([1.0, -0.5, 2.0], dtype=torch.float32)
transition = create_transition(action=normalized_action)
unnormalized_transition = unnormalizer(transition)
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
assert isinstance(unnormalized_action, torch.Tensor)
expected = torch.tensor([1.0, -1.0, 1.0])
assert torch.allclose(unnormalized_action, expected)
def test_none_action(action_stats_mean_std):
features = _create_action_features()
norm_map = _create_action_norm_map_mean_std()
unnormalizer = UnnormalizerProcessorStep(
features=features, norm_map=norm_map, stats={ACTION: action_stats_mean_std}
)
transition = create_transition()
result = unnormalizer(transition)
# Should return transition unchanged
assert result == transition
def test_action_from_lerobot_dataset():
mock_dataset = Mock()
mock_dataset.meta.stats = {ACTION: {"mean": [0.0], "std": [1.0]}}
features = {ACTION: PolicyFeature(FeatureType.ACTION, (1,))}
norm_map = {FeatureType.ACTION: NormalizationMode.MEAN_STD}
unnormalizer = UnnormalizerProcessorStep.from_lerobot_dataset(mock_dataset, features, norm_map)
assert "mean" in unnormalizer._tensor_stats[ACTION]
# Fixtures for NormalizerProcessorStep tests
@pytest.fixture
def full_stats():
return {
OBS_IMAGE: {
"mean": np.array([0.5, 0.5, 0.5]),
"std": np.array([0.2, 0.2, 0.2]),
},
OBS_STATE: {
"min": np.array([0.0, -1.0]),
"max": np.array([1.0, 1.0]),
},
ACTION: {
"mean": np.array([0.0, 0.0]),
"std": np.array([1.0, 2.0]),
},
}
def _create_full_features():
return {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
def _create_full_norm_map():
return {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.STATE: NormalizationMode.MIN_MAX,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
@pytest.fixture
def normalizer_processor(full_stats):
features = _create_full_features()
norm_map = _create_full_norm_map()
return NormalizerProcessorStep(features=features, norm_map=norm_map, stats=full_stats)
def test_combined_normalization(normalizer_processor):
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.5, 0.0]),
}
action = torch.tensor([1.0, -0.5])
transition = create_transition(
observation=observation,
action=action,
reward=1.0,
done=False,
truncated=False,
info={},
complementary_data={},
)
processed_transition = normalizer_processor(transition)
# Check normalized observations
processed_obs = processed_transition[TransitionKey.OBSERVATION]
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
assert torch.allclose(processed_obs[OBS_IMAGE], expected_image)
# Check normalized action
processed_action = processed_transition[TransitionKey.ACTION]
expected_action = torch.tensor([(1.0 - 0.0) / 1.0, (-0.5 - 0.0) / 2.0])
assert torch.allclose(processed_action, expected_action)
# Check other fields remain unchanged
assert processed_transition[TransitionKey.REWARD] == 1.0
assert not processed_transition[TransitionKey.DONE]
def test_processor_from_lerobot_dataset(full_stats):
# Mock dataset
mock_dataset = Mock()
mock_dataset.meta.stats = full_stats
features = _create_full_features()
norm_map = _create_full_norm_map()
processor = NormalizerProcessorStep.from_lerobot_dataset(
mock_dataset, features, norm_map, normalize_observation_keys={OBS_IMAGE}
)
assert processor.normalize_observation_keys == {OBS_IMAGE}
assert OBS_IMAGE in processor._tensor_stats
assert ACTION in processor._tensor_stats
def test_get_config(full_stats):
features = _create_full_features()
norm_map = _create_full_norm_map()
processor = NormalizerProcessorStep(
features=features,
norm_map=norm_map,
stats=full_stats,
normalize_observation_keys={OBS_IMAGE},
eps=1e-6,
)
config = processor.get_config()
expected_config = {
"normalize_observation_keys": [OBS_IMAGE],
"eps": 1e-6,
"features": {
OBS_IMAGE: {"type": "VISUAL", "shape": (3, 96, 96)},
OBS_STATE: {"type": "STATE", "shape": (2,)},
ACTION: {"type": "ACTION", "shape": (2,)},
},
"norm_map": {
"VISUAL": "MEAN_STD",
"STATE": "MIN_MAX",
"ACTION": "MEAN_STD",
},
}
assert config == expected_config
def test_integration_with_robot_processor(normalizer_processor):
"""Test integration with RobotProcessor pipeline"""
robot_processor = DataProcessorPipeline(
[normalizer_processor], to_transition=identity_transition, to_output=identity_transition
)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.5, 0.0]),
}
action = torch.tensor([1.0, -0.5])
transition = create_transition(
observation=observation,
action=action,
reward=1.0,
done=False,
truncated=False,
info={},
complementary_data={},
)
processed_transition = robot_processor(transition)
# Verify the processing worked
assert isinstance(processed_transition[TransitionKey.OBSERVATION], dict)
assert isinstance(processed_transition[TransitionKey.ACTION], torch.Tensor)
# Edge case tests
def test_empty_observation():
stats = {OBS_IMAGE: {"mean": [0.5], "std": [0.2]}}
features = {OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
transition = create_transition()
result = normalizer(transition)
assert result == transition
def test_empty_stats():
features = {OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats={})
observation = {OBS_IMAGE: torch.tensor([0.5])}
transition = create_transition(observation=observation)
result = normalizer(transition)
# Should return observation unchanged since no stats are available
assert torch.allclose(result[TransitionKey.OBSERVATION][OBS_IMAGE], observation[OBS_IMAGE])
def test_partial_stats():
"""If statistics are incomplete, we should raise."""
stats = {OBS_IMAGE: {"mean": [0.5]}} # Missing std / (min,max)
features = {OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {OBS_IMAGE: torch.tensor([0.7])}
transition = create_transition(observation=observation)
with pytest.raises(ValueError, match="MEAN_STD normalization mode requires mean and std stats"):
_ = normalizer(transition)[TransitionKey.OBSERVATION]
def test_missing_action_stats_no_error():
mock_dataset = Mock()
mock_dataset.meta.stats = {OBS_IMAGE: {"mean": [0.5], "std": [0.2]}}
features = {OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
processor = UnnormalizerProcessorStep.from_lerobot_dataset(mock_dataset, features, norm_map)
# The tensor stats should not contain the 'action' key
assert ACTION not in processor._tensor_stats
def test_serialization_roundtrip(full_stats):
"""Test that features and norm_map can be serialized and deserialized correctly."""
