title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.errors.DuplicateLabelError
`pandas.errors.DuplicateLabelError` Error raised when an operation would introduce duplicate labels. New in version 1.2.0. ``` >>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags( ... allows_duplicate_labels=False ... ) >>> s.reindex(['a', 'a', 'b']) Traceback (most recent call last): ... DuplicateLabelError: Index has duplicates. positions label a [0, 1] ```
exception pandas.errors.DuplicateLabelError[source]# Error raised when an operation would introduce duplicate labels. New in version 1.2.0. Examples >>> s = pd.Series([0, 1, 2], index=['a', 'b', 'c']).set_flags( ... allows_duplicate_labels=False ... ) >>> s.reindex(['a', 'a', 'b']) Traceback (most recent call last): ... DuplicateLabelError: Index has duplicates. positions label a [0, 1]
reference/api/pandas.errors.DuplicateLabelError.html
pandas.api.extensions.register_extension_dtype
`pandas.api.extensions.register_extension_dtype` Register an ExtensionType with pandas as class decorator. ``` >>> from pandas.api.extensions import register_extension_dtype, ExtensionDtype >>> @register_extension_dtype ... class MyExtensionDtype(ExtensionDtype): ... name = "myextension" ```
pandas.api.extensions.register_extension_dtype(cls)[source]# Register an ExtensionType with pandas as class decorator. This enables operations like .astype(name) for the name of the ExtensionDtype. Returns callableA class decorator. Examples >>> from pandas.api.extensions import register_extension_dtype, ExtensionDtype >>> @register_extension_dtype ... class MyExtensionDtype(ExtensionDtype): ... name = "myextension"
reference/api/pandas.api.extensions.register_extension_dtype.html
pandas.core.groupby.DataFrameGroupBy.idxmax
`pandas.core.groupby.DataFrameGroupBy.idxmax` Return index of first occurrence of maximum over requested axis. NA/null values are excluded. ``` >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) ```
DataFrameGroupBy.idxmax(axis=0, skipna=True, numeric_only=_NoDefault.no_default)[source]# Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. numeric_onlybool, default True for axis=0, False for axis=1Include only float, int or boolean data. New in version 1.5.0. Returns SeriesIndexes of maxima along the specified axis. Raises ValueError If the row/column is empty See also Series.idxmaxReturn index of the maximum element. Notes This method is the DataFrame version of ndarray.argmax. Examples Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use axis="columns". >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object
reference/api/pandas.core.groupby.DataFrameGroupBy.idxmax.html
pandas.Index.map
`pandas.Index.map` Map values using an input mapping or function. Mapping correspondence.
Index.map(mapper, na_action=None)[source]# Map values using an input mapping or function. Parameters mapperfunction, dict, or SeriesMapping correspondence. na_action{None, ‘ignore’}If ‘ignore’, propagate NA values, without passing them to the mapping correspondence. Returns appliedUnion[Index, MultiIndex], inferredThe output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned.
reference/api/pandas.Index.map.html
pandas.api.indexers.check_array_indexer
`pandas.api.indexers.check_array_indexer` Check if indexer is a valid array indexer for array. ``` >>> mask = pd.array([True, False]) >>> arr = pd.array([1, 2]) >>> pd.api.indexers.check_array_indexer(arr, mask) array([ True, False]) ```
pandas.api.indexers.check_array_indexer(array, indexer)[source]# Check if indexer is a valid array indexer for array. For a boolean mask, array and indexer are checked to have the same length. The dtype is validated, and if it is an integer or boolean ExtensionArray, it is checked if there are missing values present, and it is converted to the appropriate numpy array. Other dtypes will raise an error. Non-array indexers (integer, slice, Ellipsis, tuples, ..) are passed through as is. New in version 1.0.0. Parameters arrayarray-likeThe array that is being indexed (only used for the length). indexerarray-like or list-likeThe array-like that’s used to index. List-like input that is not yet a numpy array or an ExtensionArray is converted to one. Other input types are passed through as is. Returns numpy.ndarrayThe validated indexer as a numpy array that can be used to index. Raises IndexErrorWhen the lengths don’t match. ValueErrorWhen indexer cannot be converted to a numpy ndarray to index (e.g. presence of missing values). See also api.types.is_bool_dtypeCheck if key is of boolean dtype. Examples When checking a boolean mask, a boolean ndarray is returned when the arguments are all valid. >>> mask = pd.array([True, False]) >>> arr = pd.array([1, 2]) >>> pd.api.indexers.check_array_indexer(arr, mask) array([ True, False]) An IndexError is raised when the lengths don’t match. >>> mask = pd.array([True, False, True]) >>> pd.api.indexers.check_array_indexer(arr, mask) Traceback (most recent call last): ... IndexError: Boolean index has wrong length: 3 instead of 2. NA values in a boolean array are treated as False. >>> mask = pd.array([True, pd.NA]) >>> pd.api.indexers.check_array_indexer(arr, mask) array([ True, False]) A numpy boolean mask will get passed through (if the length is correct): >>> mask = np.array([True, False]) >>> pd.api.indexers.check_array_indexer(arr, mask) array([ True, False]) Similarly for integer indexers, an integer ndarray is returned when it is a valid indexer, otherwise an error is (for integer indexers, a matching length is not required): >>> indexer = pd.array([0, 2], dtype="Int64") >>> arr = pd.array([1, 2, 3]) >>> pd.api.indexers.check_array_indexer(arr, indexer) array([0, 2]) >>> indexer = pd.array([0, pd.NA], dtype="Int64") >>> pd.api.indexers.check_array_indexer(arr, indexer) Traceback (most recent call last): ... ValueError: Cannot index with an integer indexer containing NA values For non-integer/boolean dtypes, an appropriate error is raised: >>> indexer = np.array([0., 2.], dtype="float64") >>> pd.api.indexers.check_array_indexer(arr, indexer) Traceback (most recent call last): ... IndexError: arrays used as indices must be of integer or boolean type
reference/api/pandas.api.indexers.check_array_indexer.html
Internals
Internals
This section will provide a look into some of pandas internals. It’s primarily intended for developers of pandas itself. Indexing# In pandas there are a few objects implemented which can serve as valid containers for the axis labels: Index: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do O(1) lookups. Int64Index: a version of Index highly optimized for 64-bit integer data, such as time stamps Float64Index: a version of Index highly optimized for 64-bit float data MultiIndex: the standard hierarchical index object DatetimeIndex: An Index object with Timestamp boxed elements (impl are the int64 values) TimedeltaIndex: An Index object with Timedelta boxed elements (impl are the in64 values) PeriodIndex: An Index object with Period elements There are functions that make the creation of a regular index easy: date_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python datetime objects period_range: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Period objects, representing timespans The motivation for having an Index class in the first place was to enable different implementations of indexing. This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a particular application than the ones provided in pandas. From an internal implementation point of view, the relevant methods that an Index must define are one or more of the following (depending on how incompatible the new object internals are with the Index functions): get_loc: returns an “indexer” (an integer, or in some cases a slice object) for a label slice_locs: returns the “range” to slice between two labels get_indexer: Computes the indexing vector for reindexing / data alignment purposes. See the source / docstrings for more on this get_indexer_non_unique: Computes the indexing vector for reindexing / data alignment purposes when the index is non-unique. See the source / docstrings for more on this reindex: Does any pre-conversion of the input index then calls get_indexer union, intersection: computes the union or intersection of two Index objects insert: Inserts a new label into an Index, yielding a new object delete: Delete a label, yielding a new object drop: Deletes a set of labels take: Analogous to ndarray.take MultiIndex# Internally, the MultiIndex consists of a few things: the levels, the integer codes (until version 0.24 named labels), and the level names: In [1]: index = pd.MultiIndex.from_product( ...: [range(3), ["one", "two"]], names=["first", "second"] ...: ) ...: In [2]: index Out[2]: MultiIndex([(0, 'one'), (0, 'two'), (1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')], names=['first', 'second']) In [3]: index.levels Out[3]: FrozenList([[0, 1, 2], ['one', 'two']]) In [4]: index.codes Out[4]: FrozenList([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) In [5]: index.names Out[5]: FrozenList(['first', 'second']) You can probably guess that the codes determine which unique element is identified with that location at each layer of the index. It’s important to note that sortedness is determined solely from the integer codes and does not check (or care) whether the levels themselves are sorted. Fortunately, the constructors from_tuples and from_arrays ensure that this is true, but if you compute the levels and codes yourself, please be careful. Values# pandas extends NumPy’s type system with custom types, like Categorical or datetimes with a timezone, so we have multiple notions of “values”. For 1-D containers (Index classes and Series) we have the following convention: cls._values refers is the “best possible” array. This could be an ndarray or ExtensionArray. So, for example, Series[category]._values is a Categorical. Subclassing pandas data structures# This section has been moved to Subclassing pandas data structures.
development/internals.html
pandas.tseries.offsets.BusinessHour.next_bday
`pandas.tseries.offsets.BusinessHour.next_bday` Used for moving to next business day.
BusinessHour.next_bday# Used for moving to next business day.
reference/api/pandas.tseries.offsets.BusinessHour.next_bday.html
pandas.io.formats.style.Styler.set_table_styles
`pandas.io.formats.style.Styler.set_table_styles` Set the table styles included within the <style> HTML element. This function can be used to style the entire table, columns, rows or specific HTML selectors. ``` >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['A', 'B', 'C', 'D']) >>> df.style.set_table_styles( ... [{'selector': 'tr:hover', ... 'props': [('background-color', 'yellow')]}] ... ) ```
Styler.set_table_styles(table_styles=None, axis=0, overwrite=True, css_class_names=None)[source]# Set the table styles included within the <style> HTML element. This function can be used to style the entire table, columns, rows or specific HTML selectors. Parameters table_styleslist or dictIf supplying a list, each individual table_style should be a dictionary with selector and props keys. selector should be a CSS selector that the style will be applied to (automatically prefixed by the table’s UUID) and props should be a list of tuples with (attribute, value). If supplying a dict, the dict keys should correspond to column names or index values, depending upon the specified axis argument. These will be mapped to row or col CSS selectors. MultiIndex values as dict keys should be in their respective tuple form. The dict values should be a list as specified in the form with CSS selectors and props that will be applied to the specified row or column. Changed in version 1.2.0. axis{0 or ‘index’, 1 or ‘columns’, None}, default 0Apply to each column (axis=0 or 'index'), to each row (axis=1 or 'columns'). Only used if table_styles is dict. New in version 1.2.0. overwritebool, default TrueStyles are replaced if True, or extended if False. CSS rules are preserved so most recent styles set will dominate if selectors intersect. New in version 1.2.0. css_class_namesdict, optionalA dict of strings used to replace the default CSS classes described below. New in version 1.4.0. Returns selfStyler See also Styler.set_td_classesSet the DataFrame of strings added to the class attribute of <td> HTML elements. Styler.set_table_attributesSet the table attributes added to the <table> HTML element. Notes The default CSS classes dict, whose values can be replaced is as follows: css_class_names = {"row_heading": "row_heading", "col_heading": "col_heading", "index_name": "index_name", "col": "col", "row": "row", "col_trim": "col_trim", "row_trim": "row_trim", "level": "level", "data": "data", "blank": "blank", "foot": "foot"} Examples >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['A', 'B', 'C', 'D']) >>> df.style.set_table_styles( ... [{'selector': 'tr:hover', ... 'props': [('background-color', 'yellow')]}] ... ) Or with CSS strings >>> df.style.set_table_styles( ... [{'selector': 'tr:hover', ... 'props': 'background-color: yellow; font-size: 1em;'}] ... ) Adding column styling by name >>> df.style.set_table_styles({ ... 'A': [{'selector': '', ... 'props': [('color', 'red')]}], ... 'B': [{'selector': 'td', ... 'props': 'color: blue;'}] ... }, overwrite=False) Adding row styling >>> df.style.set_table_styles({ ... 0: [{'selector': 'td:hover', ... 'props': [('font-size', '25px')]}] ... }, axis=1, overwrite=False) See Table Visualization user guide for more details.
reference/api/pandas.io.formats.style.Styler.set_table_styles.html
pandas.tseries.offsets.MonthEnd.nanos
pandas.tseries.offsets.MonthEnd.nanos
MonthEnd.nanos#
reference/api/pandas.tseries.offsets.MonthEnd.nanos.html
pandas.Interval.closed
`pandas.Interval.closed` String describing the inclusive side the intervals. Either left, right, both or neither.
Interval.closed# String describing the inclusive side the intervals. Either left, right, both or neither.
reference/api/pandas.Interval.closed.html
pandas.Series.tz_convert
`pandas.Series.tz_convert` Convert tz-aware axis to target time zone.
Series.tz_convert(tz, axis=0, level=None, copy=True)[source]# Convert tz-aware axis to target time zone. Parameters tzstr or tzinfo object axisthe axis to convert levelint, str, default NoneIf axis is a MultiIndex, convert a specific level. Otherwise must be None. copybool, default TrueAlso make a copy of the underlying data. Returns Series/DataFrameObject with time zone converted axis. Raises TypeErrorIf the axis is tz-naive.
reference/api/pandas.Series.tz_convert.html
pandas.core.groupby.SeriesGroupBy.hist
`pandas.core.groupby.SeriesGroupBy.hist` Draw histogram of the input series using matplotlib. If passed, then used to form histograms for separate groups.
property SeriesGroupBy.hist[source]# Draw histogram of the input series using matplotlib. Parameters byobject, optionalIf passed, then used to form histograms for separate groups. axmatplotlib axis objectIf not passed, uses gca(). gridbool, default TrueWhether to show axis grid lines. xlabelsizeint, default NoneIf specified changes the x-axis label size. xrotfloat, default NoneRotation of x axis labels. ylabelsizeint, default NoneIf specified changes the y-axis label size. yrotfloat, default NoneRotation of y axis labels. figsizetuple, default NoneFigure size in inches by default. binsint or sequence, default 10Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. backendstr, default NoneBackend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend. New in version 1.0.0. legendbool, default FalseWhether to show the legend. New in version 1.1.0. **kwargsTo be passed to the actual plotting function. Returns matplotlib.AxesSubplotA histogram plot. See also matplotlib.axes.Axes.histPlot a histogram using matplotlib.
reference/api/pandas.core.groupby.SeriesGroupBy.hist.html
DataFrame
DataFrame DataFrame([data, index, columns, dtype, copy]) Two-dimensional, size-mutable, potentially heterogeneous tabular data. Axes DataFrame.index The index (row labels) of the DataFrame.
