patrickvonplaten
commited on
Commit
·
9794ca5
1
Parent(s):
7eb5c5a
up
Browse files
run.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import torch
|
3 |
+
from diffusers import UNetModel, DDIMScheduler
|
4 |
+
import PIL
|
5 |
+
import numpy as np
|
6 |
+
import tqdm
|
7 |
+
|
8 |
+
generator = torch.manual_seed(0)
|
9 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# 1. Load models
|
12 |
+
noise_scheduler = DDIMScheduler.from_config("fusing/ddpm-celeba-hq", tensor_format="pt")
|
13 |
+
unet = UNetModel.from_pretrained("fusing/ddpm-celeba-hq").to(torch_device)
|
14 |
+
|
15 |
+
# 2. Sample gaussian noise
|
16 |
+
image = torch.randn(
|
17 |
+
(1, unet.in_channels, unet.resolution, unet.resolution),
|
18 |
+
generator=generator,
|
19 |
+
)
|
20 |
+
image = image.to(torch_device)
|
21 |
+
|
22 |
+
# 3. Denoise
|
23 |
+
num_inference_steps = 50
|
24 |
+
eta = 0.0 # <- deterministic sampling
|
25 |
+
|
26 |
+
for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps):
|
27 |
+
# 1. predict noise residual
|
28 |
+
orig_t = len(noise_scheduler) // num_inference_steps * t
|
29 |
+
|
30 |
+
with torch.no_grad():
|
31 |
+
residual = unet(image, orig_t)
|
32 |
+
|
33 |
+
# 2. predict previous mean of image x_t-1
|
34 |
+
pred_prev_image = noise_scheduler.step(residual, image, t, num_inference_steps, eta)
|
35 |
+
|
36 |
+
# 3. optionally sample variance
|
37 |
+
variance = 0
|
38 |
+
if eta > 0:
|
39 |
+
noise = torch.randn(image.shape, generator=generator).to(image.device)
|
40 |
+
variance = noise_scheduler.get_variance(t).sqrt() * eta * noise
|
41 |
+
|
42 |
+
# 4. set current image to prev_image: x_t -> x_t-1
|
43 |
+
image = pred_prev_image + variance
|
44 |
+
|
45 |
+
# 5. process image to PIL
|
46 |
+
image_processed = image.cpu().permute(0, 2, 3, 1)
|
47 |
+
image_processed = (image_processed + 1.0) * 127.5
|
48 |
+
image_processed = image_processed.numpy().astype(np.uint8)
|
49 |
+
image_pil = PIL.Image.fromarray(image_processed[0])
|
50 |
+
|
51 |
+
# 6. save image
|
52 |
+
image_pil.save("test.png")
|
test.png
CHANGED
Git LFS Details
|
Git LFS Details
|