features = _create_full_features()
norm_map = _create_full_norm_map()
original_processor = NormalizerProcessorStep(
features=features,
norm_map=norm_map,
stats=full_stats,
normalize_observation_keys={OBS_IMAGE},
eps=1e-6,
)
# Get config (serialization)
config = original_processor.get_config()
# Create a new processor from the config (deserialization)
new_processor = NormalizerProcessorStep(
features=config["features"],
norm_map=config["norm_map"],
stats=full_stats,
normalize_observation_keys=set(config["normalize_observation_keys"]),
eps=config["eps"],
)
# Test that both processors work the same way
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.5, 0.0]),
}
action = torch.tensor([1.0, -0.5])
transition = create_transition(
observation=observation,
action=action,
reward=1.0,
done=False,
truncated=False,
info={},
complementary_data={},
)
result1 = original_processor(transition)
result2 = new_processor(transition)
# Compare results
assert torch.allclose(
result1[TransitionKey.OBSERVATION][OBS_IMAGE],
result2[TransitionKey.OBSERVATION][OBS_IMAGE],
)
assert torch.allclose(result1[TransitionKey.ACTION], result2[TransitionKey.ACTION])
# Verify features and norm_map are correctly reconstructed
assert (
new_processor.transform_features(features).keys()
== original_processor.transform_features(features).keys()
)
for key in new_processor.transform_features(features):
assert (
new_processor.transform_features(features)[key].type
== original_processor.transform_features(features)[key].type
)
assert (
new_processor.transform_features(features)[key].shape
== original_processor.transform_features(features)[key].shape
)
assert new_processor.norm_map == original_processor.norm_map
# Identity normalization tests
def test_identity_normalization_observations():
"""Test that IDENTITY mode skips normalization for observations."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.IDENTITY, # IDENTITY mode
FeatureType.STATE: NormalizationMode.MEAN_STD, # Normal mode for comparison
}
stats = {
OBS_IMAGE: {"mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2]},
OBS_STATE: {"mean": [0.0, 0.0], "std": [1.0, 1.0]},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([1.0, -0.5]),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Image should remain unchanged (IDENTITY)
assert torch.allclose(normalized_obs[OBS_IMAGE], observation[OBS_IMAGE])
# State should be normalized (MEAN_STD)
expected_state = (torch.tensor([1.0, -0.5]) - torch.tensor([0.0, 0.0])) / torch.tensor([1.0, 1.0])
assert torch.allclose(normalized_obs[OBS_STATE], expected_state)
def test_identity_normalization_actions():
"""Test that IDENTITY mode skips normalization for actions."""
features = {ACTION: PolicyFeature(FeatureType.ACTION, (2,))}
norm_map = {FeatureType.ACTION: NormalizationMode.IDENTITY}
stats = {ACTION: {"mean": [0.0, 0.0], "std": [1.0, 2.0]}}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
action = torch.tensor([1.0, -0.5])
transition = create_transition(action=action)
normalized_transition = normalizer(transition)
# Action should remain unchanged
assert torch.allclose(normalized_transition[TransitionKey.ACTION], action)
def test_identity_unnormalization_observations():
"""Test that IDENTITY mode skips unnormalization for observations."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.IDENTITY, # IDENTITY mode
FeatureType.STATE: NormalizationMode.MIN_MAX, # Normal mode for comparison
}
stats = {
OBS_IMAGE: {"mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2]},
OBS_STATE: {"min": [-1.0, -1.0], "max": [1.0, 1.0]},
}
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.0, -1.0]), # Normalized values in [-1, 1]
}
transition = create_transition(observation=observation)
unnormalized_transition = unnormalizer(transition)
unnormalized_obs = unnormalized_transition[TransitionKey.OBSERVATION]
# Image should remain unchanged (IDENTITY)
assert torch.allclose(unnormalized_obs[OBS_IMAGE], observation[OBS_IMAGE])
# State should be unnormalized (MIN_MAX)
# (0.0 + 1) / 2 * (1.0 - (-1.0)) + (-1.0) = 0.0
# (-1.0 + 1) / 2 * (1.0 - (-1.0)) + (-1.0) = -1.0
expected_state = torch.tensor([0.0, -1.0])
assert torch.allclose(unnormalized_obs[OBS_STATE], expected_state)
def test_identity_unnormalization_actions():
"""Test that IDENTITY mode skips unnormalization for actions."""
features = {ACTION: PolicyFeature(FeatureType.ACTION, (2,))}
norm_map = {FeatureType.ACTION: NormalizationMode.IDENTITY}
stats = {ACTION: {"min": [-1.0, -2.0], "max": [1.0, 2.0]}}
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
action = torch.tensor([0.5, -0.8]) # Normalized values
transition = create_transition(action=action)
unnormalized_transition = unnormalizer(transition)
# Action should remain unchanged
assert torch.allclose(unnormalized_transition[TransitionKey.ACTION], action)
def test_identity_with_missing_stats():
"""Test that IDENTITY mode works even when stats are missing."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.IDENTITY,
FeatureType.ACTION: NormalizationMode.IDENTITY,
}
stats = {} # No stats provided
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3])}
action = torch.tensor([1.0, -0.5])
transition = create_transition(observation=observation, action=action)
# Both should work without errors and return unchanged data
normalized_transition = normalizer(transition)
unnormalized_transition = unnormalizer(transition)
assert torch.allclose(
normalized_transition[TransitionKey.OBSERVATION][OBS_IMAGE],
observation[OBS_IMAGE],
)
assert torch.allclose(normalized_transition[TransitionKey.ACTION], action)
assert torch.allclose(
unnormalized_transition[TransitionKey.OBSERVATION][OBS_IMAGE],
observation[OBS_IMAGE],
)
assert torch.allclose(unnormalized_transition[TransitionKey.ACTION], action)
def test_identity_mixed_with_other_modes():
"""Test IDENTITY mode mixed with other normalization modes."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3,)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.IDENTITY,
FeatureType.STATE: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MIN_MAX,
}
stats = {
OBS_IMAGE: {"mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2]}, # Will be ignored
OBS_STATE: {"mean": [0.0, 0.0], "std": [1.0, 1.0]},
ACTION: {"min": [-1.0, -1.0], "max": [1.0, 1.0]},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([1.0, -0.5]),
}
action = torch.tensor([0.5, 0.0])
transition = create_transition(observation=observation, action=action)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