Constructor# DataFrame([data, index, columns, dtype, copy]) Two-dimensional, size-mutable, potentially heterogeneous tabular data. Attributes and underlying data# Axes DataFrame.index The index (row labels) of the DataFrame. DataFrame.columns The column labels of the DataFrame. DataFrame.dtypes Return the dtypes in the DataFrame. DataFrame.info([verbose, buf, max_cols, ...]) Print a concise summary of a DataFrame. DataFrame.select_dtypes([include, exclude]) Return a subset of the DataFrame's columns based on the column dtypes. DataFrame.values Return a Numpy representation of the DataFrame. DataFrame.axes Return a list representing the axes of the DataFrame. DataFrame.ndim Return an int representing the number of axes / array dimensions. DataFrame.size Return an int representing the number of elements in this object. DataFrame.shape Return a tuple representing the dimensionality of the DataFrame. DataFrame.memory_usage([index, deep]) Return the memory usage of each column in bytes. DataFrame.empty Indicator whether Series/DataFrame is empty. DataFrame.set_flags(*[, copy, ...]) Return a new object with updated flags. Conversion# DataFrame.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype. DataFrame.convert_dtypes([infer_objects, ...]) Convert columns to best possible dtypes using dtypes supporting pd.NA. DataFrame.infer_objects() Attempt to infer better dtypes for object columns. DataFrame.copy([deep]) Make a copy of this object's indices and data. DataFrame.bool() Return the bool of a single element Series or DataFrame. Indexing, iteration# DataFrame.head([n]) Return the first n rows. DataFrame.at Access a single value for a row/column label pair. DataFrame.iat Access a single value for a row/column pair by integer position. DataFrame.loc Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc Purely integer-location based indexing for selection by position. DataFrame.insert(loc, column, value[, ...]) Insert column into DataFrame at specified location. DataFrame.__iter__() Iterate over info axis. DataFrame.items() Iterate over (column name, Series) pairs. DataFrame.iteritems() (DEPRECATED) Iterate over (column name, Series) pairs. DataFrame.keys() Get the 'info axis' (see Indexing for more). DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples. DataFrame.lookup(row_labels, col_labels) (DEPRECATED) Label-based "fancy indexing" function for DataFrame. DataFrame.pop(item) Return item and drop from frame. DataFrame.tail([n]) Return the last n rows. DataFrame.xs(key[, axis, level, drop_level]) Return cross-section from the Series/DataFrame. DataFrame.get(key[, default]) Get item from object for given key (ex: DataFrame column). DataFrame.isin(values) Whether each element in the DataFrame is contained in values. DataFrame.where(cond[, other, inplace, ...]) Replace values where the condition is False. DataFrame.mask(cond[, other, inplace, axis, ...]) Replace values where the condition is True. DataFrame.query(expr, *[, inplace]) Query the columns of a DataFrame with a boolean expression. For more information on .at, .iat, .loc, and .iloc, see the indexing documentation. Binary operator functions# DataFrame.add(other[, axis, level, fill_value]) Get Addition of dataframe and other, element-wise (binary operator add). DataFrame.sub(other[, axis, level, fill_value]) Get Subtraction of dataframe and other, element-wise (binary operator sub). DataFrame.mul(other[, axis, level, fill_value]) Get Multiplication of dataframe and other, element-wise (binary operator mul). DataFrame.div(other[, axis, level, fill_value]) Get Floating division of dataframe and other, element-wise (binary operator truediv). DataFrame.truediv(other[, axis, level, ...]) Get Floating division of dataframe and other, element-wise (binary operator truediv). DataFrame.floordiv(other[, axis, level, ...]) Get Integer division of dataframe and other, element-wise (binary operator floordiv). DataFrame.mod(other[, axis, level, fill_value]) Get Modulo of dataframe and other, element-wise (binary operator mod). DataFrame.pow(other[, axis, level, fill_value]) Get Exponential power of dataframe and other, element-wise (binary operator pow). DataFrame.dot(other) Compute the matrix multiplication between the DataFrame and other. DataFrame.radd(other[, axis, level, fill_value]) Get Addition of dataframe and other, element-wise (binary operator radd). DataFrame.rsub(other[, axis, level, fill_value]) Get Subtraction of dataframe and other, element-wise (binary operator rsub). DataFrame.rmul(other[, axis, level, fill_value]) Get Multiplication of dataframe and other, element-wise (binary operator rmul). DataFrame.rdiv(other[, axis, level, fill_value]) Get Floating division of dataframe and other, element-wise (binary operator rtruediv). DataFrame.rtruediv(other[, axis, level, ...]) Get Floating division of dataframe and other, element-wise (binary operator rtruediv). DataFrame.rfloordiv(other[, axis, level, ...]) Get Integer division of dataframe and other, element-wise (binary operator rfloordiv). DataFrame.rmod(other[, axis, level, fill_value]) Get Modulo of dataframe and other, element-wise (binary operator rmod). DataFrame.rpow(other[, axis, level, fill_value]) Get Exponential power of dataframe and other, element-wise (binary operator rpow). DataFrame.lt(other[, axis, level]) Get Less than of dataframe and other, element-wise (binary operator lt). DataFrame.gt(other[, axis, level]) Get Greater than of dataframe and other, element-wise (binary operator gt). DataFrame.le(other[, axis, level]) Get Less than or equal to of dataframe and other, element-wise (binary operator le). DataFrame.ge(other[, axis, level]) Get Greater than or equal to of dataframe and other, element-wise (binary operator ge). DataFrame.ne(other[, axis, level]) Get Not equal to of dataframe and other, element-wise (binary operator ne). DataFrame.eq(other[, axis, level]) Get Equal to of dataframe and other, element-wise (binary operator eq). DataFrame.combine(other, func[, fill_value, ...]) Perform column-wise combine with another DataFrame. DataFrame.combine_first(other) Update null elements with value in the same location in other. Function application, GroupBy & window# DataFrame.apply(func[, axis, raw, ...]) Apply a function along an axis of the DataFrame. DataFrame.applymap(func[, na_action]) Apply a function to a Dataframe elementwise. DataFrame.pipe(func, *args, **kwargs) Apply chainable functions that expect Series or DataFrames. DataFrame.agg([func, axis]) Aggregate using one or more operations over the specified axis. DataFrame.aggregate([func, axis]) Aggregate using one or more operations over the specified axis. DataFrame.transform(func[, axis]) Call func on self producing a DataFrame with the same axis shape as self. DataFrame.groupby([by, axis, level, ...]) Group DataFrame using a mapper or by a Series of columns. DataFrame.rolling(window[, min_periods, ...]) Provide rolling window calculations. DataFrame.expanding([min_periods, center, ...]) Provide expanding window calculations. DataFrame.ewm([com, span, halflife, alpha, ...]) Provide exponentially weighted (EW) calculations. Computations / descriptive stats# DataFrame.abs() Return a Series/DataFrame with absolute numeric value of each element. DataFrame.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over an axis. DataFrame.any(*[, axis, bool_only, skipna, ...]) Return whether any element is True, potentially over an axis. DataFrame.clip([lower, upper, axis, inplace]) Trim values at input threshold(s). DataFrame.corr([method, min_periods, ...]) Compute pairwise correlation of columns, excluding NA/null values. DataFrame.corrwith(other[, axis, drop, ...]) Compute pairwise correlation. DataFrame.count([axis, level, numeric_only]) Count non-NA cells for each column or row. DataFrame.cov([min_periods, ddof, numeric_only]) Compute pairwise covariance of columns, excluding NA/null values. DataFrame.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis. DataFrame.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis. DataFrame.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis. DataFrame.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis. DataFrame.describe([percentiles, include, ...]) Generate descriptive statistics. DataFrame.diff([periods, axis]) First discrete difference of element. DataFrame.eval(expr, *[, inplace]) Evaluate a string describing operations on DataFrame columns. DataFrame.kurt([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. DataFrame.kurtosis([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. DataFrame.mad([axis, skipna, level]) (DEPRECATED) Return the mean absolute deviation of the values over the requested axis. DataFrame.max([axis, skipna, level, ...]) Return the maximum of the values over the requested axis. DataFrame.mean([axis, skipna, level, ...]) Return the mean of the values over the requested axis. DataFrame.median([axis, skipna, level, ...]) Return the median of the values over the requested axis. DataFrame.min([axis, skipna, level, ...]) Return the minimum of the values over the requested axis. DataFrame.mode([axis, numeric_only, dropna]) Get the mode(s) of each element along the selected axis. DataFrame.pct_change([periods, fill_method, ...]) Percentage change between the current and a prior element. DataFrame.prod([axis, skipna, level, ...]) Return the product of the values over the requested axis. DataFrame.product([axis, skipna, level, ...]) Return the product of the values over the requested axis. DataFrame.quantile([q, axis, numeric_only, ...]) Return values at the given quantile over requested axis. DataFrame.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. DataFrame.round([decimals]) Round a DataFrame to a variable number of decimal places. DataFrame.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis. DataFrame.skew([axis, skipna, level, ...]) Return unbiased skew over requested axis. DataFrame.sum([axis, skipna, level, ...]) Return the sum of the values over the requested axis. DataFrame.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis. DataFrame.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis. DataFrame.nunique([axis, dropna]) Count number of distinct elements in specified axis. DataFrame.value_counts([subset, normalize, ...]) Return a Series containing counts of unique rows in the DataFrame. Reindexing / selection / label manipulation# DataFrame.add_prefix(prefix) Prefix labels with string prefix. DataFrame.add_suffix(suffix) Suffix labels with string suffix. DataFrame.align(other[, join, axis, level, ...]) Align two objects on their axes with the specified join method. DataFrame.at_time(time[, asof, axis]) Select values at particular time of day (e.g., 9:30AM). DataFrame.between_time(start_time, end_time) Select values between particular times of the day (e.g., 9:00-9:30 AM). DataFrame.drop([labels, axis, index, ...]) Drop specified labels from rows or columns. DataFrame.drop_duplicates([subset, keep, ...]) Return DataFrame with duplicate rows removed. DataFrame.duplicated([subset, keep]) Return boolean Series denoting duplicate rows. DataFrame.equals(other) Test whether two objects contain the same elements. DataFrame.filter([items, like, regex, axis]) Subset the dataframe rows or columns according to the specified index labels. DataFrame.first(offset) Select initial periods of time series data based on a date offset. DataFrame.head([n]) Return the first n rows. DataFrame.idxmax([axis, skipna, numeric_only]) Return index of first occurrence of maximum over requested axis. DataFrame.idxmin([axis, skipna, numeric_only]) Return index of first occurrence of minimum over requested axis. DataFrame.last(offset) Select final periods of time series data based on a date offset. DataFrame.reindex([labels, index, columns, ...]) Conform Series/DataFrame to new index with optional filling logic. DataFrame.reindex_like(other[, method, ...]) Return an object with matching indices as other object. DataFrame.rename([mapper, index, columns, ...]) Alter axes labels. DataFrame.rename_axis([mapper, inplace]) Set the name of the axis for the index or columns. DataFrame.reset_index([level, drop, ...]) Reset the index, or a level of it. DataFrame.sample([n, frac, replace, ...]) Return a random sample of items from an axis of object. DataFrame.set_axis(labels, *[, axis, ...]) Assign desired index to given axis. DataFrame.set_index(keys, *[, drop, append, ...]) Set the DataFrame index using existing columns. DataFrame.tail([n]) Return the last n rows. DataFrame.take(indices[, axis, is_copy]) Return the elements in the given positional indices along an axis. DataFrame.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value. Missing data handling# DataFrame.backfill(*[, axis, inplace, ...]) Synonym for DataFrame.fillna() with method='bfill'. DataFrame.bfill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='bfill'. DataFrame.dropna(*[, axis, how, thresh, ...]) Remove missing values. DataFrame.ffill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='ffill'. DataFrame.fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method. DataFrame.interpolate([method, axis, limit, ...]) Fill NaN values using an interpolation method. DataFrame.isna() Detect missing values. DataFrame.isnull() DataFrame.isnull is an alias for DataFrame.isna. DataFrame.notna() Detect existing (non-missing) values. DataFrame.notnull() DataFrame.notnull is an alias for DataFrame.notna. DataFrame.pad(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='ffill'. DataFrame.replace([to_replace, value, ...]) Replace values given in to_replace with value. Reshaping, sorting, transposing# DataFrame.droplevel(level[, axis]) Return Series/DataFrame with requested index / column level(s) removed. DataFrame.pivot(*[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. DataFrame.pivot_table([values, index, ...]) Create a spreadsheet-style pivot table as a DataFrame. DataFrame.reorder_levels(order[, axis]) Rearrange index levels using input order. DataFrame.sort_values(by, *[, axis, ...]) Sort by the values along either axis. DataFrame.sort_index(*[, axis, level, ...]) Sort object by labels (along an axis). DataFrame.nlargest(n, columns[, keep]) Return the first n rows ordered by columns in descending order. DataFrame.nsmallest(n, columns[, keep]) Return the first n rows ordered by columns in ascending order. DataFrame.swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex. DataFrame.stack([level, dropna]) Stack the prescribed level(s) from columns to index. DataFrame.unstack([level, fill_value]) Pivot a level of the (necessarily hierarchical) index labels. DataFrame.swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately. DataFrame.melt([id_vars, value_vars, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. DataFrame.explode(column[, ignore_index]) Transform each element of a list-like to a row, replicating index values. DataFrame.squeeze([axis]) Squeeze 1 dimensional axis objects into scalars. DataFrame.to_xarray() Return an xarray object from the pandas object. DataFrame.T DataFrame.transpose(*args[, copy]) Transpose index and columns. Combining / comparing / joining / merging# DataFrame.append(other[, ignore_index, ...]) (DEPRECATED) Append rows of other to the end of caller, returning a new object. DataFrame.assign(**kwargs) Assign new columns to a DataFrame. DataFrame.compare(other[, align_axis, ...]) Compare to another DataFrame and show the differences. DataFrame.join(other[, on, how, lsuffix, ...]) Join columns of another DataFrame. DataFrame.merge(right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. DataFrame.update(other[, join, overwrite, ...]) Modify in place using non-NA values from another DataFrame. Time Series-related# DataFrame.asfreq(freq[, method, how, ...]) Convert time series to specified frequency. DataFrame.asof(where[, subset]) Return the last row(s) without any NaNs before where. DataFrame.shift([periods, freq, axis, ...]) Shift index by desired number of periods with an optional time freq. DataFrame.slice_shift([periods, axis]) (DEPRECATED) Equivalent to shift without copying data. DataFrame.tshift([periods, freq, axis]) (DEPRECATED) Shift the time index, using the index's frequency if available. DataFrame.first_valid_index() Return index for first non-NA value or None, if no non-NA value is found. DataFrame.last_valid_index() Return index for last non-NA value or None, if no non-NA value is found. DataFrame.resample(rule[, axis, closed, ...]) Resample time-series data. DataFrame.to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to PeriodIndex. DataFrame.to_timestamp([freq, how, axis, copy]) Cast to DatetimeIndex of timestamps, at beginning of period. DataFrame.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone. DataFrame.tz_localize(tz[, axis, level, ...]) Localize tz-naive index of a Series or DataFrame to target time zone. Flags# Flags refer to attributes of the pandas object. Properties of the dataset (like the date is was recorded, the URL it was accessed from, etc.) should be stored in DataFrame.attrs. Flags(obj, *, allows_duplicate_labels) Flags that apply to pandas objects. Metadata# DataFrame.attrs is a dictionary for storing global metadata for this DataFrame. Warning DataFrame.attrs is considered experimental and may change without warning. DataFrame.attrs Dictionary of global attributes of this dataset. Plotting# DataFrame.plot is both a callable method and a namespace attribute for specific plotting methods of the form DataFrame.plot.<kind>. DataFrame.plot([x, y, kind, ax, ....]) DataFrame plotting accessor and method DataFrame.plot.area([x, y]) Draw a stacked area plot. DataFrame.plot.bar([x, y]) Vertical bar plot. DataFrame.plot.barh([x, y]) Make a horizontal bar plot. DataFrame.plot.box([by]) Make a box plot of the DataFrame columns. DataFrame.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. DataFrame.plot.hexbin(x, y[, C, ...]) Generate a hexagonal binning plot. DataFrame.plot.hist([by, bins]) Draw one histogram of the DataFrame's columns. DataFrame.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. DataFrame.plot.line([x, y]) Plot Series or DataFrame as lines. DataFrame.plot.pie(**kwargs) Generate a pie plot. DataFrame.plot.scatter(x, y[, s, c]) Create a scatter plot with varying marker point size and color. DataFrame.boxplot([column, by, ax, ...]) Make a box plot from DataFrame columns. DataFrame.hist([column, by, grid, ...]) Make a histogram of the DataFrame's columns. Sparse accessor# Sparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor. DataFrame.sparse.density Ratio of non-sparse points to total (dense) data points. DataFrame.sparse.from_spmatrix(data[, ...]) Create a new DataFrame from a scipy sparse matrix. DataFrame.sparse.to_coo() Return the contents of the frame as a sparse SciPy COO matrix. DataFrame.sparse.to_dense() Convert a DataFrame with sparse values to dense. Serialization / IO / conversion# DataFrame.from_dict(data[, orient, dtype, ...]) Construct DataFrame from dict of array-like or dicts. DataFrame.from_records(data[, index, ...]) Convert structured or record ndarray to DataFrame. DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format. DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. DataFrame.to_hdf(path_or_buf, key[, mode, ...]) Write the contained data to an HDF5 file using HDFStore. DataFrame.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. DataFrame.to_dict([orient, into]) Convert the DataFrame to a dictionary. DataFrame.to_excel(excel_writer[, ...]) Write object to an Excel sheet. DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table. DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format. DataFrame.to_latex([buf, columns, ...]) Render object to a LaTeX tabular, longtable, or nested table. DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format. DataFrame.to_gbq(destination_table[, ...]) Write a DataFrame to a Google BigQuery table. DataFrame.to_records([index, column_dtypes, ...]) Convert DataFrame to a NumPy record array. DataFrame.to_string([buf, columns, ...]) Render a DataFrame to a console-friendly tabular output. DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard. DataFrame.to_markdown([buf, mode, index, ...]) Print DataFrame in Markdown-friendly format. DataFrame.style Returns a Styler object. DataFrame.__dataframe__([nan_as_null, ...]) Return the dataframe interchange object implementing the interchange protocol.
