|
import requests |
|
import torch |
|
from PIL import Image |
|
from io import BytesIO |
|
import time |
|
|
|
from diffusers import DiffusionPipeline |
|
|
|
pipe = DiffusionPipeline.from_pretrained("/home/patrick_huggingface_co/stable-diffusion-2-1-unclip-i2i-l", torch_dtype=torch.float16) |
|
pipe.to("cuda") |
|
|
|
url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/image%20(13).png" |
|
|
|
|
|
|
|
|
|
response = requests.get(url) |
|
init_image = Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
images = pipe(4 * [init_image]).images |
|
|
|
for i in range(len(images)): |
|
images[i].save(f"fantasy_landscape_{i}.png") |
|
|