normalized_action = normalized_transition[TransitionKey.ACTION]
# Image should remain unchanged (IDENTITY)
assert torch.allclose(normalized_obs[OBS_IMAGE], observation[OBS_IMAGE])
# State should be normalized (MEAN_STD)
expected_state = torch.tensor([1.0, -0.5]) # (x - 0) / 1 = x
assert torch.allclose(normalized_obs[OBS_STATE], expected_state)
# Action should be normalized (MIN_MAX) to [-1, 1]
# 2 * (0.5 - (-1)) / (1 - (-1)) - 1 = 2 * 1.5 / 2 - 1 = 0.5
# 2 * (0.0 - (-1)) / (1 - (-1)) - 1 = 2 * 1.0 / 2 - 1 = 0.0
expected_action = torch.tensor([0.5, 0.0])
assert torch.allclose(normalized_action, expected_action)
def test_identity_defaults_when_not_in_norm_map():
"""Test that IDENTITY is used as default when feature type not in norm_map."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3,)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
}
norm_map = {
FeatureType.STATE: NormalizationMode.MEAN_STD,
# VISUAL not specified, should default to IDENTITY
}
stats = {
OBS_IMAGE: {"mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2]},
OBS_STATE: {"mean": [0.0, 0.0], "std": [1.0, 1.0]},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([1.0, -0.5]),
}
transition = create_transition(observation=observation)
normalized_transition = normalizer(transition)
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
# Image should remain unchanged (defaults to IDENTITY)
assert torch.allclose(normalized_obs[OBS_IMAGE], observation[OBS_IMAGE])
# State should be normalized (explicitly MEAN_STD)
expected_state = torch.tensor([1.0, -0.5])
assert torch.allclose(normalized_obs[OBS_STATE], expected_state)
def test_identity_roundtrip():
"""Test that IDENTITY normalization and unnormalization are true inverses."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.IDENTITY,
FeatureType.ACTION: NormalizationMode.IDENTITY,
}
stats = {
OBS_IMAGE: {"mean": [0.5, 0.5, 0.5], "std": [0.2, 0.2, 0.2]},
ACTION: {"min": [-1.0, -1.0], "max": [1.0, 1.0]},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
original_observation = {OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3])}
original_action = torch.tensor([0.5, -0.2])
original_transition = create_transition(observation=original_observation, action=original_action)
# Normalize then unnormalize
normalized = normalizer(original_transition)
roundtrip = unnormalizer(normalized)
# Should be identical to original
assert torch.allclose(roundtrip[TransitionKey.OBSERVATION][OBS_IMAGE], original_observation[OBS_IMAGE])
assert torch.allclose(roundtrip[TransitionKey.ACTION], original_action)
def test_identity_config_serialization():
"""Test that IDENTITY mode is properly saved and loaded in config."""
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.IDENTITY,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
stats = {
OBS_IMAGE: {"mean": [0.5], "std": [0.2]},
ACTION: {"mean": [0.0, 0.0], "std": [1.0, 1.0]},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
# Get config
config = normalizer.get_config()
# Check that IDENTITY is properly serialized
assert config["norm_map"]["VISUAL"] == "IDENTITY"
assert config["norm_map"]["ACTION"] == "MEAN_STD"
# Create new processor from config (simulating load)
new_normalizer = NormalizerProcessorStep(
features=config["features"],
norm_map=config["norm_map"],
stats=stats,
eps=config["eps"],
)
# Test that both work the same way
observation = {OBS_IMAGE: torch.tensor([0.7])}
action = torch.tensor([1.0, -0.5])
transition = create_transition(observation=observation, action=action)
result1 = normalizer(transition)
result2 = new_normalizer(transition)
# Results should be identical
assert torch.allclose(
result1[TransitionKey.OBSERVATION][OBS_IMAGE],
result2[TransitionKey.OBSERVATION][OBS_IMAGE],
)
assert torch.allclose(result1[TransitionKey.ACTION], result2[TransitionKey.ACTION])
# def test_unsupported_normalization_mode_error():
# """Test that unsupported normalization modes raise appropriate errors."""
# features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (2,))}
# # Create an invalid norm_map (this would never happen in practice, but tests error handling)
# from enum import Enum
# class InvalidMode(str, Enum):
# INVALID = "INVALID"
# # We can't actually pass an invalid enum to the processor due to type checking,
# # but we can test the error by manipulating the norm_map after creation
# norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD}
# stats = {OBS_STATE: {"mean": [0.0, 0.0], "std": [1.0, 1.0]}}
# normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
# # Manually inject an invalid mode to test error handling
# normalizer.norm_map[FeatureType.STATE] = "INVALID_MODE"
# observation = {OBS_STATE: torch.tensor([1.0, -0.5])}
# transition = create_transition(observation=observation)
# with pytest.raises(ValueError, match="Unsupported normalization mode"):
# normalizer(transition)
def test_hotswap_stats_basic_functionality():
"""Test that hotswap_stats correctly updates stats in normalizer/unnormalizer steps."""
# Create initial stats
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5, 0.5, 0.5]), "std": np.array([0.2, 0.2, 0.2])},
ACTION: {"mean": np.array([0.0, 0.0]), "std": np.array([1.0, 1.0])},
}
# Create new stats for hotswapping
new_stats = {
OBS_IMAGE: {"mean": np.array([0.3, 0.3, 0.3]), "std": np.array([0.1, 0.1, 0.1])},
ACTION: {"mean": np.array([0.1, 0.1]), "std": np.array([0.5, 0.5])},
}
# Create features and norm_map
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
# Create processors
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
identity = IdentityProcessorStep()
# Create robot processor
robot_processor = DataProcessorPipeline(steps=[normalizer, unnormalizer, identity])
# Hotswap stats
new_processor = hotswap_stats(robot_processor, new_stats)
# Check that normalizer and unnormalizer have new stats
assert new_processor.steps[0].stats == new_stats
assert new_processor.steps[1].stats == new_stats
# Check that tensor stats are updated correctly
expected_tensor_stats = to_tensor(new_stats)
for key in expected_tensor_stats:
for stat_name in expected_tensor_stats[key]:
torch.testing.assert_close(
new_processor.steps[0]._tensor_stats[key][stat_name], expected_tensor_stats[key][stat_name]
)
torch.testing.assert_close(
new_processor.steps[1]._tensor_stats[key][stat_name], expected_tensor_stats[key][stat_name]
)
def test_hotswap_stats_deep_copy():
"""Test that hotswap_stats creates a deep copy and doesn't modify the original processor."""