reference/frame.html
pandas.tseries.offsets.BYearEnd.is_year_start
`pandas.tseries.offsets.BYearEnd.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
BYearEnd.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.BYearEnd.is_year_start.html
pandas.core.groupby.DataFrameGroupBy.filter
`pandas.core.groupby.DataFrameGroupBy.filter` Return a copy of a DataFrame excluding filtered elements. Elements from groups are filtered if they do not satisfy the boolean criterion specified by func. ``` >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 ```
DataFrameGroupBy.filter(func, dropna=True, *args, **kwargs)[source]# Return a copy of a DataFrame excluding filtered elements. Elements from groups are filtered if they do not satisfy the boolean criterion specified by func. Parameters funcfunctionFunction to apply to each subframe. Should return True or False. dropnaDrop groups that do not pass the filter. True by default;If False, groups that evaluate False are filled with NaNs. Returns filteredDataFrame Notes Each subframe is endowed the attribute ‘name’ in case you need to know which group you are working on. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. Examples >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0
reference/api/pandas.core.groupby.DataFrameGroupBy.filter.html
pandas.Timedelta.max
pandas.Timedelta.max
Timedelta.max = Timedelta('106751 days 23:47:16.854775807')#
reference/api/pandas.Timedelta.max.html
pandas.tseries.offsets.Easter.kwds
`pandas.tseries.offsets.Easter.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
Easter.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.Easter.kwds.html
pandas.DataFrame.from_dict
`pandas.DataFrame.from_dict` Construct DataFrame from dict of array-like or dicts. ``` >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d ```
classmethod DataFrame.from_dict(data, orient='columns', dtype=None, columns=None)[source]# Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters datadictOf the form {field : array-like} or {field : dict}. orient{‘columns’, ‘index’, ‘tight’}, default ‘columns’The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. If ‘tight’, assume a dict with keys [‘index’, ‘columns’, ‘data’, ‘index_names’, ‘column_names’]. New in version 1.4.0: ‘tight’ as an allowed value for the orient argument dtypedtype, default NoneData type to force, otherwise infer. columnslist, default NoneColumn labels to use when orient='index'. Raises a ValueError if used with orient='columns' or orient='tight'. Returns DataFrame See also DataFrame.from_recordsDataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrameDataFrame object creation using constructor. DataFrame.to_dictConvert the DataFrame to a dictionary. Examples By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify orient='index' to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the ‘index’ orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d Specify orient='tight' to create the DataFrame using a ‘tight’ format: >>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> pd.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4
reference/api/pandas.DataFrame.from_dict.html
pandas.tseries.offsets.Tick.name
`pandas.tseries.offsets.Tick.name` Return a string representing the base frequency. ``` >>> pd.offsets.Hour().name 'H' ```
Tick.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.Tick.name.html
pandas.tseries.offsets.Second.copy
`pandas.tseries.offsets.Second.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
Second.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.Second.copy.html
pandas.tseries.offsets.Week.name
`pandas.tseries.offsets.Week.name` Return a string representing the base frequency. Examples ``` >>> pd.offsets.Hour().name 'H' ```
Week.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.Week.name.html
pandas.tseries.offsets.BusinessHour.is_quarter_end
`pandas.tseries.offsets.BusinessHour.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
BusinessHour.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.BusinessHour.is_quarter_end.html
pandas.tseries.offsets.FY5253Quarter.is_anchored
`pandas.tseries.offsets.FY5253Quarter.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). Examples ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
FY5253Quarter.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.FY5253Quarter.is_anchored.html
pandas.tseries.offsets.BYearEnd.__call__
`pandas.tseries.offsets.BYearEnd.__call__` Call self as a function.
BYearEnd.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.BYearEnd.__call__.html
pandas.DataFrame.to_pickle
`pandas.DataFrame.to_pickle` Pickle (serialize) object to file. ``` >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") ```
DataFrame.to_pickle(path, compression='infer', protocol=5, storage_options=None)[source]# Pickle (serialize) object to file. Parameters pathstr, path object, or file-like objectString, path object (implementing os.PathLike[str]), or file-like object implementing a binary write() function. File path where the pickled object will be stored. compressionstr or dict, default ‘infer’For on-the-fly compression of the output data. If ‘infer’ and ‘path’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}. New in version 1.5.0: Added support for .tar files. protocolintInt which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1] paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4, 5. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. 1 https://docs.python.org/3/library/pickle.html. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2.0. See also read_pickleLoad pickled pandas object (or any object) from file. DataFrame.to_hdfWrite DataFrame to an HDF5 file. DataFrame.to_sqlWrite DataFrame to a SQL database. DataFrame.to_parquetWrite a DataFrame to the binary parquet format. Examples >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") >>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9
reference/api/pandas.DataFrame.to_pickle.html
pandas.Series.rmod
`pandas.Series.rmod` Return Modulo of series and other, element-wise (binary operator rmod). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.mod(b, fill_value=0) a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64 ```
Series.rmod(other, level=None, fill_value=None, axis=0)[source]# Return Modulo of series and other, element-wise (binary operator rmod). Equivalent to other % series, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.modElement-wise Modulo, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.mod(b, fill_value=0) a 0.0 b NaN c NaN d 0.0 e NaN dtype: float64
reference/api/pandas.Series.rmod.html
pandas.Index.is_monotonic_increasing
`pandas.Index.is_monotonic_increasing` Return a boolean if the values are equal or increasing. ``` >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False ```
property Index.is_monotonic_increasing[source]# Return a boolean if the values are equal or increasing. Examples >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False
reference/api/pandas.Index.is_monotonic_increasing.html
Options and settings
Options and settings
API for configuring global behavior. See the User Guide for more. Working with options# describe_option(pat[, _print_desc]) Prints the description for one or more registered options. reset_option(pat) Reset one or more options to their default value. get_option(pat) Retrieves the value of the specified option. set_option(pat, value) Sets the value of the specified option. option_context(*args) Context manager to temporarily set options in the with statement context.
reference/options.html
Index
_ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z _ __array__() (pandas.Categorical method) (pandas.Series method) __call__() (pandas.option_context method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) __dataframe__() (pandas.DataFrame method) __iter__() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) _concat_same_type() (pandas.api.extensions.ExtensionArray class method) _formatter() (pandas.api.extensions.ExtensionArray method) _from_factorized() (pandas.api.extensions.ExtensionArray class method) _from_sequence() (pandas.api.extensions.ExtensionArray class method) _from_sequence_of_strings() (pandas.api.extensions.ExtensionArray class method) _reduce() (pandas.api.extensions.ExtensionArray method) _values_for_argsort() (pandas.api.extensions.ExtensionArray method) _values_for_factorize() (pandas.api.extensions.ExtensionArray method) A abs() (pandas.DataFrame method) (pandas.Series method) AbstractMethodError AccessorRegistrationWarning add() (pandas.DataFrame method) (pandas.Series method) add_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) add_prefix() (pandas.DataFrame method) (pandas.Series method) add_suffix() (pandas.DataFrame method) (pandas.Series method) agg() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) aggregate() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) align() (pandas.DataFrame method) (pandas.Series method) all() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) allows_duplicate_labels (pandas.Flags property) andrews_curves() (in module pandas.plotting) any() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) append() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Index method) (pandas.Series method) apply() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) apply_index() (pandas.io.formats.style.Styler method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) applymap() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) applymap_index() (pandas.io.formats.style.Styler method) area() (pandas.DataFrame.plot method) (pandas.Series.plot method) argmax() (pandas.Index method) (pandas.Series method) argmin() (pandas.Index method) (pandas.Series method) argsort() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) array (pandas.Index attribute) (pandas.Series property) array() (in module pandas) ArrowDtype (class in pandas) ArrowExtensionArray (class in pandas.arrays) ArrowStringArray (class in pandas.arrays) as_ordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) as_unordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) asfreq() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) asi8 (pandas.Index property) asm8 (pandas.Timedelta attribute) (pandas.Timestamp attribute) asof() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) asof_locs() (pandas.Index method) assert_extension_array_equal() (in module pandas.testing) assert_frame_equal() (in module pandas.testing) assert_index_equal() (in module pandas.testing) assert_series_equal() (in module pandas.testing) assign() (pandas.DataFrame method) astimezone() (pandas.Timestamp method) astype() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) at (pandas.DataFrame property) (pandas.Series property) at_time() (pandas.DataFrame method) (pandas.Series method) AttributeConflictWarning attrs (pandas.DataFrame property) (pandas.Series property) autocorr() (pandas.Series method) autocorrelation_plot() (in module pandas.plotting) axes (pandas.DataFrame property) (pandas.Series property) B backfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) background_gradient() (pandas.io.formats.style.Styler method) bar() (pandas.DataFrame.plot method) (pandas.io.formats.style.Styler method) (pandas.Series.plot method) barh() (pandas.DataFrame.plot method) (pandas.Series.plot method) base (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) BaseIndexer (class in pandas.api.indexers) bdate_range() (in module pandas) BDay (in module pandas.tseries.offsets) between() (pandas.Series method) between_time() (pandas.DataFrame method) (pandas.Series method) bfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) BMonthBegin (in module pandas.tseries.offsets) BMonthEnd (in module pandas.tseries.offsets) book (pandas.ExcelWriter property) bool() (pandas.DataFrame method) (pandas.Series method) BooleanArray (class in pandas.arrays) BooleanDtype (class in pandas) bootstrap_plot() (in module pandas.plotting) box() (pandas.DataFrame.plot method) (pandas.Series.plot method) boxplot() (in module pandas.plotting) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) BQuarterBegin (class in pandas.tseries.offsets) BQuarterEnd (class in pandas.tseries.offsets) build_table_schema() (in module pandas.io.json) BusinessDay (class in pandas.tseries.offsets) BusinessHour (class in pandas.tseries.offsets) BusinessMonthBegin (class in pandas.tseries.offsets) BusinessMonthEnd (class in pandas.tseries.offsets) BYearBegin (class in pandas.tseries.offsets) BYearEnd (class in pandas.tseries.offsets) C calendar (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) capitalize() (pandas.Series.str method) casefold() (pandas.Series.str method) cat() (pandas.Series method) (pandas.Series.str method) Categorical (class in pandas) CategoricalConversionWarning CategoricalDtype (class in pandas) CategoricalIndex (class in pandas) categories (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) cbday_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) CBMonthBegin (in module pandas.tseries.offsets) CBMonthEnd (in module pandas.tseries.offsets) CDay (in module pandas.tseries.offsets) ceil() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) center() (pandas.Series.str method) check_array_indexer() (in module pandas.api.indexers) check_extension() (pandas.ExcelWriter class method) clear() (pandas.io.formats.style.Styler method) clip() (pandas.DataFrame method) (pandas.Series method) close() (pandas.ExcelWriter method) closed (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) closed_left (pandas.Interval attribute) closed_right (pandas.Interval attribute) ClosedFileError codes (pandas.Categorical property) (pandas.CategoricalIndex property) (pandas.MultiIndex property) (pandas.Series.cat attribute) columns (pandas.DataFrame attribute) combine() (pandas.DataFrame method) (pandas.Series method) (pandas.Timestamp class method) combine_first() (pandas.DataFrame method) (pandas.Series method) compare() (pandas.DataFrame method) (pandas.Series method) components (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) concat() (in module pandas) (pandas.io.formats.style.Styler method) construct_array_type() (pandas.api.extensions.ExtensionDtype class method) construct_from_string() (pandas.api.extensions.ExtensionDtype class method) contains() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) (pandas.Series.str method) convert_dtypes() (pandas.DataFrame method) (pandas.Series method) copy() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) corr (pandas.core.groupby.DataFrameGroupBy property) corr() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) corrwith (pandas.core.groupby.DataFrameGroupBy property) corrwith() (pandas.DataFrame method) count() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) cov (pandas.core.groupby.DataFrameGroupBy property) cov() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) crosstab() (in module pandas) CSSWarning ctime() (pandas.Timestamp method) cumcount() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) cummax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cummin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumprod() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumsum() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cur_sheet (pandas.ExcelWriter property) CustomBusinessDay (class in pandas.tseries.offsets) CustomBusinessHour (class in pandas.tseries.offsets) CustomBusinessMonthBegin (class in pandas.tseries.offsets) CustomBusinessMonthEnd (class in pandas.tseries.offsets) cut() (in module pandas) D data_label (pandas.io.stata.StataReader property) DatabaseError DataError DataFrame (class in pandas) date (pandas.DatetimeIndex property) (pandas.Series.dt attribute) date() (pandas.Timestamp method) date_format (pandas.ExcelWriter property) date_range() (in module pandas) DateOffset (class in pandas.tseries.offsets) datetime_format (pandas.ExcelWriter property) DatetimeArray (class in pandas.arrays) DatetimeIndex (class in pandas) DatetimeTZDtype (class in pandas) Day (class in pandas.tseries.offsets) day (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) day_of_month (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) day_of_week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_of_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofweek (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) days (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) days_in_month (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) daysinmonth (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) decode() (pandas.Series.str method) delete() (pandas.Index method) delta (pandas.Timedelta attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.Tick attribute) density (pandas.DataFrame.sparse attribute) (pandas.Series.sparse attribute) density() (pandas.DataFrame.plot method) (pandas.Series.plot method) deregister_matplotlib_converters() (in module pandas.plotting) describe() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) describe_option (in module pandas) diff() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) difference() (pandas.Index method) div() (pandas.DataFrame method) (pandas.Series method) divide() (pandas.DataFrame method) (pandas.Series method) divmod() (pandas.Series method) dot() (pandas.DataFrame method) (pandas.Series method) drop() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) drop_duplicates() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) droplevel() (pandas.DataFrame method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) dropna() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) dst() (pandas.Timestamp method) dt() (pandas.Series method) dtype (pandas.api.extensions.ExtensionArray property) (pandas.Categorical property) (pandas.Index attribute) (pandas.Series property) dtypes (pandas.DataFrame property) (pandas.MultiIndex attribute) (pandas.Series property) DtypeWarning duplicated() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) DuplicateLabelError E Easter (class in pandas.tseries.offsets) empty (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) empty() (pandas.api.extensions.ExtensionDtype method) EmptyDataError encode() (pandas.Series.str method) end (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) end_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) endswith() (pandas.Series.str method) engine (pandas.ExcelWriter property) env (pandas.io.formats.style.Styler attribute) eq() (pandas.DataFrame method) (pandas.Series method) equals() (pandas.api.extensions.ExtensionArray method) (pandas.CategoricalIndex method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) eval() (in module pandas) (pandas.DataFrame method) ewm() (pandas.DataFrame method) (pandas.Series method) ExcelWriter (class in pandas) expanding() (pandas.DataFrame method) (pandas.Series method) explode() (pandas.DataFrame method) (pandas.Series method) export() (pandas.io.formats.style.Styler method) ExtensionArray (class in pandas.api.extensions) ExtensionDtype (class in pandas.api.extensions) extract() (pandas.Series.str method) extractall() (pandas.Series.str method) F factorize() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) ffill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) fill_value (pandas.Series.sparse attribute) fillna (pandas.core.groupby.DataFrameGroupBy property) fillna() (pandas.api.extensions.ExtensionArray method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) filter() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) find() (pandas.Series.str method) findall() (pandas.Series.str method) first() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) first_valid_index() (pandas.DataFrame method) (pandas.Series method) FixedForwardWindowIndexer (class in pandas.api.indexers) Flags (class in pandas) flags (pandas.DataFrame property) (pandas.Series property) Float64Index (class in pandas) floor() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) floordiv() (pandas.DataFrame method) (pandas.Series method) fold (pandas.Timestamp attribute) format() (pandas.Index method) (pandas.io.formats.style.Styler method) format_index() (pandas.io.formats.style.Styler method) freq (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodDtype property) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.Timestamp attribute) freqstr (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Timestamp property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) from_arrays() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) from_breaks() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) from_codes() (pandas.Categorical class method) from_coo() (pandas.Series.sparse class method) from_custom_template() (pandas.io.formats.style.Styler class method) from_dataframe() (in module pandas.api.interchange) from_dict() (pandas.DataFrame class method) from_dummies() (in module pandas) from_frame() (pandas.MultiIndex class method) from_product() (pandas.MultiIndex class method) from_range() (pandas.RangeIndex class method) from_records() (pandas.DataFrame class method) from_spmatrix() (pandas.DataFrame.sparse class method) from_tuples() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) fromisocalendar() (pandas.Timestamp method) fromisoformat() (pandas.Timestamp method) fromordinal() (pandas.Timestamp class method) fromtimestamp() (pandas.Timestamp class method) fullmatch() (pandas.Series.str method) FY5253 (class in pandas.tseries.offsets) FY5253Quarter (class in pandas.tseries.offsets) G ge() (pandas.DataFrame method) (pandas.Series method) get() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) (pandas.Series.str method) get_dummies() (in module pandas) (pandas.Series.str