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5, 0.5, 0.5]), "std": np.array([0.2, 0.2, 0.2])},
}
new_stats = {
OBS_IMAGE: {"mean": np.array([0.3, 0.3, 0.3]), "std": np.array([0.1, 0.1, 0.1])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
original_processor = DataProcessorPipeline(steps=[normalizer])
# Store reference to original stats
original_stats_reference = original_processor.steps[0].stats
original_tensor_stats_reference = original_processor.steps[0]._tensor_stats
# Hotswap stats
new_processor = hotswap_stats(original_processor, new_stats)
# Original processor should be unchanged
assert original_processor.steps[0].stats is original_stats_reference
assert original_processor.steps[0]._tensor_stats is original_tensor_stats_reference
assert original_processor.steps[0].stats == initial_stats
# New processor should have new stats
assert new_processor.steps[0].stats == new_stats
assert new_processor.steps[0].stats is not original_stats_reference
# Processors should be different objects
assert new_processor is not original_processor
assert new_processor.steps[0] is not original_processor.steps[0]
def test_hotswap_stats_only_affects_normalizer_steps():
"""Test that hotswap_stats only modifies NormalizerProcessorStep and UnnormalizerProcessorStep steps."""
stats = {
OBS_IMAGE: {"mean": np.array([0.5]), "std": np.array([0.2])},
}
new_stats = {
OBS_IMAGE: {"mean": np.array([0.3]), "std": np.array([0.1])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
# Create mixed steps
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
identity = IdentityProcessorStep()
robot_processor = DataProcessorPipeline(steps=[normalizer, identity, unnormalizer])
# Hotswap stats
new_processor = hotswap_stats(robot_processor, new_stats)
# Check that only normalizer and unnormalizer steps are affected
assert new_processor.steps[0].stats == new_stats # normalizer
assert new_processor.steps[2].stats == new_stats # unnormalizer
# Identity processor should remain unchanged (and it doesn't have stats attribute)
assert not hasattr(new_processor.steps[1], "stats")
def test_hotswap_stats_empty_stats():
"""Test hotswap_stats with empty stats dictionary."""
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5]), "std": np.array([0.2])},
}
empty_stats = {}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
robot_processor = DataProcessorPipeline(steps=[normalizer])
# Hotswap with empty stats
new_processor = hotswap_stats(robot_processor, empty_stats)
# Should update to empty stats
assert new_processor.steps[0].stats == empty_stats
assert new_processor.steps[0]._tensor_stats == {}
def test_hotswap_stats_no_normalizer_steps():
"""Test hotswap_stats with a processor that has no normalizer/unnormalizer steps."""
stats = {
OBS_IMAGE: {"mean": np.array([0.5]), "std": np.array([0.2])},
}
# Create processor with only identity steps
robot_processor = DataProcessorPipeline(steps=[IdentityProcessorStep(), IdentityProcessorStep()])
# Hotswap stats - should work without error
new_processor = hotswap_stats(robot_processor, stats)
# Should return a different object (deep copy)
assert new_processor is not robot_processor
# Steps should be deep copied but unchanged
assert len(new_processor.steps) == len(robot_processor.steps)
for i, step in enumerate(new_processor.steps):
assert step is not robot_processor.steps[i] # Different objects
assert isinstance(step, type(robot_processor.steps[i])) # Same type
def test_hotswap_stats_preserves_other_attributes():
"""Test that hotswap_stats preserves other processor attributes like features and norm_map."""
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5]), "std": np.array([0.2])},
}
new_stats = {
OBS_IMAGE: {"mean": np.array([0.3]), "std": np.array([0.1])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
normalize_observation_keys = {OBS_IMAGE}
eps = 1e-6
normalizer = NormalizerProcessorStep(
features=features,
norm_map=norm_map,
stats=initial_stats,
normalize_observation_keys=normalize_observation_keys,
eps=eps,
)
robot_processor = DataProcessorPipeline(steps=[normalizer])
# Hotswap stats
new_processor = hotswap_stats(robot_processor, new_stats)
# Check that other attributes are preserved
new_normalizer = new_processor.steps[0]
assert new_normalizer.features == features
assert new_normalizer.norm_map == norm_map
assert new_normalizer.normalize_observation_keys == normalize_observation_keys
assert new_normalizer.eps == eps
# But stats should be updated
assert new_normalizer.stats == new_stats
def test_hotswap_stats_multiple_normalizer_types():
"""Test hotswap_stats with multiple normalizer and unnormalizer steps."""
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5]), "std": np.array([0.2])},
ACTION: {"min": np.array([-1.0]), "max": np.array([1.0])},
}
new_stats = {
OBS_IMAGE: {"mean": np.array([0.3]), "std": np.array([0.1])},
ACTION: {"min": np.array([-2.0]), "max": np.array([2.0])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(1,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MIN_MAX,
}
# Create multiple normalizers and unnormalizers
normalizer1 = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
normalizer2 = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
unnormalizer1 = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
unnormalizer2 = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
robot_processor = DataProcessorPipeline(steps=[normalizer1, unnormalizer1, normalizer2, unnormalizer2])
# Hotswap stats
new_processor = hotswap_stats(robot_processor, new_stats)
# All normalizer/unnormalizer steps should be updated
for step in new_processor.steps:
assert step.stats == new_stats
# Check tensor stats conversion
expected_tensor_stats = to_tensor(new_stats)
for key in expected_tensor_stats:
for stat_name in expected_tensor_stats[key]:
torch.testing.assert_close(
step._tensor_stats[key][stat_name], expected_tensor_stats[key][stat_name]
)
def test_hotswap_stats_with_different_data_types():
"""Test hotswap_stats with various data types in stats."""
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5]), "std": np.array([0.2])},
}
# New stats with different data types (int, float, list, tuple)
new_stats = {
OBS_IMAGE: {
"mean": [0.3, 0.4, 0.5], # list
"std": (0.1, 0.2, 0.3), # tuple
"min": 0, # int
"max": 1.0, # float
},
ACTION: {
"mean": np.array([0.1, 0.2]), # numpy array
"std": torch.tensor([0.5, 0.6]), # torch tensor
},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
robot_processor = DataProcessorPipeline(steps=[normalizer])
# Hotswap stats
new_processor = hotswap_stats(robot_processor, new_stats)
# Check that stats are updated
assert new_processor.steps[0].stats == new_stats
# Check that tensor conversion worked correctly
tensor_stats = new_processor.steps[0]._tensor_stats
assert isinstance(tensor_stats[OBS_IMAGE]["mean"], torch.Tensor)
assert isinstance(tensor_stats[OBS_IMAGE]["std"], torch.Tensor)
assert isinstance(tensor_stats[OBS_IMAGE]["min"], torch.Tensor)
assert isinstance(tensor_stats[OBS_IMAGE]["max"], torch.Tensor)
assert isinstance(tensor_stats[ACTION]["mean"], torch.Tensor)
assert isinstance(tensor_stats[ACTION]["std"], torch.Tensor)
# Check values
torch.testing.assert_close(tensor_stats[OBS_IMAGE]["mean"], torch.tensor([0.3, 0.4, 0.5]))
torch.testing.assert_close(tensor_stats[OBS_IMAGE]["std"], torch.tensor([0.1, 0.2, 0.3]))
torch.testing.assert_close(tensor_stats[OBS_IMAGE]["min"], torch.tensor(0.0))
torch.testing.assert_close(tensor_stats[OBS_IMAGE]["max"], torch.tensor(1.0))
def test_hotswap_stats_functional_test():
"""Test that hotswapped processor actually works functionally."""
# Create test data
observation = {
OBS_IMAGE: torch.tensor([[[0.6, 0.7], [0.8, 0.9]], [[0.5, 0.6], [0.7, 0.8]]]),
}
action = torch.tensor([0.5, -0.5])
transition = create_transition(observation=observation, action=action)
# Initial stats
initial_stats = {
OBS_IMAGE: {"mean": np.array([0.5, 0.4]), "std": np.array([0.2, 0.3])},
ACTION: {"mean": np.array([0.0, 0.0]), "std": np.array([1.0, 1.0])},
}
# New stats
new_stats = {
OBS_IMAGE: {"mean": np.array([0.3, 0.2]), "std": np.array([0.1, 0.2])},
ACTION: {"mean": np.array([0.1, -0.1]), "std": np.array([0.5, 0.5])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(2, 2, 2)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
# Create original processor
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=initial_stats)
original_processor = DataProcessorPipeline(
steps=[normalizer], to_transition=identity_transition, to_output=identity_transition
)
# Process with original stats
original_result = original_processor(transition)
# Hotswap stats
new_processor = hotswap_stats(original_processor, new_stats)
# Process with new stats
new_result = new_processor(transition)
# Results should be different since normalization changed
assert not torch.allclose(
original_result[OBS_STR][OBS_IMAGE],
new_result[OBS_STR][OBS_IMAGE],
rtol=1e-3,
atol=1e-3,
)
assert not torch.allclose(original_result[ACTION], new_result[ACTION], rtol=1e-3, atol=1e-3)
# Verify that the new processor is actually using the new stats by checking internal state
assert new_processor.steps[0].stats == new_stats
assert torch.allclose(new_processor.steps[0]._tensor_stats[OBS_IMAGE]["mean"], torch.tensor([0.3, 0.2]))
assert torch.allclose(new_processor.steps[0]._tensor_stats[OBS_IMAGE]["std"], torch.tensor([0.1, 0.2]))
assert torch.allclose(new_processor.steps[0]._tensor_stats[ACTION]["mean"], torch.tensor([0.1, -0.1]))
assert torch.allclose(new_processor.steps[0]._tensor_stats[ACTION]["std"], torch.tensor([0.5, 0.5]))
# Test that normalization actually happens (output should not equal input)
assert not torch.allclose(new_result[OBS_STR][OBS_IMAGE], observation[OBS_IMAGE])
assert not torch.allclose(new_result[ACTION], action)
def test_zero_std_uses_eps():
"""When std == 0, (x-mean)/(std+eps) is well-defined; x==mean should map to 0."""
features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (1,))}
norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD}
stats = {OBS_STATE: {"mean": np.array([0.5]), "std": np.array([0.0])}}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats, eps=1e-6)
observation = {OBS_STATE: torch.tensor([0.5])} # equals mean
out = normalizer(create_transition(observation=observation))
assert torch.allclose(out[TransitionKey.OBSERVATION][OBS_STATE], torch.tensor([0.0]))
def test_min_equals_max_maps_to_minus_one():
"""When min == max, MIN_MAX path maps to -1 after [-1,1] scaling for x==min."""
features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (1,))}
norm_map = {FeatureType.STATE: NormalizationMode.MIN_MAX}
stats = {OBS_STATE: {"min": np.array([2.0]), "max": np.array([2.0])}}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats, eps=1e-6)
observation = {OBS_STATE: torch.tensor([2.0])}
out = normalizer(create_transition(observation=observation))
assert torch.allclose(out[TransitionKey.OBSERVATION][OBS_STATE], torch.tensor([-1.0]))
def test_action_normalized_despite_normalize_observation_keys():
"""Action normalization is independent of normalize_observation_keys filter for observations."""
features = {
OBS_STATE: PolicyFeature(FeatureType.STATE, (1,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {FeatureType.STATE: NormalizationMode.IDENTITY, FeatureType.ACTION: NormalizationMode.MEAN_STD}
stats = {ACTION: {"mean": np.array([1.0, -1.0]), "std": np.array([2.0, 4.0])}}
normalizer = NormalizerProcessorStep(
features=features, norm_map=norm_map, stats=stats, normalize_observation_keys={OBS_STATE}
)
transition = create_transition(
observation={OBS_STATE: torch.tensor([3.0])}, action=torch.tensor([3.0, 3.0])
)
out = normalizer(transition)
# (3-1)/2 = 1.0 ; (3-(-1))/4 = 1.0
assert torch.allclose(out[TransitionKey.ACTION], torch.tensor([1.0, 1.0]))
def test_unnormalize_observations_mean_std_and_min_max():
features = {
"observation.ms": PolicyFeature(FeatureType.STATE, (2,)),
"observation.mm": PolicyFeature(FeatureType.STATE, (2,)),
}
# Build two processors: one mean/std and one min/max
unnorm_ms = UnnormalizerProcessorStep(
features={"observation.ms": features["observation.ms"]},
norm_map={FeatureType.STATE: NormalizationMode.MEAN_STD},
stats={"observation.ms": {"mean": np.array([1.0, -1.0]), "std": np.array([2.0, 4.0])}},
)
unnorm_mm = UnnormalizerProcessorStep(
features={"observation.mm": features["observation.mm"]},
norm_map={FeatureType.STATE: NormalizationMode.MIN_MAX},
stats={"observation.mm": {"min": np.array([0.0, -2.0]), "max": np.array([2.0, 2.0])}},
)
tr = create_transition(
observation={
"observation.ms": torch.tensor([0.0, 0.0]), # → mean
"observation.mm": torch.tensor([0.0, 0.0]), # → mid-point
}
)
out_ms = unnorm_ms(tr)[TransitionKey.OBSERVATION]["observation.ms"]
out_mm = unnorm_mm(tr)[TransitionKey.OBSERVATION]["observation.mm"]
assert torch.allclose(out_ms, torch.tensor([1.0, -1.0]))
assert torch.allclose(out_mm, torch.tensor([1.0, 0.0])) # mid of [0,2] and [-2,2]
def test_unknown_observation_keys_ignored():
features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (1,))}
norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD}
stats = {OBS_STATE: {"mean": np.array([0.0]), "std": np.array([1.0])}}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
obs = {OBS_STATE: torch.tensor([1.0]), "observation.unknown": torch.tensor([5.0])}
tr = create_transition(observation=obs)
out = normalizer(tr)
# Unknown key should pass through unchanged and not be tracked
assert torch.allclose(out[TransitionKey.OBSERVATION]["observation.unknown"], obs["observation.unknown"])
def test_batched_action_normalization():
features = {ACTION: PolicyFeature(FeatureType.ACTION, (2,))}
norm_map = {FeatureType.ACTION: NormalizationMode.MEAN_STD}
stats = {ACTION: {"mean": np.array([1.0, -1.0]), "std": np.array([2.0, 4.0])}}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
actions = torch.tensor([[1.0, -1.0], [3.0, 3.0]]) # first equals mean → zeros; second → [1, 1]