method) get_group() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) get_indexer() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_indexer_for() (pandas.Index method) get_indexer_non_unique() (pandas.Index method) get_level_values() (pandas.Index method) (pandas.MultiIndex method) get_loc() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_loc_level() (pandas.MultiIndex method) get_locs() (pandas.MultiIndex method) get_option (in module pandas) get_rule_code_suffix() (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) get_slice_bound() (pandas.Index method) get_value() (pandas.Index method) get_weeks() (pandas.tseries.offsets.FY5253Quarter method) get_window_bounds() (pandas.api.indexers.BaseIndexer method) (pandas.api.indexers.FixedForwardWindowIndexer method) (pandas.api.indexers.VariableOffsetWindowIndexer method) get_year_end() (pandas.tseries.offsets.FY5253 method) groupby() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Grouper (class in pandas) groups (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) groups() (pandas.HDFStore method) gt() (pandas.DataFrame method) (pandas.Series method) H handles (pandas.ExcelWriter property) has_duplicates (pandas.Index property) hash_array() (in module pandas.util) hash_pandas_object() (in module pandas.util) hasnans (pandas.Index attribute) (pandas.Series property) head() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) hexbin() (pandas.DataFrame.plot method) hide() (pandas.io.formats.style.Styler method) hide_columns() (pandas.io.formats.style.Styler method) hide_index() (pandas.io.formats.style.Styler method) highlight_between() (pandas.io.formats.style.Styler method) highlight_max() (pandas.io.formats.style.Styler method) highlight_min() (pandas.io.formats.style.Styler method) highlight_null() (pandas.io.formats.style.Styler method) highlight_quantile() (pandas.io.formats.style.Styler method) hist (pandas.core.groupby.DataFrameGroupBy property) (pandas.core.groupby.SeriesGroupBy property) hist() (pandas.DataFrame method) (pandas.DataFrame.plot method) (pandas.Series method) (pandas.Series.plot method) holds_integer() (pandas.Index method) holidays (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) Hour (class in pandas.tseries.offsets) hour (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) I iat (pandas.DataFrame property) (pandas.Series property) identical() (pandas.Index method) idxmax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) idxmin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) if_sheet_exists (pandas.ExcelWriter property) iloc (pandas.DataFrame property) (pandas.Series property) IncompatibilityWarning Index (class in pandas) index (pandas.DataFrame attribute) (pandas.Series attribute) index() (pandas.Series.str method) indexer_at_time() (pandas.DatetimeIndex method) indexer_between_time() (pandas.DatetimeIndex method) IndexingError IndexSlice (in module pandas) indices (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) infer_dtype() (in module pandas.api.types) infer_freq() (in module pandas) infer_objects() (pandas.DataFrame method) (pandas.Series method) inferred_freq (pandas.DatetimeIndex attribute) (pandas.TimedeltaIndex attribute) inferred_type (pandas.Index attribute) info() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) insert() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) Int16Dtype (class in pandas) Int32Dtype (class in pandas) Int64Dtype (class in pandas) Int64Index (class in pandas) Int8Dtype (class in pandas) IntCastingNaNError IntegerArray (class in pandas.arrays) interpolate() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) intersection() (pandas.Index method) Interval (class in pandas) interval_range() (in module pandas) IntervalArray (class in pandas.arrays) IntervalDtype (class in pandas) IntervalIndex (class in pandas) InvalidColumnName InvalidIndexError is_() (pandas.Index method) is_all_dates (pandas.Index attribute) is_anchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_bool() (in module pandas.api.types) is_bool_dtype() (in module pandas.api.types) is_boolean() (pandas.Index method) is_categorical() (in module pandas.api.types) (pandas.Index method) is_categorical_dtype() (in module pandas.api.types) is_complex() (in module pandas.api.types) is_complex_dtype() (in module pandas.api.types) is_datetime64_any_dtype() (in module pandas.api.types) is_datetime64_dtype() (in module pandas.api.types) is_datetime64_ns_dtype() (in module pandas.api.types) is_datetime64tz_dtype() (in module pandas.api.types) is_dict_like() (in module pandas.api.types) is_dtype() (pandas.api.extensions.ExtensionDtype class method) is_empty (pandas.arrays.IntervalArray attribute) (pandas.Interval attribute) (pandas.IntervalIndex property) is_extension_array_dtype() (in module pandas.api.types) is_extension_type() (in module pandas.api.types) is_file_like() (in module pandas.api.types) is_float() (in module pandas.api.types) is_float_dtype() (in module pandas.api.types) is_floating() (pandas.Index method) is_hashable() (in module pandas.api.types) is_int64_dtype() (in module pandas.api.types) is_integer() (in module pandas.api.types) (pandas.Index method) is_integer_dtype() (in module pandas.api.types) is_interval() (in module pandas.api.types) (pandas.Index method) is_interval_dtype() (in module pandas.api.types) is_iterator() (in module pandas.api.types) is_leap_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_list_like() (in module pandas.api.types) is_mixed() (pandas.Index method) is_monotonic (pandas.Index property) (pandas.Series property) is_monotonic_decreasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_monotonic_increasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_month_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_month_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_named_tuple() (in module pandas.api.types) is_non_overlapping_monotonic (pandas.arrays.IntervalArray property) (pandas.IntervalIndex attribute) is_number() (in module pandas.api.types) is_numeric() (pandas.Index method) is_numeric_dtype() (in module pandas.api.types) is_object() (pandas.Index method) is_object_dtype() (in module pandas.api.types) is_on_offset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_overlapping (pandas.IntervalIndex property) is_period_dtype() (in module pandas.api.types) is_populated (pandas.Timedelta attribute) is_quarter_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_quarter_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_re() (in module pandas.api.types) is_re_compilable() (in module pandas.api.types) is_scalar() (in module pandas.api.types) is_signed_integer_dtype() (in module pandas.api.types) is_sparse() (in module pandas.api.types) is_string_dtype() (in module pandas.api.types) is_timedelta64_dtype() (in module pandas.api.types) is_timedelta64_ns_dtype() (in module pandas.api.types) is_type_compatible() (pandas.Index method) is_unique (pandas.Index attribute) (pandas.Series property) is_unsigned_integer_dtype() (in module pandas.api.types) is_year_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_year_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isalnum() (pandas.Series.str method) isalpha() (pandas.Series.str method) isAnchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isdecimal() (pandas.Series.str method) isdigit() (pandas.Series.str method) isetitem() (pandas.DataFrame method) isin() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) islower() (pandas.Series.str method) isna() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnumeric() (pandas.Series.str method) isocalendar() (pandas.Series.dt method) (pandas.Timestamp method) isoformat() (pandas.Timedelta method) (pandas.Timestamp method) isoweekday() (pandas.Timestamp method) isspace() (pandas.Series.str method) istitle() (pandas.Series.str method) isupper() (pandas.Series.str method) item() (pandas.Index method) (pandas.Series method) items() (pandas.DataFrame method) (pandas.Series method) iteritems() (pandas.DataFrame method) (pandas.Series method) iterrows() (pandas.DataFrame method) itertuples() (pandas.DataFrame method) J join() (pandas.DataFrame method) (pandas.Index method) (pandas.Series.str method) json_normalize() (in module pandas) K kde() (pandas.DataFrame.plot method) (pandas.Series.plot method) keys() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) kind (pandas.api.extensions.ExtensionDtype property) kurt() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) kurtosis() (pandas.DataFrame method) (pandas.Series method) kwds (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) L lag_plot() (in module pandas.plotting) last() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) last_valid_index() (pandas.DataFrame method) (pandas.Series method) LastWeekOfMonth (class in pandas.tseries.offsets) le() (pandas.DataFrame method) (pandas.Series method) left (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) len() (pandas.Series.str method) length (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex property) levels (pandas.MultiIndex attribute) levshape (pandas.MultiIndex property) line() (pandas.DataFrame.plot method) (pandas.Series.plot method) ljust() (pandas.Series.str method) loader (pandas.io.formats.style.Styler attribute) loc (pandas.DataFrame property) (pandas.Series property) lookup() (pandas.DataFrame method) lower() (pandas.Series.str method) lstrip() (pandas.Series.str method) lt() (pandas.DataFrame method) (pandas.Series method) M m_offset (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) mad (pandas.core.groupby.DataFrameGroupBy property) mad() (pandas.DataFrame method) (pandas.Series method) map() (pandas.CategoricalIndex method) (pandas.Index method) (pandas.Series method) mask() (pandas.DataFrame method) (pandas.Series method) match() (pandas.Series.str method) max (pandas.Timedelta attribute) (pandas.Timestamp attribute) max() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) mean() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) median() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) melt() (in module pandas) (pandas.DataFrame method) memory_usage() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) merge() (in module pandas) (pandas.DataFrame method) merge_asof() (in module pandas) merge_ordered() (in module pandas) MergeError Micro (class in pandas.tseries.offsets) microsecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) microseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) mid (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) Milli (class in pandas.tseries.offsets) min (pandas.Timedelta attribute) (pandas.Timestamp attribute) min() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Minute (class in pandas.tseries.offsets) minute (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) mod() (pandas.DataFrame method) (pandas.Series method) mode() (pandas.DataFrame method) (pandas.Series method) module pandas month (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) month_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) month_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) MonthBegin (class in pandas.tseries.offsets) MonthEnd (class in pandas.tseries.offsets) mul() (pandas.DataFrame method) (pandas.Series method) MultiIndex (class in pandas) multiply() (pandas.DataFrame method) (pandas.Series method) N n (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) na_value (pandas.api.extensions.ExtensionDtype property) name (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.Series property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) names (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.MultiIndex property) Nano (class in pandas.tseries.offsets) nanos (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) nanosecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) nanoseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) nbytes (pandas.api.extensions.ExtensionArray property) (pandas.Index property) (pandas.Series property) ndim (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) ne() (pandas.DataFrame method) (pandas.Series method) nearest() (pandas.core.resample.Resampler method) next_bday (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) ngroup() (pandas.core.groupby.GroupBy method) nlargest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nlevels (pandas.Index property) (pandas.MultiIndex property) normalize (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) normalize() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Series.str method) (pandas.Timestamp method) notna() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) notnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) now() (pandas.Period method) (pandas.Timestamp class method) npoints (pandas.Series.sparse attribute) nsmallest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nth (pandas.core.groupby.GroupBy property) NullFrequencyError NumbaUtilError NumExprClobberingError nunique() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) O offset (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) ohlc() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) onOffset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) open_left (pandas.Interval attribute) open_right (pandas.Interval attribute) option_context (class in pandas) OptionError ordered (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) ordinal (pandas.Period attribute) OutOfBoundsDatetime OutOfBoundsTimedelta overlaps() (pandas.arrays.IntervalArray method) (pandas.Interval method) (pandas.IntervalIndex method) P pad() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) pandas module pandas_dtype() (in module pandas.api.types) PandasArray (class in pandas.arrays) parallel_coordinates() (in module pandas.plotting) parse() (pandas.ExcelFile method) ParserError ParserWarning partition() (pandas.Series.str method) path (pandas.ExcelWriter property) pct_change() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) PerformanceWarning Period (class in pandas) period_range() (in module pandas) PeriodArray (class in pandas.arrays) PeriodDtype (class in pandas) PeriodIndex (class in pandas) pie() (pandas.DataFrame.plot method) (pandas.Series.plot method) pipe() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) pivot() (in module pandas) (pandas.DataFrame method) pivot_table() (in module pandas) (pandas.DataFrame method) plot (pandas.core.groupby.DataFrameGroupBy property) plot() (pandas.DataFrame method) (pandas.Series method) plot_params (in module pandas.plotting) pop() (pandas.DataFrame method) (pandas.Series method) PossibleDataLossError PossiblePrecisionLoss pow() (pandas.DataFrame method) (pandas.Series method) prod() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) product() (pandas.DataFrame method) (pandas.Series method) put() (pandas.HDFStore method) putmask() (pandas.Index method) PyperclipException PyperclipWindowsException Python Enhancement Proposals PEP 484 PEP 561 PEP 585 PEP 8#imports Q qcut() (in module pandas) qtr_with_extra_week (pandas.tseries.offsets.FY5253Quarter attribute) quantile() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) quarter (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) QuarterBegin (class in pandas.tseries.offsets) QuarterEnd (class in pandas.tseries.offsets) query() (pandas.DataFrame method) qyear (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) R radd() (pandas.DataFrame method) (pandas.Series method) radviz() (in module pandas.plotting) RangeIndex (class in pandas) rank() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) ravel() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) rdiv() (pandas.DataFrame method) (pandas.Series method) rdivmod() (pandas.Series method) read_clipboard() (in module pandas) read_csv() (in module pandas) read_excel() (in module pandas) read_feather() (in module pandas) read_fwf() (in module pandas) read_gbq() (in module pandas) read_hdf() (in module pandas) read_html() (in module pandas) read_json() (in module pandas) read_orc() (in module pandas) read_parquet() (in module pandas) read_pickle() (in module pandas) read_sas() (in module pandas) read_spss() (in module pandas) read_sql() (in module pandas) read_sql_query() (in module pandas) read_sql_table() (in module pandas) read_stata() (in module pandas) read_table() (in module pandas) read_xml() (in module pandas) register_dataframe_accessor() (in module pandas.api.extensions) register_extension_dtype() (in module pandas.api.extensions) register_index_accessor() (in module pandas.api.extensions) register_matplotlib_converters() (in module pandas.plotting) register_series_accessor() (in module pandas.api.extensions) reindex() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) reindex_like() (pandas.DataFrame method) (pandas.Series method) relabel_index() (pandas.io.formats.style.Styler method) remove_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_levels() (pandas.MultiIndex method) removeprefix() (pandas.Series.str method) removesuffix() (pandas.Series.str method) rename() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) rename_axis() (pandas.DataFrame method) (pandas.Series method) rename_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) render() (pandas.io.formats.style.Styler method) reorder_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) reorder_levels() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) repeat() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Series.str method) replace() (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) (pandas.Timestamp method) resample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) reset_index() (pandas.DataFrame method) (pandas.Series method) reset_option (in module pandas) resolution (pandas.Timedelta attribute) (pandas.Timestamp attribute) resolution_string (pandas.Timedelta attribute) rfind() (pandas.Series.str method) rfloordiv() (pandas.DataFrame method) (pandas.Series method) right (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) rindex() (pandas.Series.str method) rjust() (pandas.Series.str method) rmod() (pandas.DataFrame method) (pandas.Series method) rmul() (pandas.DataFrame method) (pandas.Series method) rollback() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rollforward() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rolling() (pandas.DataFrame method) (pandas.Series method) round() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) rpartition() (pandas.Series.str method) rpow() (pandas.DataFrame method) (pandas.Series method) rsplit() (pandas.Series.str method) rstrip() (pandas.Series.str method) rsub() (pandas.DataFrame method) (pandas.Series method) rtruediv() (pandas.DataFrame method) (pandas.Series method) rule_code (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) S sample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) save() (pandas.ExcelWriter method) scatter() (pandas.DataFrame.plot method) scatter_matrix() (in module pandas.plotting) searchsorted() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) Second (class in pandas.tseries.offsets) second (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) seconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) select() (pandas.HDFStore method) select_dtypes() (pandas.DataFrame method) sem() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) SemiMonthBegin (class in pandas.tseries.offsets) SemiMonthEnd (class in pandas.tseries.offsets) Series (class in pandas) set_axis() (pandas.DataFrame method) (pandas.Series method) set_caption() (pandas.io.formats.style.Styler method) set_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) set_closed() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) set_codes() (pandas.MultiIndex method) set_flags() (pandas.DataFrame method) (pandas.Series method) set_index() (pandas.DataFrame method) set_levels() (pandas.MultiIndex method) set_na_rep() (pandas.io.formats.style.Styler method) set_names() (pandas.Index method) set_option (in module pandas) set_precision() (pandas.io.formats.style.Styler method) set_properties() (pandas.io.formats.style.Styler method) set_sticky() (pandas.io.formats.style.Styler method) set_table_attributes() (pandas.io.formats.style.Styler method) set_table_styles() (pandas.io.formats.style.Styler method) set_td_classes() (pandas.io.formats.style.Styler method) set_tooltips() (pandas.io.formats.style.Styler method) set_uuid() (pandas.io.formats.style.Styler method) set_value() (pandas.Index method) SettingWithCopyError SettingWithCopyWarning shape (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) sheets (pandas.ExcelWriter property) shift() (pandas.api.extensions.ExtensionArray method) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) show_versions() (in module pandas) size (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) size() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) skew (pandas.core.groupby.DataFrameGroupBy property) skew() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) slice() (pandas.Series.str method) slice_indexer() (pandas.Index method) slice_locs() (pandas.Index method) slice_replace() (pandas.Series.str method) slice_shift() (pandas.DataFrame method) (pandas.Series method) snap() (pandas.DatetimeIndex method) sort() (pandas.Index method) sort_index() (pandas.DataFrame method) (pandas.Series method) sort_values() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) sortlevel() (pandas.Index method) (pandas.MultiIndex method) sp_values (pandas.Series.sparse attribute) sparse() (pandas.DataFrame method) (pandas.Series method) SparseArray (class in pandas.arrays) SparseDtype (class in pandas) SpecificationError split() (pandas.Series.str method) squeeze() (pandas.DataFrame