out = normalizer(create_transition(action=actions))[TransitionKey.ACTION]
expected = torch.tensor([[0.0, 0.0], [1.0, 1.0]])
assert torch.allclose(out, expected)
def test_complementary_data_preservation():
features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (1,))}
norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD}
stats = {OBS_STATE: {"mean": np.array([0.0]), "std": np.array([1.0])}}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
comp = {"existing": 123}
tr = create_transition(observation={OBS_STATE: torch.tensor([1.0])}, complementary_data=comp)
out = normalizer(tr)
new_comp = out[TransitionKey.COMPLEMENTARY_DATA]
assert new_comp["existing"] == 123
def test_roundtrip_normalize_unnormalize_non_identity():
features = {
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD, FeatureType.ACTION: NormalizationMode.MIN_MAX}
stats = {
OBS_STATE: {"mean": np.array([1.0, -1.0]), "std": np.array([2.0, 4.0])},
ACTION: {"min": np.array([-2.0, 0.0]), "max": np.array([2.0, 4.0])},
}
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
unnormalizer = UnnormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
# Add a time dimension in action for broadcasting check (B,T,D)
obs = {OBS_STATE: torch.tensor([[3.0, 3.0], [1.0, -1.0]])}
act = torch.tensor([[[0.0, -1.0], [1.0, 1.0]]]) # shape (1,2,2) already in [-1,1]
tr = create_transition(observation=obs, action=act)
out = unnormalizer(normalizer(tr))
assert torch.allclose(out[TransitionKey.OBSERVATION][OBS_STATE], obs[OBS_STATE], atol=1e-5)
assert torch.allclose(out[TransitionKey.ACTION], act, atol=1e-5)
def test_dtype_adaptation_bfloat16_input_float32_normalizer():
"""Test automatic dtype adaptation: NormalizerProcessor(float32) adapts to bfloat16 input → bfloat16 output"""
features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (5,))}
norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD}
stats = {
OBS_STATE: {
"mean": np.array([0.0, 0.0, 0.0, 0.0, 0.0]),
"std": np.array([1.0, 1.0, 1.0, 1.0, 1.0]),
}
}
# Create normalizer configured with float32 dtype
normalizer = NormalizerProcessorStep(
features=features, norm_map=norm_map, stats=stats, dtype=torch.float32
)
# Verify initial configuration
assert normalizer.dtype == torch.float32
for stat_tensor in normalizer._tensor_stats[OBS_STATE].values():
assert stat_tensor.dtype == torch.float32
# Create bfloat16 input tensor
observation = {OBS_STATE: torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0], dtype=torch.bfloat16)}
transition = create_transition(observation=observation)
# Process the transition
result = normalizer(transition)
# Verify that:
# 1. Stats were automatically adapted to bfloat16
assert normalizer.dtype == torch.bfloat16
for stat_tensor in normalizer._tensor_stats[OBS_STATE].values():
assert stat_tensor.dtype == torch.bfloat16
# 2. Output is in bfloat16
output_tensor = result[TransitionKey.OBSERVATION][OBS_STATE]
assert output_tensor.dtype == torch.bfloat16
# 3. Normalization was applied correctly (mean should be close to original - mean) / std
expected = (
torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0], dtype=torch.bfloat16)
- torch.tensor([0.0, 0.0, 0.0, 0.0, 0.0], dtype=torch.bfloat16)
) / torch.tensor([1.0, 1.0, 1.0, 1.0, 1.0], dtype=torch.bfloat16)
assert torch.allclose(output_tensor, expected, atol=1e-2) # bfloat16 has lower precision
def test_stats_override_preservation_in_load_state_dict():
"""
Test that explicitly provided stats are preserved during load_state_dict.
This tests the fix for the bug where stats provided via overrides were
being overwritten when load_state_dict was called.
"""
# Create original stats
original_stats = {
OBS_IMAGE: {"mean": np.array([0.5, 0.5, 0.5]), "std": np.array([0.2, 0.2, 0.2])},
ACTION: {"mean": np.array([0.0, 0.0]), "std": np.array([1.0, 1.0])},
}
# Create override stats (what user wants to use)
override_stats = {
OBS_IMAGE: {"mean": np.array([0.3, 0.3, 0.3]), "std": np.array([0.1, 0.1, 0.1])},
ACTION: {"mean": np.array([0.1, 0.1]), "std": np.array([0.5, 0.5])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
# Create a normalizer with original stats and save its state
original_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=original_stats)
saved_state_dict = original_normalizer.state_dict()
# Create a new normalizer with override stats (simulating from_pretrained with overrides)
override_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=override_stats)
# Verify that the override stats are initially set correctly
assert set(override_normalizer.stats.keys()) == set(override_stats.keys())
for key in override_stats:
assert set(override_normalizer.stats[key].keys()) == set(override_stats[key].keys())
for stat_name in override_stats[key]:
np.testing.assert_array_equal(
override_normalizer.stats[key][stat_name], override_stats[key][stat_name]
)
assert override_normalizer._stats_explicitly_provided is True
# This is the critical test: load_state_dict should NOT overwrite the override stats
override_normalizer.load_state_dict(saved_state_dict)
# After loading state_dict, stats should still be the override stats, not the original stats
# Check that loaded stats match override stats
assert set(override_normalizer.stats.keys()) == set(override_stats.keys())
for key in override_stats:
assert set(override_normalizer.stats[key].keys()) == set(override_stats[key].keys())
for stat_name in override_stats[key]:
np.testing.assert_array_equal(
override_normalizer.stats[key][stat_name], override_stats[key][stat_name]
)
# Compare individual arrays to avoid numpy array comparison ambiguity
for key in override_stats:
for stat_name in override_stats[key]:
assert not np.array_equal(
override_normalizer.stats[key][stat_name], original_stats[key][stat_name]
), f"Stats for {key}.{stat_name} should not match original stats"
# Verify that _tensor_stats are also correctly set to match the override stats
expected_tensor_stats = to_tensor(override_stats)
for key in expected_tensor_stats:
for stat_name in expected_tensor_stats[key]:
if isinstance(expected_tensor_stats[key][stat_name], torch.Tensor):
torch.testing.assert_close(
override_normalizer._tensor_stats[key][stat_name], expected_tensor_stats[key][stat_name]
)
def test_stats_without_override_loads_normally():
"""
Test that when stats are not explicitly provided (normal case),
load_state_dict works as before.
"""
original_stats = {
OBS_IMAGE: {"mean": np.array([0.5, 0.5, 0.5]), "std": np.array([0.2, 0.2, 0.2])},
ACTION: {"mean": np.array([0.0, 0.0]), "std": np.array([1.0, 1.0])},
}
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
# Create a normalizer with original stats and save its state
original_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=original_stats)
saved_state_dict = original_normalizer.state_dict()
# Create a new normalizer without stats (simulating normal from_pretrained)
new_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats={})
# Verify that stats are not explicitly provided
assert new_normalizer._stats_explicitly_provided is False
# Load state dict - this should work normally and load the saved stats
new_normalizer.load_state_dict(saved_state_dict)
# Stats should now match the original stats (normal behavior)
# Check that all keys and values match
assert set(new_normalizer.stats.keys()) == set(original_stats.keys())
for key in original_stats:
assert set(new_normalizer.stats[key].keys()) == set(original_stats[key].keys())
for stat_name in original_stats[key]:
np.testing.assert_allclose(
new_normalizer.stats[key][stat_name], original_stats[key][stat_name], rtol=1e-6, atol=1e-6
)
def test_stats_explicit_provided_flag_detection():
"""Test that the _stats_explicitly_provided flag is set correctly in different scenarios."""
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 128, 128)),
}
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
# Test 1: Explicitly provided stats (non-empty dict)
stats = {OBS_IMAGE: {"mean": [0.5], "std": [0.2]}}
normalizer1 = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
assert normalizer1._stats_explicitly_provided is True
# Test 2: Empty stats dict
normalizer2 = NormalizerProcessorStep(features=features, norm_map=norm_map, stats={})
assert normalizer2._stats_explicitly_provided is False
# Test 3: None stats
normalizer3 = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=None)
assert normalizer3._stats_explicitly_provided is False
# Test 4: Stats not provided (defaults to None)
normalizer4 = NormalizerProcessorStep(features=features, norm_map=norm_map)
assert normalizer4._stats_explicitly_provided is False
def test_pipeline_from_pretrained_with_stats_overrides():
"""
Test the actual use case: DataProcessorPipeline.from_pretrained with stat overrides.
This is an integration test that verifies the fix works in the real scenario
where users provide stat overrides when loading a pipeline.
"""
import tempfile
# Create test data
features = {
OBS_IMAGE: PolicyFeature(type=FeatureType.VISUAL, shape=(3, 32, 32)),
ACTION: PolicyFeature(type=FeatureType.ACTION, shape=(2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
original_stats = {
OBS_IMAGE: {"mean": np.array([0.5, 0.5, 0.5]), "std": np.array([0.2, 0.2, 0.2])},
ACTION: {"mean": np.array([0.0, 0.0]), "std": np.array([1.0, 1.0])},
}
override_stats = {
OBS_IMAGE: {"mean": np.array([0.3, 0.3, 0.3]), "std": np.array([0.1, 0.1, 0.1])},
ACTION: {"mean": np.array([0.1, 0.1]), "std": np.array([0.5, 0.5])},
}
# Create and save a pipeline with the original stats
normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=original_stats)
identity = IdentityProcessorStep()
original_pipeline = DataProcessorPipeline(steps=[normalizer, identity], name="test_pipeline")
with tempfile.TemporaryDirectory() as temp_dir:
# Save the pipeline
original_pipeline.save_pretrained(temp_dir)
# Load the pipeline with stat overrides
overrides = {"normalizer_processor": {"stats": override_stats}}
loaded_pipeline = DataProcessorPipeline.from_pretrained(
temp_dir, config_filename="test_pipeline.json", overrides=overrides
)
# The critical test: the loaded pipeline should use override stats, not original stats
loaded_normalizer = loaded_pipeline.steps[0]
assert isinstance(loaded_normalizer, NormalizerProcessorStep)
# Check that loaded stats match override stats
assert set(loaded_normalizer.stats.keys()) == set(override_stats.keys())
for key in override_stats:
assert set(loaded_normalizer.stats[key].keys()) == set(override_stats[key].keys())
for stat_name in override_stats[key]:
np.testing.assert_array_equal(
loaded_normalizer.stats[key][stat_name], override_stats[key][stat_name]
)
# Verify stats don't match original stats
for key in override_stats:
for stat_name in override_stats[key]:
assert not np.array_equal(
loaded_normalizer.stats[key][stat_name], original_stats[key][stat_name]
), f"Stats for {key}.{stat_name} should not match original stats"
# Test that the override stats are actually used in processing
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
}
action = torch.tensor([1.0, -0.5])
transition = create_transition(observation=observation, action=action)
# Process with override pipeline
override_result = loaded_pipeline(transition)
# Create a reference pipeline with override stats for comparison
reference_normalizer = NormalizerProcessorStep(
features=features, norm_map=norm_map, stats=override_stats
)
reference_pipeline = DataProcessorPipeline(
steps=[reference_normalizer, identity],
to_transition=identity_transition,
to_output=identity_transition,
)
_ = reference_pipeline(transition)