method) (pandas.Series method) stack() (pandas.DataFrame method) start (pandas.RangeIndex property) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) start_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) startingMonth (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) startswith() (pandas.Series.str method) std() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) step (pandas.RangeIndex property) stop (pandas.RangeIndex property) str() (pandas.Index method) (pandas.Series method) strftime() (pandas.DatetimeIndex method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series.dt method) (pandas.Timestamp method) StringArray (class in pandas.arrays) StringDtype (class in pandas) strip() (pandas.Series.str method) strptime() (pandas.Timestamp class method) style (pandas.DataFrame property) Styler (class in pandas.io.formats.style) sub() (pandas.DataFrame method) (pandas.Series method) subtract() (pandas.DataFrame method) (pandas.Series method) subtype (pandas.IntervalDtype property) sum() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) supported_extensions (pandas.ExcelWriter property) swapaxes() (pandas.DataFrame method) (pandas.Series method) swapcase() (pandas.Series.str method) swaplevel() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) symmetric_difference() (pandas.Index method) T T (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) table() (in module pandas.plotting) tail() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) take (pandas.core.groupby.DataFrameGroupBy property) take() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) template_html (pandas.io.formats.style.Styler attribute) template_html_style (pandas.io.formats.style.Styler attribute) template_html_table (pandas.io.formats.style.Styler attribute) template_latex (pandas.io.formats.style.Styler attribute) template_string (pandas.io.formats.style.Styler attribute) test() (in module pandas) text_gradient() (pandas.io.formats.style.Styler method) Tick (class in pandas.tseries.offsets) time (pandas.DatetimeIndex property) (pandas.Series.dt attribute) time() (pandas.Timestamp method) Timedelta (class in pandas) timedelta_range() (in module pandas) TimedeltaArray (class in pandas.arrays) TimedeltaIndex (class in pandas) Timestamp (class in pandas) timestamp() (pandas.Timestamp method) timetuple() (pandas.Timestamp method) timetz (pandas.DatetimeIndex property) (pandas.Series.dt attribute) timetz() (pandas.Timestamp method) title() (pandas.Series.str method) to_clipboard() (pandas.DataFrame method) (pandas.Series method) to_coo() (pandas.DataFrame.sparse method) (pandas.Series.sparse method) to_csv() (pandas.DataFrame method) (pandas.Series method) to_datetime() (in module pandas) to_datetime64() (pandas.Timestamp method) to_dense() (pandas.DataFrame.sparse method) to_dict() (pandas.DataFrame method) (pandas.Series method) to_excel() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_feather() (pandas.DataFrame method) to_flat_index() (pandas.Index method) (pandas.MultiIndex method) to_frame() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) to_gbq() (pandas.DataFrame method) to_hdf() (pandas.DataFrame method) (pandas.Series method) to_html() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) to_json() (pandas.DataFrame method) (pandas.Series method) to_julian_date() (pandas.Timestamp method) to_latex() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_list() (pandas.Index method) (pandas.Series method) to_markdown() (pandas.DataFrame method) (pandas.Series method) to_native_types() (pandas.Index method) to_numeric() (in module pandas) to_numpy() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) (pandas.Timestamp method) to_offset() (in module pandas.tseries.frequencies) to_orc() (pandas.DataFrame method) to_parquet() (pandas.DataFrame method) to_period() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) to_perioddelta() (pandas.DatetimeIndex method) to_pickle() (pandas.DataFrame method) (pandas.Series method) to_pydatetime() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) to_pytimedelta() (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) to_records() (pandas.DataFrame method) to_series() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.TimedeltaIndex method) to_sql() (pandas.DataFrame method) (pandas.Series method) to_stata() (pandas.DataFrame method) to_string() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_timedelta() (in module pandas) to_timedelta64() (pandas.Timedelta method) to_timestamp() (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) to_tuples() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) to_xarray() (pandas.DataFrame method) (pandas.Series method) to_xml() (pandas.DataFrame method) today() (pandas.Timestamp class method) tolist() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) toordinal() (pandas.Timestamp method) total_seconds() (pandas.Series.dt method) (pandas.Timedelta method) transform() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) translate() (pandas.Series.str method) transpose() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) truediv() (pandas.DataFrame method) (pandas.Series method) truncate() (pandas.DataFrame method) (pandas.Series method) tshift (pandas.core.groupby.DataFrameGroupBy property) tshift() (pandas.DataFrame method) (pandas.Series method) type (pandas.api.extensions.ExtensionDtype property) tz (pandas.DatetimeIndex property) (pandas.DatetimeTZDtype property) (pandas.Series.dt attribute) (pandas.Timestamp property) tz_convert() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tz_localize() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tzinfo (pandas.Timestamp attribute) tzname() (pandas.Timestamp method) U UInt16Dtype (class in pandas) UInt32Dtype (class in pandas) UInt64Dtype (class in pandas) UInt64Index (class in pandas) UInt8Dtype (class in pandas) UndefinedVariableError union() (pandas.Index method) union_categoricals() (in module pandas.api.types) unique (pandas.core.groupby.SeriesGroupBy property) unique() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) unit (pandas.DatetimeTZDtype property) UnsortedIndexError unstack() (pandas.DataFrame method) (pandas.Series method) UnsupportedFunctionCall update() (pandas.DataFrame method) (pandas.Series method) upper() (pandas.Series.str method) use() (pandas.io.formats.style.Styler method) utcfromtimestamp() (pandas.Timestamp class method) utcnow() (pandas.Timestamp class method) utcoffset() (pandas.Timestamp method) utctimetuple() (pandas.Timestamp method) V value (pandas.Timedelta attribute) (pandas.Timestamp attribute) value_counts() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) value_labels() (pandas.io.stata.StataReader method) ValueLabelTypeMismatch values (pandas.DataFrame property) (pandas.Index property) (pandas.IntervalIndex property) (pandas.Series property) var() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) variable_labels() (pandas.io.stata.StataReader method) VariableOffsetWindowIndexer (class in pandas.api.indexers) variation (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) view() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) W walk() (pandas.HDFStore method) Week (class in pandas.tseries.offsets) week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday() (pandas.Timestamp method) weekmask (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) WeekOfMonth (class in pandas.tseries.offsets) weekofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) where() (pandas.DataFrame method) (pandas.Index method) (pandas.io.formats.style.Styler method) (pandas.Series method) wide_to_long() (in module pandas) wrap() (pandas.Series.str method) write_cells() (pandas.ExcelWriter method) write_file() (pandas.io.stata.StataWriter method) X xs() (pandas.DataFrame method) (pandas.Series method) Y year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) year_has_extra_week() (pandas.tseries.offsets.FY5253Quarter method) YearBegin (class in pandas.tseries.offsets) YearEnd (class in pandas.tseries.offsets) Z zfill() (pandas.Series.str method)
genindex.html
null
pandas.Series.str.get
`pandas.Series.str.get` Extract element from each component at specified position or with specified key. ``` >>> s = pd.Series(["String", ... (1, 2, 3), ... ["a", "b", "c"], ... 123, ... -456, ... {1: "Hello", "2": "World"}]) >>> s 0 String 1 (1, 2, 3) 2 [a, b, c] 3 123 4 -456 5 {1: 'Hello', '2': 'World'} dtype: object ```
Series.str.get(i)[source]# Extract element from each component at specified position or with specified key. Extract element from lists, tuples, dict, or strings in each element in the Series/Index. Parameters iint or hashable dict labelPosition or key of element to extract. Returns Series or Index Examples >>> s = pd.Series(["String", ... (1, 2, 3), ... ["a", "b", "c"], ... 123, ... -456, ... {1: "Hello", "2": "World"}]) >>> s 0 String 1 (1, 2, 3) 2 [a, b, c] 3 123 4 -456 5 {1: 'Hello', '2': 'World'} dtype: object >>> s.str.get(1) 0 t 1 2 2 b 3 NaN 4 NaN 5 Hello dtype: object >>> s.str.get(-1) 0 g 1 3 2 c 3 NaN 4 NaN 5 None dtype: object Return element with given key >>> s = pd.Series([{"name": "Hello", "value": "World"}, ... {"name": "Goodbye", "value": "Planet"}]) >>> s.str.get('name') 0 Hello 1 Goodbye dtype: object
reference/api/pandas.Series.str.get.html
pandas.Period.freqstr
`pandas.Period.freqstr` Return a string representation of the frequency.
Period.freqstr# Return a string representation of the frequency.
reference/api/pandas.Period.freqstr.html
pandas.tseries.offsets.SemiMonthBegin.rule_code
pandas.tseries.offsets.SemiMonthBegin.rule_code
SemiMonthBegin.rule_code#
reference/api/pandas.tseries.offsets.SemiMonthBegin.rule_code.html
User Guide
User Guide
The User Guide covers all of pandas by topic area. Each of the subsections introduces a topic (such as “working with missing data”), and discusses how pandas approaches the problem, with many examples throughout. Users brand-new to pandas should start with 10 minutes to pandas. For a high level summary of the pandas fundamentals, see Intro to data structures and Essential basic functionality. Further information on any specific method can be obtained in the API reference. How to read these guides# In these guides you will see input code inside code blocks such as: import pandas as pd pd.DataFrame({'A': [1, 2, 3]}) or: In [1]: import pandas as pd In [2]: pd.DataFrame({'A': [1, 2, 3]}) Out[2]: A 0 1 1 2 2 3 The first block is a standard python input, while in the second the In [1]: indicates the input is inside a notebook. In Jupyter Notebooks the last line is printed and plots are shown inline. For example: In [3]: a = 1 In [4]: a Out[4]: 1 is equivalent to: a = 1 print(a) Guides# 10 minutes to pandas Object creation Viewing data Selection Missing data Operations Merge Grouping Reshaping Time series Categoricals Plotting Importing and exporting data Gotchas Intro to data structures Series DataFrame Essential basic functionality Head and tail Attributes and underlying data Accelerated operations Flexible binary operations Descriptive statistics Function application Reindexing and altering labels Iteration .dt accessor Vectorized string methods Sorting Copying dtypes Selecting columns based on dtype IO tools (text, CSV, HDF5, …) CSV & text files JSON HTML LaTeX XML Excel files OpenDocument Spreadsheets Binary Excel (.xlsb) files Clipboard Pickling msgpack HDF5 (PyTables) Feather Parquet ORC SQL queries Google BigQuery Stata format SAS formats SPSS formats Other file formats Performance considerations Indexing and selecting data Different choices for indexing Basics Attribute access Slicing ranges Selection by label Selection by position Selection by callable Combining positional and label-based indexing Indexing with list with missing labels is deprecated Selecting random samples Setting with enlargement Fast scalar value getting and setting Boolean indexing Indexing with isin The where() Method and Masking Setting with enlargement conditionally using numpy() The query() Method Duplicate data Dictionary-like get() method Looking up values by index/column labels Index objects Set / reset index Returning a view versus a copy MultiIndex / advanced indexing Hierarchical indexing (MultiIndex) Advanced indexing with hierarchical index Sorting a MultiIndex Take methods Index types Miscellaneous indexing FAQ Merge, join, concatenate and compare Concatenating objects Database-style DataFrame or named Series joining/merging Timeseries friendly merging Comparing objects Reshaping and pivot tables Reshaping by pivoting DataFrame objects Reshaping by stacking and unstacking Reshaping by melt Combining with stats and GroupBy Pivot tables Cross tabulations Tiling Computing indicator / dummy variables Factorizing values Examples Exploding a list-like column Working with text data Text data types String methods Splitting and replacing strings Concatenation Indexing with .str Extracting substrings Testing for strings that match or contain a pattern Creating indicator variables Method summary Working with missing data Values considered “missing” Inserting missing data Calculations with missing data Sum/prod of empties/nans NA values in GroupBy Filling missing values: fillna Filling with a PandasObject Dropping axis labels with missing data: dropna Interpolation Replacing generic values String/regular expression replacement Numeric replacement Experimental NA scalar to denote missing values Duplicate Labels Consequences of Duplicate Labels Duplicate Label Detection Disallowing Duplicate Labels Categorical data Object creation CategoricalDtype Description Working with categories Sorting and order Comparisons Operations Data munging Getting data in/out Missing data Differences to R’s factor Gotchas Nullable integer data type Construction Operations Scalar NA Value Nullable Boolean data type Indexing with NA values Kleene logical operations Chart visualization Basic plotting: plot Other plots Plotting with missing data Plotting tools Plot formatting Plotting directly with Matplotlib Plotting backends Table Visualization Styler Object and HTML Formatting the Display Methods to Add Styles Table Styles Setting Classes and Linking to External CSS Styler Functions Tooltips and Captions Finer Control with Slicing Optimization Builtin Styles Sharing styles Limitations Other Fun and Useful Stuff Export to Excel Export to LaTeX More About CSS and HTML Extensibility Group by: split-apply-combine Splitting an object into groups Iterating through groups Selecting a group Aggregation Transformation Filtration Dispatching to instance methods Flexible apply Numba Accelerated Routines Other useful features Examples Windowing operations Overview Rolling window Weighted window Expanding window Exponentially weighted window Time series / date functionality Overview Timestamps vs. time spans Converting to timestamps Generating ranges of timestamps Timestamp limitations Indexing Time/date components DateOffset objects Time Series-related instance methods Resampling Time span representation Converting between representations Representing out-of-bounds spans Time zone handling Time deltas Parsing Operations Reductions Frequency conversion Attributes TimedeltaIndex Resampling Options and settings Overview Available options Getting and setting options Setting startup options in Python/IPython environment Frequently used options Number formatting Unicode formatting Table schema display Enhancing performance Cython (writing C extensions for pandas) Numba (JIT compilation) Expression evaluation via eval() Scaling to large datasets Load less data Use efficient datatypes Use chunking Use other libraries Sparse data structures SparseArray SparseDtype Sparse accessor Sparse calculation Migrating Interaction with scipy.sparse Frequently Asked Questions (FAQ) DataFrame memory usage Using if/truth statements with pandas Mutating with User Defined Function (UDF) methods NaN, Integer NA values and NA type promotions Differences with NumPy Thread-safety Byte-ordering issues Cookbook Idioms Selection Multiindexing Missing data Grouping Timeseries Merge Plotting Data in/out Computation Timedeltas Creating example data
user_guide/index.html
pandas.tseries.offsets.Hour.apply_index
`pandas.tseries.offsets.Hour.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
Hour.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.Hour.apply_index.html
pandas.DataFrame.combine
`pandas.DataFrame.combine` Perform column-wise combine with another DataFrame. ``` >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 ```
DataFrame.combine(other, func, fill_value=None, overwrite=True)[source]# Perform column-wise combine with another DataFrame. Combines a DataFrame with other DataFrame using func to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters otherDataFrameThe DataFrame to merge column-wise. funcfunctionFunction that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_valuescalar value, default NoneThe value to fill NaNs with prior to passing any column to the merge func. overwritebool, default TrueIf True, columns in self that do not exist in other will be overwritten with NaNs. Returns DataFrameCombination of the provided DataFrames. See also DataFrame.combine_firstCombine two DataFrame objects and default to non-null values in frame calling the method. Examples Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using fill_value fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of overwrite and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0
reference/api/pandas.DataFrame.combine.html
Testing
Assertion functions# testing.assert_frame_equal(left, right[, ...]) Check that left and right DataFrame are equal. testing.assert_series_equal(left, right[, ...]) Check that left and right Series are equal. testing.assert_index_equal(left, right[, ...]) Check that left and right Index are equal. testing.assert_extension_array_equal(left, right) Check that left and right ExtensionArrays are equal. Exceptions and warnings# errors.AbstractMethodError(class_instance[, ...]) Raise this error instead of NotImplementedError for abstract methods. errors.AccessorRegistrationWarning Warning for attribute conflicts in accessor registration. errors.AttributeConflictWarning Warning raised when index attributes conflict when using HDFStore. errors.CategoricalConversionWarning Warning is raised when reading a partial labeled Stata file using a iterator. errors.ClosedFileError Exception is raised when trying to perform an operation on a closed HDFStore file. errors.CSSWarning Warning is raised when converting css styling fails. errors.DatabaseError Error is raised when executing sql with bad syntax or sql that throws an error. errors.DataError Exceptionn raised when performing an operation on non-numerical data. errors.DtypeWarning Warning raised when reading different dtypes in a column from a file. errors.DuplicateLabelError Error raised when an operation would introduce duplicate labels. errors.EmptyDataError Exception raised in pd.read_csv when empty data or header is encountered. errors.IncompatibilityWarning Warning raised when trying to use where criteria on an incompatible HDF5 file. errors.IndexingError Exception is raised when trying to index and there is a mismatch in dimensions. errors.InvalidColumnName Warning raised by to_stata the column contains a non-valid stata name. errors.InvalidIndexError Exception raised when attempting to use an invalid index key. errors.IntCastingNaNError Exception raised when converting (astype) an array with NaN to an integer type. errors.MergeError Exception raised when merging data. errors.NullFrequencyError Exception raised when a freq cannot be null. errors.NumbaUtilError Error raised for unsupported Numba engine routines. errors.NumExprClobberingError Exception raised when trying to use a built-in numexpr name as a variable name. errors.OptionError Exception raised for pandas.options. errors.OutOfBoundsDatetime Raised when the datetime is outside the range that can be represented. errors.OutOfBoundsTimedelta Raised when encountering a timedelta value that cannot be represented. errors.ParserError Exception that is raised by an error encountered in parsing file contents. errors.ParserWarning Warning raised when reading a file that doesn't use the default 'c' parser. errors.PerformanceWarning Warning raised when there is a possible performance impact. errors.PossibleDataLossError Exception raised when trying to open a HDFStore file when already opened. errors.PossiblePrecisionLoss Warning raised by to_stata on a column with a value outside or equal to int64. errors.PyperclipException Exception raised when clipboard functionality is unsupported. errors.PyperclipWindowsException(message) Exception raised when clipboard functionality is unsupported by Windows. errors.SettingWithCopyError Exception raised when trying to set on a copied slice from a DataFrame. errors.SettingWithCopyWarning Warning raised when trying to set on a copied slice from a DataFrame. errors.SpecificationError Exception raised by agg when the functions are ill-specified. errors.UndefinedVariableError(name[, is_local]) Exception raised by query or eval when using an undefined variable name. errors.UnsortedIndexError Error raised when slicing a MultiIndex which has not been lexsorted. errors.UnsupportedFunctionCall Exception raised when attempting to call a unsupported numpy function. errors.ValueLabelTypeMismatch Warning raised by to_stata on a category column that contains non-string values. Bug report function# show_versions([as_json]) Provide useful information, important for bug reports. Test suite runner# test([extra_args]) Run the pandas test suite using pytest.
reference/testing.html
null
pandas.Series.truediv
`pandas.Series.truediv` Return Floating division of series and other, element-wise (binary operator truediv). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64 ```
Series.truediv(other, level=None, fill_value=None, axis=0)[source]# Return Floating division of series and other, element-wise (binary operator truediv). Equivalent to series / other, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.rtruedivReverse of the Floating division operator, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.divide(b, fill_value=0) a 1.0 b inf c inf d 0.0 e NaN dtype: float64
reference/api/pandas.Series.truediv.html
pandas.io.formats.style.Styler.template_html_style
pandas.io.formats.style.Styler.template_html_style
Styler.template_html_style = <Template 'html_style.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_html_style.html
MultiIndex / advanced indexing
MultiIndex / advanced indexing This section covers indexing with a MultiIndex and other advanced indexing features. See the Indexing and Selecting Data for general indexing documentation. Warning Whether a copy or a reference is returned for a setting operation may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy. See the cookbook for some advanced strategies.
This section covers indexing with a MultiIndex and other advanced indexing features. See the Indexing and Selecting Data for general indexing documentation. Warning Whether a copy or a reference is returned for a setting operation may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy. See the cookbook for some advanced strategies. Hierarchical indexing (MultiIndex)# Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d). In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis. See the cookbook for some advanced strategies. Creating a MultiIndex (hierarchical index) object# The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex as an array of tuples where each tuple is unique. A MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays()), an array of tuples (using MultiIndex.from_tuples()), a crossed set of iterables (using MultiIndex.from_product()), or a DataFrame (using MultiIndex.from_frame()). The Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demonstrate different ways to initialize MultiIndexes. In [1]: arrays = [ ...: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ...: ["one", "two", "one", "two", "one", "two", "one", "two"], ...: ] ...: In [2]: tuples = list(zip(*arrays)) In [3]: tuples Out[3]: [('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')] In [4]: index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) In [5]: index Out[5]: MultiIndex([('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']) In [6]: s = pd.Series(np.random.randn(8), index=index) In [7]: s Out[7]: first second bar one 0.469112 two -0.282863 baz one -1.509059 two -1.135632 foo one 1.212112 two -0.173215 qux one 0.119209 two -1.044236 dtype: float64 When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex.from_product() method: In [8]: iterables = [["bar", "baz", "foo", "qux"], ["one", "two"]] In [9]: pd.MultiIndex.from_product(iterables, names=["first", "second"]) Out[9]: MultiIndex([('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], names=['first', 'second']) You can also construct a MultiIndex from a DataFrame directly, using the method MultiIndex.from_frame(). This is a complementary method to MultiIndex.to_frame(). In [10]: df = pd.DataFrame( ....: [["bar", "one"], ["bar", "two"], ["foo", "one"], ["foo", "two"]], ....: columns=["first", "second"], ....: ) ....: In [11]: pd.MultiIndex.from_frame(df) Out[11]: MultiIndex([('bar', 'one'), ('bar', 'two'), ('foo', 'one'), ('foo', 'two')], names=['first', 'second']) As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically: In [12]: arrays = [ ....: np.array(["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"]), ....: np.array(["one", "two", "one", "two", "one", "two", "one", "two"]), ....: ] ....: In [13]: s = pd.Series(np.random.randn(8), index=arrays) In [14]: s Out[14]: bar one -0.861849 two -2.104569 baz one -0.494929 two 1.071804 foo one 0.721555 two -0.706771 qux one -1.039575 two 0.271860 dtype: float64 In [15]: df = pd.DataFrame(np.random.randn(8, 4), index=arrays) In [16]: df Out[16]: 0 1 2 3 bar one -0.424972 0.567020 0.276232 -1.087401 two -0.673690 0.113648 -1.478427 0.524988 baz one 0.404705 0.577046 -1.715002 -1.039268 two -0.370647 -1.157892 -1.344312 0.844885 foo one 1.075770 -0.109050 1.643563 -1.469388 two 0.357021 -0.674600 -1.776904 -0.968914 qux one -1.294524 0.413738 0.276662 -0.472035 two -0.013960 -0.362543 -0.006154 -0.923061 All of the MultiIndex constructors accept a names argument which stores string names for the levels themselves. If no names are provided, None will be assigned: In [17]: df.index.names Out[17]: FrozenList([None, None]) This index can back any axis of a pandas object, and the number of levels of the index is up to you: In [18]: df = pd.DataFrame(np.random.randn(3, 8), index=["A", "B", "C"], columns=index) In [19]: df Out[19]: first bar baz ... foo qux second one two one ... two one two A 0.895717 0.805244 -1.206412 ... 1.340309 -1.170299 -0.226169 B 0.410835 0.813850 0.132003 ... -1.187678 1.130127 -1.436737 C -1.413681 1.607920 1.024180 ... -2.211372 0.974466 -2.006747 [3 rows x 8 columns] In [20]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6]) Out[20]: first bar baz foo second one two one two one two first second bar one -0.410001 -0.078638 0.545952 -1.219217 -1.226825 0.769804 two -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734 baz one 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738 two 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849 foo one -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232 two 0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441 We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes. Note that how the index is displayed can be controlled using the multi_sparse option in pandas.set_options(): In [21]: with pd.option_context("display.multi_sparse", False): ....: df ....: It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis: In [22]: pd.Series(np.random.randn(8), index=tuples) Out[22]: (bar, one) -1.236269 (bar, two) 0.896171 (baz, one) -0.487602 (baz, two) -0.082240 (foo, one) -2.182937 (foo, two) 0.380396 (qux, one) 0.084844 (qux, two) 0.432390 dtype: float64 The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set. Reconstructing the level labels# The method get_level_values() will return a vector of the labels for each location at a particular level: In [23]: index.get_level_values(0) Out[23]: Index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object', name='first') In [24]: index.get_level_values("second") Out[24]: Index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object', name='second') Basic indexing on axis with MultiIndex# One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame: In [25]: df["bar"] Out[25]: second one two A 0.895717 0.805244 B 0.410835 0.813850 C -1.413681 1.607920 In [26]: df["bar", "one"] Out[26]: A 0.895717 B 0.410835 C -1.413681 Name: (bar, one), dtype: float64 In [27]: df["bar"]["one"] Out[27]: A 0.895717 B 0.410835 C -1.413681 Name: one, dtype: float64 In [28]: s["qux"] Out[28]: one -1.039575 two 0.271860 dtype: float64 See Cross-section with hierarchical index for how to select on a deeper level. Defined levels# The MultiIndex keeps all the defined levels of an index, even if they are not actually used. When slicing an index, you may notice this. For example: In [29]: df.columns.levels # original MultiIndex Out[29]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']]) In [30]: df[["foo","qux"]].columns.levels # sliced Out[30]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']]) This is done to avoid a recomputation of the levels in order to make slicing highly performant. If you want to see only the used levels, you can use the get_level_values() method. In [31]: df[["foo", "qux"]].columns.to_numpy() Out[31]: array([('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], dtype=object) # for a specific level In [32]: df[["foo", "qux"]].columns.get_level_values(0) Out[32]: Index(['foo', 'foo', 'qux', 'qux'], dtype='object', name='first') To reconstruct the MultiIndex with only the used levels, the remove_unused_levels() method may be used. In [33]: new_mi = df[["foo", "qux"]].columns.remove_unused_levels() In [34]: new_mi.levels Out[34]: FrozenList([['foo', 'qux'], ['one', 'two']]) Data alignment and using reindex# Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data alignment will work the same as an Index of tuples: In [35]: s + s[:-2] Out[35]: bar one -1.723698 two -4.209138 baz one -0.989859 two 2.143608 foo one 1.443110 two -1.413542 qux one NaN two NaN dtype: float64 In [36]: s + s[::2] Out[36]: bar one -1.723698 two NaN baz one -0.989859 two NaN foo one 1.443110 two NaN qux one -2.079150 two NaN dtype: float64 The reindex() method of Series/DataFrames can be called with another MultiIndex, or even a list or array of tuples: In [37]: s.reindex(index[:3]) Out[37]: first second bar one -0.861849 two -2.104569 baz one -0.494929 dtype: float64 In [38]: s.reindex([("foo", "two"), ("bar", "one"), ("qux", "one"), ("baz", "one")]) Out[38]: foo two -0.706771 bar one -0.861849 qux one -1.039575 baz one -0.494929 dtype: float64 Advanced indexing with hierarchical index# Syntactically integrating MultiIndex in advanced indexing with .loc is a bit challenging, but we’ve made every effort to do so. In general, MultiIndex keys take the form of tuples. For example, the following works as you would expect: In [39]: df = df.T In [40]: df Out[40]: A B C first second bar one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920 baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 two -0.226169 -1.436737 -2.006747 In [41]: df.loc[("bar", "two")] Out[41]: A 0.805244 B 0.813850 C 1.607920 Name: (bar, two), dtype: float64 Note that df.loc['bar', 'two'] would also work in this example, but this shorthand notation can lead to ambiguity in general. If you also want to index a specific column with .loc, you must use a tuple like this: In [42]: df.loc[("bar", "two"), "A"] Out[42]: 0.8052440253863785 You don’t have to specify all levels of the MultiIndex by passing only the first elements of the tuple. For example, you can use “partial” indexing to get all elements with bar in the first level as follows: In [43]: df.loc["bar"] Out[43]: A B C second one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920 This is a shortcut for the slightly more verbose notation df.loc[('bar',),] (equivalent to df.loc['bar',] in this example). “Partial” slicing also works quite nicely. In [44]: df.loc["baz":"foo"] Out[44]: A B C first second baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 You can slice with a ‘range’ of values, by providing a slice of tuples. In [45]: df.loc[("baz", "two"):("qux", "one")] Out[45]: A B C first second baz two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 In [46]: df.loc[("baz", "two"):"foo"] Out[46]: A B C first second baz two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 Passing a list of labels or tuples works similar to reindexing: In [47]: df.loc[[("bar", "two"), ("qux", "one")]] Out[47]: A B C first second bar two 0.805244 0.813850 1.607920 qux one -1.170299 1.130127 0.974466 Note It is important to note that tuples and lists are not treated identically in pandas when it comes to indexing. Whereas a tuple is interpreted as one multi-level key, a list is used to specify several keys. Or in other words, tuples go horizontally (traversing levels), lists go vertically (scanning levels). Importantly, a list of tuples indexes several complete MultiIndex keys, whereas a tuple of lists refer to several values within a level: In [48]: s = pd.Series( ....: [1, 2, 3, 4, 5, 6], ....: index=pd.MultiIndex.from_product([["A", "B"], ["c", "d", "e"]]), ....: ) ....: In [49]: s.loc[[("A", "c"), ("B", "d")]] # list of tuples Out[49]: A c 1 B d 5 dtype: int64 In [50]: s.loc[(["A", "B"], ["c", "d"])] # tuple of lists Out[50]: A c 1 d 2 B c 4 d 5 dtype: int64 Using slicers# You can slice a MultiIndex by providing multiple indexers. You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers. You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None). As usual, both sides of the slicers are included as this is label indexing. Warning You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. There are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows. You should do this: df.loc[(slice("A1", "A3"), ...), :] # noqa: E999 You should not do this: df.loc[(slice("A1", "A3"), ...)] # noqa: E999 In [51]: def mklbl(prefix, n): ....: return ["%s%s" % (prefix, i) for i in range(n)] ....: In [52]: miindex = pd.MultiIndex.from_product( ....: [mklbl("A", 4), mklbl("B", 2), mklbl("C", 4), mklbl("D", 2)] ....: ) ....: In [53]: micolumns = pd.MultiIndex.from_tuples( ....: [("a", "foo"), ("a", "bar"), ("b", "foo"), ("b", "bah")], names=["lvl0", "lvl1"] ....: ) ....: In [54]: dfmi = ( ....: pd.DataFrame( ....: np.arange(len(miindex) * len(micolumns)).reshape( ....: (len(miindex), len(micolumns)) ....: ), ....: index=miindex, ....: columns=micolumns, ....: ) ....: .sort_index() ....: .sort_index(axis=1) ....: ) ....: In [55]: dfmi Out[55]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 9 8 11 10 D1 13 12 15 14 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 237 236 239 238 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 249 248 251 250 D1 253 252 255 254 [64 rows x 4 columns] Basic MultiIndex slicing using slices, lists, and labels. In [56]: dfmi.loc[(slice("A1", "A3"), slice(None), ["C1", "C3"]), :] Out[56]: lvl0 a b lvl1 bar foo bah foo A1 B0 C1 D0 73 72 75 74 D1 77 76 79 78 C3 D0 89 88 91 90 D1 93 92 95 94 B1 C1 D0 105 104 107 106 ... ... ... ... ... A3 B0 C3 D1 221 220 223 222 B1 C1 D0 233 232 235 234 D1 237 236 239 238 C3 D0 249 248 251 250 D1 253 252 255 254 [24 rows x 4 columns] You can use pandas.IndexSlice to facilitate a more natural syntax using :, rather than using slice(None). In [57]: idx = pd.IndexSlice In [58]: dfmi.loc[idx[:, :, ["C1", "C3"]], idx[:, "foo"]] Out[58]: lvl0 a b lvl1 foo foo A0 B0 C1 D0 8 10 D1 12 14 C3 D0 24 26 D1 28 30 B1 C1 D0 40 42 ... ... ... A3 B0 C3 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [32 rows x 2 columns] It is possible to perform quite complicated selections using this method on multiple axes at the same time. In [59]: dfmi.loc["A1", (slice(None), "foo")] Out[59]: lvl0 a b lvl1 foo foo B0 C0 D0 64 66 D1 68 70 C1 D0 72 74 D1 76 78 C2 D0 80 82 ... ... ... B1 C1 D1 108 110 C2 D0 112 114 D1 116 118 C3 D0 120 122 D1 124 126 [16 rows x 2 columns] In [60]: dfmi.loc[idx[:, :, ["C1", "C3"]], idx[:, "foo"]] Out[60]: lvl0 a b lvl1 foo foo A0 B0 C1 D0 8 10 D1 12 14 C3 D0 24 26 D1 28 30 B1 C1 D0 40 42 ... ... ... A3 B0 C3 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 [32 rows x 2 columns] Using a boolean indexer you can provide selection related to the values. In [61]: mask = dfmi[("a", "foo")] > 200 In [62]: dfmi.loc[idx[mask, :, ["C1", "C3"]], idx[:, "foo"]] Out[62]: lvl0 a b lvl1 foo foo A3 B0 C1 D1 204 206 C3 D0 216 218 D1 220 222 B1 C1 D0 232 234 D1 236 238 C3 D0 248 250 D1 252 254 You can also specify the axis argument to .loc to interpret the passed slicers on a single axis. In [63]: dfmi.loc(axis=0)[:, :, ["C1", "C3"]] Out[63]: lvl0 a b lvl1 bar foo bah foo A0 B0 C1 D0 9 8 11 10 D1 13 12 15 14 C3 D0 25 24 27 26 D1 29 28 31 30 B1 C1 D0 41 40 