# The critical part was verified above: loaded_normalizer.stats == override_stats
# This confirms that override stats are preserved during load_state_dict.
# Let's just verify the pipeline processes data successfully.
assert ACTION in override_result
assert isinstance(override_result[ACTION], torch.Tensor)
def test_dtype_adaptation_device_processor_bfloat16_normalizer_float32():
"""Test policy pipeline scenario: DeviceProcessor(bfloat16) + NormalizerProcessor(float32) → bfloat16 output"""
from lerobot.processor import DeviceProcessorStep
features = {OBS_STATE: PolicyFeature(FeatureType.STATE, (3,))}
norm_map = {FeatureType.STATE: NormalizationMode.MEAN_STD}
stats = {OBS_STATE: {"mean": np.array([0.0, 0.0, 0.0]), "std": np.array([1.0, 1.0, 1.0])}}
# Create pipeline: DeviceProcessor(bfloat16) → NormalizerProcessor(float32)
device_processor = DeviceProcessorStep(device=str(auto_select_torch_device()), float_dtype="bfloat16")
normalizer = NormalizerProcessorStep(
features=features, norm_map=norm_map, stats=stats, dtype=torch.float32
)
# Verify initial normalizer configuration
assert normalizer.dtype == torch.float32
# Create CPU input
observation = {OBS_STATE: torch.tensor([1.0, 2.0, 3.0], dtype=torch.float32)}
transition = create_transition(observation=observation)
# Step 1: DeviceProcessor converts to bfloat16 + moves to CUDA
processed_1 = device_processor(transition)
intermediate_tensor = processed_1[TransitionKey.OBSERVATION][OBS_STATE]
assert intermediate_tensor.dtype == torch.bfloat16
assert intermediate_tensor.device.type == str(auto_select_torch_device())
# Step 2: NormalizerProcessor receives bfloat16 input and adapts
final_result = normalizer(processed_1)
final_tensor = final_result[TransitionKey.OBSERVATION][OBS_STATE]
# Verify final output is bfloat16 (automatic adaptation worked)
assert final_tensor.dtype == torch.bfloat16
assert final_tensor.device.type == str(auto_select_torch_device())
# Verify normalizer adapted its internal state
assert normalizer.dtype == torch.bfloat16
for stat_tensor in normalizer._tensor_stats[OBS_STATE].values():
assert stat_tensor.dtype == torch.bfloat16
assert stat_tensor.device.type == str(auto_select_torch_device())
def test_stats_reconstruction_after_load_state_dict():
"""
Test that stats dict is properly reconstructed from _tensor_stats after loading.
This test ensures the bug where stats became empty after loading is fixed.
The bug occurred when:
1. Only _tensor_stats were saved via state_dict()
2. stats field became empty {} after loading
3. Calling to() method or hotswap_stats would fail because they depend on self.stats
"""
# Create normalizer with stats
features = {
OBS_IMAGE: PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
OBS_STATE: PolicyFeature(FeatureType.STATE, (2,)),
ACTION: PolicyFeature(FeatureType.ACTION, (2,)),
}
norm_map = {
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
FeatureType.STATE: NormalizationMode.MIN_MAX,
FeatureType.ACTION: NormalizationMode.MEAN_STD,
}
stats = {
OBS_IMAGE: {
"mean": np.array([0.5, 0.5, 0.5]),
"std": np.array([0.2, 0.2, 0.2]),
},
OBS_STATE: {
"min": np.array([0.0, -1.0]),
"max": np.array([1.0, 1.0]),
},
ACTION: {
"mean": np.array([0.0, 0.0]),
"std": np.array([1.0, 2.0]),
},
}
original_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats=stats)
# Save state dict (simulating save/load)
state_dict = original_normalizer.state_dict()
# Create new normalizer with empty stats (simulating load)
new_normalizer = NormalizerProcessorStep(features=features, norm_map=norm_map, stats={})
# Before fix: this would cause stats to remain empty
new_normalizer.load_state_dict(state_dict)
# Verify that stats dict is properly reconstructed from _tensor_stats
assert new_normalizer.stats is not None
assert new_normalizer.stats != {}
# Check that all expected keys are present
assert OBS_IMAGE in new_normalizer.stats
assert OBS_STATE in new_normalizer.stats
assert ACTION in new_normalizer.stats
# Check that values are correct (converted back from tensors)
np.testing.assert_allclose(new_normalizer.stats[OBS_IMAGE]["mean"], [0.5, 0.5, 0.5])
np.testing.assert_allclose(new_normalizer.stats[OBS_IMAGE]["std"], [0.2, 0.2, 0.2])
np.testing.assert_allclose(new_normalizer.stats[OBS_STATE]["min"], [0.0, -1.0])
np.testing.assert_allclose(new_normalizer.stats[OBS_STATE]["max"], [1.0, 1.0])
np.testing.assert_allclose(new_normalizer.stats[ACTION]["mean"], [0.0, 0.0])
np.testing.assert_allclose(new_normalizer.stats[ACTION]["std"], [1.0, 2.0])
# Test that methods that depend on self.stats work correctly after loading
# This would fail before the bug fix because self.stats was empty
# Test 1: to() method should work without crashing
try:
new_normalizer.to(device="cpu", dtype=torch.float32)
# If we reach here, the bug is fixed
except (KeyError, AttributeError) as e:
pytest.fail(f"to() method failed after loading state_dict: {e}")
# Test 2: hotswap_stats should work
new_stats = {
OBS_IMAGE: {"mean": [0.3, 0.3, 0.3], "std": [0.1, 0.1, 0.1]},
OBS_STATE: {"min": [-1.0, -2.0], "max": [2.0, 2.0]},
ACTION: {"mean": [0.1, 0.1], "std": [0.5, 0.5]},
}
pipeline = DataProcessorPipeline([new_normalizer])
try:
new_pipeline = hotswap_stats(pipeline, new_stats)
# If we reach here, hotswap_stats worked correctly
assert new_pipeline.steps[0].stats == new_stats
except (KeyError, AttributeError) as e:
pytest.fail(f"hotswap_stats failed after loading state_dict: {e}")
# Test 3: The normalizer should work functionally the same as the original
observation = {
OBS_IMAGE: torch.tensor([0.7, 0.5, 0.3]),
OBS_STATE: torch.tensor([0.5, 0.0]),
}
action = torch.tensor([1.0, -0.5])
transition = create_transition(observation=observation, action=action)
original_result = original_normalizer(transition)
new_result = new_normalizer(transition)
# Results should be identical (within floating point precision)
torch.testing.assert_close(
original_result[TransitionKey.OBSERVATION][OBS_IMAGE],
new_result[TransitionKey.OBSERVATION][OBS_IMAGE],
)
torch.testing.assert_close(
original_result[TransitionKey.OBSERVATION][OBS_STATE],
new_result[TransitionKey.OBSERVATION][OBS_STATE],
)
torch.testing.assert_close(original_result[TransitionKey.ACTION], new_result[TransitionKey.ACTION])