43 42 ... ... ... ... ... A3 B0 C3 D1 221 220 223 222 B1 C1 D0 233 232 235 234 D1 237 236 239 238 C3 D0 249 248 251 250 D1 253 252 255 254 [32 rows x 4 columns] Furthermore, you can set the values using the following methods. In [64]: df2 = dfmi.copy() In [65]: df2.loc(axis=0)[:, :, ["C1", "C3"]] = -10 In [66]: df2 Out[66]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 -10 -10 -10 -10 D1 -10 -10 -10 -10 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 -10 -10 -10 -10 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 -10 -10 -10 -10 D1 -10 -10 -10 -10 [64 rows x 4 columns] You can use a right-hand-side of an alignable object as well. In [67]: df2 = dfmi.copy() In [68]: df2.loc[idx[:, :, ["C1", "C3"]], :] = df2 * 1000 In [69]: df2 Out[69]: lvl0 a b lvl1 bar foo bah foo A0 B0 C0 D0 1 0 3 2 D1 5 4 7 6 C1 D0 9000 8000 11000 10000 D1 13000 12000 15000 14000 C2 D0 17 16 19 18 ... ... ... ... ... A3 B1 C1 D1 237000 236000 239000 238000 C2 D0 241 240 243 242 D1 245 244 247 246 C3 D0 249000 248000 251000 250000 D1 253000 252000 255000 254000 [64 rows x 4 columns] Cross-section# The xs() method of DataFrame additionally takes a level argument to make selecting data at a particular level of a MultiIndex easier. In [70]: df Out[70]: A B C first second bar one 0.895717 0.410835 -1.413681 two 0.805244 0.813850 1.607920 baz one -1.206412 0.132003 1.024180 two 2.565646 -0.827317 0.569605 foo one 1.431256 -0.076467 0.875906 two 1.340309 -1.187678 -2.211372 qux one -1.170299 1.130127 0.974466 two -0.226169 -1.436737 -2.006747 In [71]: df.xs("one", level="second") Out[71]: A B C first bar 0.895717 0.410835 -1.413681 baz -1.206412 0.132003 1.024180 foo 1.431256 -0.076467 0.875906 qux -1.170299 1.130127 0.974466 # using the slicers In [72]: df.loc[(slice(None), "one"), :] Out[72]: A B C first second bar one 0.895717 0.410835 -1.413681 baz one -1.206412 0.132003 1.024180 foo one 1.431256 -0.076467 0.875906 qux one -1.170299 1.130127 0.974466 You can also select on the columns with xs, by providing the axis argument. In [73]: df = df.T In [74]: df.xs("one", level="second", axis=1) Out[74]: first bar baz foo qux A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466 # using the slicers In [75]: df.loc[:, (slice(None), "one")] Out[75]: first bar baz foo qux second one one one one A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466 xs also allows selection with multiple keys. In [76]: df.xs(("one", "bar"), level=("second", "first"), axis=1) Out[76]: first bar second one A 0.895717 B 0.410835 C -1.413681 # using the slicers In [77]: df.loc[:, ("bar", "one")] Out[77]: A 0.895717 B 0.410835 C -1.413681 Name: (bar, one), dtype: float64 You can pass drop_level=False to xs to retain the level that was selected. In [78]: df.xs("one", level="second", axis=1, drop_level=False) Out[78]: first bar baz foo qux second one one one one A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466 Compare the above with the result using drop_level=True (the default value). In [79]: df.xs("one", level="second", axis=1, drop_level=True) Out[79]: first bar baz foo qux A 0.895717 -1.206412 1.431256 -1.170299 B 0.410835 0.132003 -0.076467 1.130127 C -1.413681 1.024180 0.875906 0.974466 Advanced reindexing and alignment# Using the parameter level in the reindex() and align() methods of pandas objects is useful to broadcast values across a level. For instance: In [80]: midx = pd.MultiIndex( ....: levels=[["zero", "one"], ["x", "y"]], codes=[[1, 1, 0, 0], [1, 0, 1, 0]] ....: ) ....: In [81]: df = pd.DataFrame(np.random.randn(4, 2), index=midx) In [82]: df Out[82]: 0 1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 In [83]: df2 = df.groupby(level=0).mean() In [84]: df2 Out[84]: 0 1 one 1.060074 -0.109716 zero 1.271532 0.713416 In [85]: df2.reindex(df.index, level=0) Out[85]: 0 1 one y 1.060074 -0.109716 x 1.060074 -0.109716 zero y 1.271532 0.713416 x 1.271532 0.713416 # aligning In [86]: df_aligned, df2_aligned = df.align(df2, level=0) In [87]: df_aligned Out[87]: 0 1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 In [88]: df2_aligned Out[88]: 0 1 one y 1.060074 -0.109716 x 1.060074 -0.109716 zero y 1.271532 0.713416 x 1.271532 0.713416 Swapping levels with swaplevel# The swaplevel() method can switch the order of two levels: In [89]: df[:5] Out[89]: 0 1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 In [90]: df[:5].swaplevel(0, 1, axis=0) Out[90]: 0 1 y one 1.519970 -0.493662 x one 0.600178 0.274230 y zero 0.132885 -0.023688 x zero 2.410179 1.450520 Reordering levels with reorder_levels# The reorder_levels() method generalizes the swaplevel method, allowing you to permute the hierarchical index levels in one step: In [91]: df[:5].reorder_levels([1, 0], axis=0) Out[91]: 0 1 y one 1.519970 -0.493662 x one 0.600178 0.274230 y zero 0.132885 -0.023688 x zero 2.410179 1.450520 Renaming names of an Index or MultiIndex# The rename() method is used to rename the labels of a MultiIndex, and is typically used to rename the columns of a DataFrame. The columns argument of rename allows a dictionary to be specified that includes only the columns you wish to rename. In [92]: df.rename(columns={0: "col0", 1: "col1"}) Out[92]: col0 col1 one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 This method can also be used to rename specific labels of the main index of the DataFrame. In [93]: df.rename(index={"one": "two", "y": "z"}) Out[93]: 0 1 two z 1.519970 -0.493662 x 0.600178 0.274230 zero z 0.132885 -0.023688 x 2.410179 1.450520 The rename_axis() method is used to rename the name of a Index or MultiIndex. In particular, the names of the levels of a MultiIndex can be specified, which is useful if reset_index() is later used to move the values from the MultiIndex to a column. In [94]: df.rename_axis(index=["abc", "def"]) Out[94]: 0 1 abc def one y 1.519970 -0.493662 x 0.600178 0.274230 zero y 0.132885 -0.023688 x 2.410179 1.450520 Note that the columns of a DataFrame are an index, so that using rename_axis with the columns argument will change the name of that index. In [95]: df.rename_axis(columns="Cols").columns Out[95]: RangeIndex(start=0, stop=2, step=1, name='Cols') Both rename and rename_axis support specifying a dictionary, Series or a mapping function to map labels/names to new values. When working with an Index object directly, rather than via a DataFrame, Index.set_names() can be used to change the names. In [96]: mi = pd.MultiIndex.from_product([[1, 2], ["a", "b"]], names=["x", "y"]) In [97]: mi.names Out[97]: FrozenList(['x', 'y']) In [98]: mi2 = mi.rename("new name", level=0) In [99]: mi2 Out[99]: MultiIndex([(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')], names=['new name', 'y']) You cannot set the names of the MultiIndex via a level. In [100]: mi.levels[0].name = "name via level" --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[100], line 1 ----> 1 mi.levels[0].name = "name via level" File ~/work/pandas/pandas/pandas/core/indexes/base.py:1745, in Index.name(self, value) 1741 @name.setter 1742 def name(self, value: Hashable) -> None: 1743 if self._no_setting_name: 1744 # Used in MultiIndex.levels to avoid silently ignoring name updates. -> 1745 raise RuntimeError( 1746 "Cannot set name on a level of a MultiIndex. Use " 1747 "'MultiIndex.set_names' instead." 1748 ) 1749 maybe_extract_name(value, None, type(self)) 1750 self._name = value RuntimeError: Cannot set name on a level of a MultiIndex. Use 'MultiIndex.set_names' instead. Use Index.set_names() instead. Sorting a MultiIndex# For MultiIndex-ed objects to be indexed and sliced effectively, they need to be sorted. As with any index, you can use sort_index(). In [101]: import random In [102]: random.shuffle(tuples) In [103]: s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples)) In [104]: s Out[104]: baz two 0.206053 foo two -0.251905 bar one -2.213588 qux two 1.063327 baz one 1.266143 qux one 0.299368 foo one -0.863838 bar two 0.408204 dtype: float64 In [105]: s.sort_index() Out[105]: bar one -2.213588 two 0.408204 baz one 1.266143 two 0.206053 foo one -0.863838 two -0.251905 qux one 0.299368 two 1.063327 dtype: float64 In [106]: s.sort_index(level=0) Out[106]: bar one -2.213588 two 0.408204 baz one 1.266143 two 0.206053 foo one -0.863838 two -0.251905 qux one 0.299368 two 1.063327 dtype: float64 In [107]: s.sort_index(level=1) Out[107]: bar one -2.213588 baz one 1.266143 foo one -0.863838 qux one 0.299368 bar two 0.408204 baz two 0.206053 foo two -0.251905 qux two 1.063327 dtype: float64 You may also pass a level name to sort_index if the MultiIndex levels are named. In [108]: s.index.set_names(["L1", "L2"], inplace=True) In [109]: s.sort_index(level="L1") Out[109]: L1 L2 bar one -2.213588 two 0.408204 baz one 1.266143 two 0.206053 foo one -0.863838 two -0.251905 qux one 0.299368 two 1.063327 dtype: float64 In [110]: s.sort_index(level="L2") Out[110]: L1 L2 bar one -2.213588 baz one 1.266143 foo one -0.863838 qux one 0.299368 bar two 0.408204 baz two 0.206053 foo two -0.251905 qux two 1.063327 dtype: float64 On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex: In [111]: df.T.sort_index(level=1, axis=1) Out[111]: one zero one zero x x y y 0 0.600178 2.410179 1.519970 0.132885 1 0.274230 1.450520 -0.493662 -0.023688 Indexing will work even if the data are not sorted, but will be rather inefficient (and show a PerformanceWarning). It will also return a copy of the data rather than a view: In [112]: dfm = pd.DataFrame( .....: {"jim": [0, 0, 1, 1], "joe": ["x", "x", "z", "y"], "jolie": np.random.rand(4)} .....: ) .....: In [113]: dfm = dfm.set_index(["jim", "joe"]) In [114]: dfm Out[114]: jolie jim joe 0 x 0.490671 x 0.120248 1 z 0.537020 y 0.110968 In [4]: dfm.loc[(1, 'z')] PerformanceWarning: indexing past lexsort depth may impact performance. Out[4]: jolie jim joe 1 z 0.64094 Furthermore, if you try to index something that is not fully lexsorted, this can raise: In [5]: dfm.loc[(0, 'y'):(1, 'z')] UnsortedIndexError: 'Key length (2) was greater than MultiIndex lexsort depth (1)' The is_monotonic_increasing() method on a MultiIndex shows if the index is sorted: In [115]: dfm.index.is_monotonic_increasing Out[115]: False In [116]: dfm = dfm.sort_index() In [117]: dfm Out[117]: jolie jim joe 0 x 0.490671 x 0.120248 1 y 0.110968 z 0.537020 In [118]: dfm.index.is_monotonic_increasing Out[118]: True And now selection works as expected. In [119]: dfm.loc[(0, "y"):(1, "z")] Out[119]: jolie jim joe 1 y 0.110968 z 0.537020 Take methods# Similar to NumPy ndarrays, pandas Index, Series, and DataFrame also provides the take() method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. take will also accept negative integers as relative positions to the end of the object. In [120]: index = pd.Index(np.random.randint(0, 1000, 10)) In [121]: index Out[121]: Int64Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64') In [122]: positions = [0, 9, 3] In [123]: index[positions] Out[123]: Int64Index([214, 329, 567], dtype='int64') In [124]: index.take(positions) Out[124]: Int64Index([214, 329, 567], dtype='int64') In [125]: ser = pd.Series(np.random.randn(10)) In [126]: ser.iloc[positions] Out[126]: 0 -0.179666 9 1.824375 3 0.392149 dtype: float64 In [127]: ser.take(positions) Out[127]: 0 -0.179666 9 1.824375 3 0.392149 dtype: float64 For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions. In [128]: frm = pd.DataFrame(np.random.randn(5, 3)) In [129]: frm.take([1, 4, 3]) Out[129]: 0 1 2 1 -1.237881 0.106854 -1.276829 4 0.629675 -1.425966 1.857704 3 0.979542 -1.633678 0.615855 In [130]: frm.take([0, 2], axis=1) Out[130]: 0 2 0 0.595974 0.601544 1 -1.237881 -1.276829 2 -0.767101 1.499591 3 0.979542 0.615855 4 0.629675 1.857704 It is important to note that the take method on pandas objects are not intended to work on boolean indices and may return unexpected results. In [131]: arr = np.random.randn(10) In [132]: arr.take([False, False, True, True]) Out[132]: array([-1.1935, -1.1935, 0.6775, 0.6775]) In [133]: arr[[0, 1]] Out[133]: array([-1.1935, 0.6775]) In [134]: ser = pd.Series(np.random.randn(10)) In [135]: ser.take([False, False, True, True]) Out[135]: 0 0.233141 0 0.233141 1 -0.223540 1 -0.223540 dtype: float64 In [136]: ser.iloc[[0, 1]] Out[136]: 0 0.233141 1 -0.223540 dtype: float64 Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing. In [137]: arr = np.random.randn(10000, 5) In [138]: indexer = np.arange(10000) In [139]: random.shuffle(indexer) In [140]: %timeit arr[indexer] .....: %timeit arr.take(indexer, axis=0) .....: 141 us +- 1.18 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) 43.6 us +- 1.01 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) In [141]: ser = pd.Series(arr[:, 0]) In [142]: %timeit ser.iloc[indexer] .....: %timeit ser.take(indexer) .....: 71.3 us +- 2.24 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) 63.1 us +- 4.29 us per loop (mean +- std. dev. of 7 runs, 10,000 loops each) Index types# We have discussed MultiIndex in the previous sections pretty extensively. Documentation about DatetimeIndex and PeriodIndex are shown here, and documentation about TimedeltaIndex is found here. In the following sub-sections we will highlight some other index types. CategoricalIndex# CategoricalIndex is a type of index that is useful for supporting indexing with duplicates. This is a container around a Categorical and allows efficient indexing and storage of an index with a large number of duplicated elements. In [143]: from pandas.api.types import CategoricalDtype In [144]: df = pd.DataFrame({"A": np.arange(6), "B": list("aabbca")}) In [145]: df["B"] = df["B"].astype(CategoricalDtype(list("cab"))) In [146]: df Out[146]: A B 0 0 a 1 1 a 2 2 b 3 3 b 4 4 c 5 5 a In [147]: df.dtypes Out[147]: A int64 B category dtype: object In [148]: df["B"].cat.categories Out[148]: Index(['c', 'a', 'b'], dtype='object') Setting the index will create a CategoricalIndex. In [149]: df2 = df.set_index("B") In [150]: df2.index Out[150]: CategoricalIndex(['a', 'a', 'b', 'b', 'c', 'a'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B') Indexing with __getitem__/.iloc/.loc works similarly to an Index with duplicates. The indexers must be in the category or the operation will raise a KeyError. In [151]: df2.loc["a"] Out[151]: A B a 0 a 1 a 5 The CategoricalIndex is preserved after indexing: In [152]: df2.loc["a"].index Out[152]: CategoricalIndex(['a', 'a', 'a'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B') Sorting the index will sort by the order of the categories (recall that we created the index with CategoricalDtype(list('cab')), so the sorted order is cab). In [153]: df2.sort_index() Out[153]: A B c 4 a 0 a 1 a 5 b 2 b 3 Groupby operations on the index will preserve the index nature as well. In [154]: df2.groupby(level=0).sum() Out[154]: A B c 4 a 6 b 5 In [155]: df2.groupby(level=0).sum().index Out[155]: CategoricalIndex(['c', 'a', 'b'], categories=['c', 'a', 'b'], ordered=False, dtype='category', name='B') Reindexing operations will return a resulting index based on the type of the passed indexer. Passing a list will return a plain-old Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the categories of the passed Categorical dtype. This allows one to arbitrarily index these even with values not in the categories, similarly to how you can reindex any pandas index. In [156]: df3 = pd.DataFrame( .....: {"A": np.arange(3), "B": pd.Series(list("abc")).astype("category")} .....: ) .....: In [157]: df3 = df3.set_index("B") In [158]: df3 Out[158]: A B a 0 b 1 c 2 In [159]: df3.reindex(["a", "e"]) Out[159]: A B a 0.0 e NaN In [160]: df3.reindex(["a", "e"]).index Out[160]: Index(['a', 'e'], dtype='object', name='B') In [161]: df3.reindex(pd.Categorical(["a", "e"], categories=list("abe"))) Out[161]: A B a 0.0 e NaN In [162]: df3.reindex(pd.Categorical(["a", "e"], categories=list("abe"))).index Out[162]: CategoricalIndex(['a', 'e'], categories=['a', 'b', 'e'], ordered=False, dtype='category', name='B') Warning Reshaping and Comparison operations on a CategoricalIndex must have the same categories or a TypeError will be raised. In [163]: df4 = pd.DataFrame({"A": np.arange(2), "B": list("ba")}) In [164]: df4["B"] = df4["B"].astype(CategoricalDtype(list("ab"))) In [165]: df4 = df4.set_index("B") In [166]: df4.index Out[166]: CategoricalIndex(['b', 'a'], categories=['a', 'b'], ordered=False, dtype='category', name='B') In [167]: df5 = pd.DataFrame({"A": np.arange(2), "B": list("bc")}) In [168]: df5["B"] = df5["B"].astype(CategoricalDtype(list("bc"))) In [169]: df5 = df5.set_index("B") In [170]: df5.index Out[170]: CategoricalIndex(['b', 'c'], categories=['b', 'c'], ordered=False, dtype='category', name='B') In [1]: pd.concat([df4, df5]) TypeError: categories must match existing categories when appending Int64Index and RangeIndex# Deprecated since version 1.4.0: In pandas 2.0, Index will become the default index type for numeric types instead of Int64Index, Float64Index and UInt64Index and those index types are therefore deprecated and will be removed in a futire version. RangeIndex will not be removed, as it represents an optimized version of an integer index. Int64Index is a fundamental basic index in pandas. This is an immutable array implementing an ordered, sliceable set. RangeIndex is a sub-class of Int64Index that provides the default index for all NDFrame objects. RangeIndex is an optimized version of Int64Index that can represent a monotonic ordered set. These are analogous to Python range types. Float64Index# Deprecated since version 1.4.0: Index will become the default index type for numeric types in the future instead of Int64Index, Float64Index and UInt64Index and those index types are therefore deprecated and will be removed in a future version of Pandas. RangeIndex will not be removed as it represents an optimized version of an integer index. By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and slicing work exactly the same. In [171]: indexf = pd.Index([1.5, 2, 3, 4.5, 5]) In [172]: indexf Out[172]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64') In [173]: sf = pd.Series(range(5), index=indexf) In [174]: sf Out[174]: 1.5 0 2.0 1 3.0 2 4.5 3 5.0 4 dtype: int64 Scalar selection for [],.loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0). In [175]: sf[3] Out[175]: 2 In [176]: sf[3.0] Out[176]: 2 In [177]: sf.loc[3] Out[177]: 2 In [178]: sf.loc[3.0] Out[178]: 2 The only positional indexing is via iloc. In [179]: sf.iloc[3] Out[179]: 3 A scalar index that is not found will raise a KeyError. Slicing is primarily on the values of the index when using [],ix,loc, and always positional when using iloc. The exception is when the slice is boolean, in which case it will always be positional. In [180]: sf[2:4] Out[180]: 2.0 1 3.0 2 dtype: int64 In [181]: sf.loc[2:4] Out[181]: 2.0 1 3.0 2 dtype: int64 In [182]: sf.iloc[2:4] Out[182]: 3.0 2 4.5 3 dtype: int64 In float indexes, slicing using floats is allowed. In [183]: sf[2.1:4.6] Out[183]: 3.0 2 4.5 3 dtype: int64 In [184]: sf.loc[2.1:4.6] Out[184]: 3.0 2 4.5 3 dtype: int64 In non-float indexes, slicing using floats will raise a TypeError. In [1]: pd.Series(range(5))[3.5] TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index) In [1]: pd.Series(range(5))[3.5:4.5] TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index) Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could, for example, be millisecond offsets. In [185]: dfir = pd.concat( .....: [ .....: pd.DataFrame( .....: np.random.randn(5, 2), index=np.arange(5) * 250.0, columns=list("AB") .....: ), .....: pd.DataFrame( .....: np.random.randn(6, 2), .....: index=np.arange(4, 10) * 250.1, .....: columns=list("AB"), .....: ), .....: ] .....: ) .....: In [186]: dfir Out[186]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725 1000.4 -0.179734 0.993962 1250.5 -0.212673 0.909872 1500.6 -0.733333 -0.349893 1750.7 0.456434 -0.306735 2000.8 0.553396 0.166221 2250.9 -0.101684 -0.734907 Selection operations then will always work on a value basis, for all selection operators. In [187]: dfir[0:1000.4] Out[187]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725 1000.4 -0.179734 0.993962 In [188]: dfir.loc[0:1001, "A"] Out[188]: 0.0 -0.435772 250.0 -0.808286 500.0 -1.815703 750.0 -0.243487 1000.0 1.162969 1000.4 -0.179734 Name: A, dtype: float64 In [189]: dfir.loc[1000.4] Out[189]: A -0.179734 B 0.993962 Name: 1000.4, dtype: float64 You could retrieve the first 1 second (1000 ms) of data as such: In [190]: dfir[0:1000] Out[190]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725 If you need integer based selection, you should use iloc: In [191]: dfir.iloc[0:5] Out[191]: A B 0.0 -0.435772 -1.188928 250.0 -0.808286 -0.284634 500.0 -1.815703 1.347213 750.0 -0.243487 0.514704 1000.0 1.162969 -0.287725 IntervalIndex# IntervalIndex together with its own dtype, IntervalDtype as well as the Interval scalar type, allow first-class support in pandas for interval notation. The IntervalIndex allows some unique indexing and is also used as a return type for the categories in cut() and qcut(). Indexing with an IntervalIndex# An IntervalIndex can be used in Series and in DataFrame as the index. In [192]: df = pd.DataFrame( .....: {"A": [1, 2, 3, 4]}, index=pd.IntervalIndex.from_breaks([0, 1, 2, 3, 4]) .....: ) .....: In [193]: df Out[193]: A (0, 1] 1 (1, 2] 2 (2, 3] 3 (3, 4] 4 Label based indexing via .loc along the edges of an interval works as you would expect, selecting that particular interval. In [194]: df.loc[2] Out[194]: A 2 Name: (1, 2], dtype: int64 In [195]: df.loc[[2, 3]] Out[195]: A (1, 2] 2 (2, 3] 3 If you select a label contained within an interval, this will also select the interval. In [196]: df.loc[2.5] Out[196]: A 3 Name: (2, 3], dtype: int64 In [197]: df.loc[[2.5, 3.5]] Out[197]: A (2, 3] 3 (3, 4] 4 Selecting using an Interval will only return exact matches (starting from pandas 0.25.0). In [198]: df.loc[pd.Interval(1, 2)] Out[198]: A 2 Name: (1, 2], dtype: int64 Trying to select an Interval that is not exactly contained in the IntervalIndex will raise a KeyError. In [7]: df.loc[pd.Interval(0.5, 2.5)] --------------------------------------------------------------------------- KeyError: Interval(0.5, 2.5, closed='right') Selecting all Intervals that overlap a given Interval can be performed using the overlaps() method to create a boolean indexer. In [199]: idxr = df.index.overlaps(pd.Interval(0.5, 2.5)) In [200]: idxr Out[200]: array([ True, True, True, False]) In [201]: df[idxr] Out[201]: A (0, 1] 1 (1, 2] 2 (2, 3] 3 Binning data with cut and qcut# cut() and qcut() both return a Categorical object, and the bins they create are stored as an IntervalIndex in its .categories attribute. In [202]: c = pd.cut(range(4), bins=2) In [203]: c Out[203]: [(-0.003, 1.5], (-0.003, 1.5], (1.5, 3.0], (1.5, 3.0]] Categories (2, interval[float64, right]): [(-0.003, 1.5] < (1.5, 3.0]] In [204]: c.categories Out[204]: IntervalIndex([(-0.003, 1.5], (1.5, 3.0]], dtype='interval[float64, right]') cut() also accepts an IntervalIndex for its bins argument, which enables a useful pandas idiom. First, We call cut() with some data and bins set to a fixed number, to generate the bins. Then, we pass the values of .categories as the bins argument in subsequent calls to cut(), supplying new data which will be binned into the same bins. In [205]: pd.cut([0, 3, 5, 1], bins=c.categories) Out[205]: [(-0.003, 1.5], (1.5, 3.0], NaN, (-0.003, 1.5]] Categories (2, interval[float64, right]): [(-0.003, 1.5] < (1.5, 3.0]] Any value which falls outside all bins will be assigned a NaN value. Generating ranges of intervals# If we need intervals on a regular frequency, we can use the interval_range() function to create an IntervalIndex using various combinations of start, end, and periods. The default frequency for interval_range is a 1 for numeric intervals, and calendar day for datetime-like intervals: In [206]: pd.interval_range(start=0, end=5) Out[206]: IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]') In [207]: pd.interval_range(start=pd.Timestamp("2017-01-01"), periods=4) Out[207]: IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04], (2017-01-04, 2017-01-05]], dtype='interval[datetime64[ns], right]') In [208]: pd.interval_range(end=pd.Timedelta("3 days"), periods=3) Out[208]: IntervalIndex([(0 days 00:00:00, 1 days 00:00:00], (1 days 00:00:00, 2 days 00:00:00], (2 days 00:00:00, 3 days 00:00:00]], dtype='interval[timedelta64[ns], right]') The freq parameter can used to specify non-default frequencies, and can utilize a variety of frequency aliases with datetime-like intervals: In [209]: pd.interval_range(start=0, periods=5, freq=1.5) Out[209]: IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0], (6.0, 7.5]], dtype='interval[float64, right]') In [210]: pd.interval_range(start=pd.Timestamp("2017-01-01"), periods=4, freq="W") Out[210]: IntervalIndex([(2017-01-01, 2017-01-08], (2017-01-08, 2017-01-15], (2017-01-15, 2017-01-22], (2017-01-22, 2017-01-29]], dtype='interval[datetime64[ns], right]') In [211]: pd.interval_range(start=pd.Timedelta("0 days"), periods=3, freq="9H") Out[211]: IntervalIndex([(0 days 00:00:00, 0 days 09:00:00], (0 days 09:00:00, 0 days 18:00:00], (0 days 18:00:00, 1 days 03:00:00]], dtype='interval[timedelta64[ns], right]') Additionally, the closed parameter can be used to specify which side(s) the intervals are closed on. Intervals are closed on the right side by default. In [212]: pd.interval_range(start=0, end=4, closed="both") Out[212]: IntervalIndex([[0, 1], [1, 2], [2, 3], [3, 4]], dtype='interval[int64, both]') In [213]: pd.interval_range(start=0, end=4, closed="neither") Out[213]: IntervalIndex([(0, 1), (1, 2), (2, 3), (3, 4)], dtype='interval[int64, neither]') Specifying start, end, and periods will generate a range of evenly spaced intervals from start to end inclusively, with periods number of elements in the resulting IntervalIndex: In [214]: pd.interval_range(start=0, end=6, periods=4) Out[214]: IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]') In [215]: pd.interval_range(pd.Timestamp("2018-01-01"), pd.Timestamp("2018-02-28"), periods=3) Out[215]: IntervalIndex([(2018-01-01, 2018-01-20 08:00:00], (2018-01-20 08:00:00, 2018-02-08 16:00:00], (2018-02-08 16:00:00, 2018-02-28]], dtype='interval[datetime64[ns], right]') Miscellaneous indexing FAQ# Integer indexing# Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .loc. The following code will generate exceptions: In [216]: s = pd.Series(range(5)) In [217]: s[-1] --------------------------------------------------------------------------- ValueError Traceback (most recent call last) File ~/work/pandas/pandas/pandas/core/indexes/range.py:391, in RangeIndex.get_loc(self, key, method, tolerance) 390 try: --> 391 return self._range.index(new_key) 392 except ValueError as err: ValueError: -1 is not in range The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) Cell In[217], line 1 ----> 1 s[-1] File ~/work/pandas/pandas/pandas/core/series.py:981, in Series.__getitem__(self, key) 978 return self._values[key] 980 elif key_is_scalar: --> 981 return self._get_value(key) 983 if is_hashable(key): 984 # Otherwise index.get_value will raise InvalidIndexError 985 try: 986 # For labels that don't resolve as scalars like tuples and frozensets File ~/work/pandas/pandas/pandas/core/series.py:1089, in Series._get_value(self, label, takeable) 1086 return self._values[label] 1088 # Similar to Index.get_value, but we do not fall back to positional -> 1089 loc = self.index.get_loc(label) 1090 return self.index._get_values_for_loc(self, loc, label) File ~/work/pandas/pandas/pandas/core/indexes/range.py:393, in RangeIndex.get_loc(self, key, method, tolerance) 391 return self._range.index(new_key) 392 except ValueError as err: --> 393 raise KeyError(key) from err 394 self._check_indexing_error(key) 395 raise KeyError(key) KeyError: -1 In [218]: df = pd.DataFrame(np.random.randn(5, 4)) In [219]: df Out[219]: 0 1 2 3 0 -0.130121 -0.476046 0.759104 0.213379 1 -0.082641 0.448008 0.656420 -1.051443 2 0.594956 -0.151360 -0.069303 1.221431 3 -0.182832 0.791235 0.042745 2.069775 4 1.446552 0.019814 -1.389212 -0.702312 In [220]: df.loc[-2:] Out[220]: 0 1 2 3 0 -0.130121 -0.476046 0.759104 0.213379 1 -0.082641 0.448008 0.656420 -1.051443 2 0.594956 -0.151360 -0.069303 1.221431 3 -0.182832 0.791235 0.042745 2.069775 4 1.446552 0.019814 -1.389212 -0.702312 This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop “falling back” on position-based indexing). Non-monotonic indexes require exact matches# If the index of a Series or DataFrame is monotonically increasing or decreasing, then the bounds of a label-based slice can be outside the range of the index, much like slice indexing a normal Python list. Monotonicity of an index can be tested with the is_monotonic_increasing() and is_monotonic_decreasing() attributes. In [221]: df = pd.DataFrame(index=[2, 3, 3, 4, 5], columns=["data"], data=list(range(5))) In [222]: df.index.is_monotonic_increasing Out[222]: True # no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4: In [223]: df.loc[0:4, :] Out[223]: data 2 0 3 1 3 2 4 3 # slice is are outside the index, so empty DataFrame is returned In [224]: df.loc[13:15, :] Out[224]: Empty DataFrame Columns: [data] Index: [] On the other hand, if the index is not monotonic, then both slice bounds must be unique members of the index. In [225]: df = pd.DataFrame(index=[2, 3, 1, 4, 3, 5], columns=["data"], data=list(range(6))) In [226]: df.index.is_monotonic_increasing Out[226]: False # OK because 2 and 4 are in the index In [227]: df.loc[2:4, :] Out[227]: data 2 0 3 1 1 2 4 3 # 0 is not in the index In [9]: df.loc[0:4, :] KeyError: 0 # 3 is not a unique label In [11]: df.loc[2:3, :] KeyError: 'Cannot get right slice bound for non-unique label: 3' Index.is_monotonic_increasing and Index.is_monotonic_decreasing only check that an index is weakly monotonic. To check for strict monotonicity, you can combine one of those with the is_unique() attribute. In [228]: weakly_monotonic = pd.Index(["a", "b", "c", "c"]) In [229]: weakly_monotonic Out[229]: Index(['a', 'b', 'c', 'c'], dtype='object') In [230]: weakly_monotonic.is_monotonic_increasing Out[230]: True In [231]: weakly_monotonic.is_monotonic_increasing & weakly_monotonic.is_unique Out[231]: False Endpoints are inclusive# Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series: In [232]: s = pd.Series(np.random.randn(6), index=list("abcdef")) In [233]: s Out[233]: a 0.301379 b 1.240445 c -0.846068 d -0.043312 e -1.658747 f -0.819549 dtype: float64 Suppose we wished to slice from c to e, using integers this would be accomplished as such: In [234]: s[2:5] Out[234]: c -0.846068 d -0.043312 e -1.658747 dtype: float64 However, if you only had c and e, determining the next element in the index can be somewhat complicated. For example, the following does not work: s.loc['c':'e' + 1] A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [235]: s.loc["c":"e"] Out[235]: c -0.846068 d -0.043312 e -1.658747 dtype: float64 This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works. Indexing potentially changes underlying Series dtype# The different indexing operation can potentially change the dtype of a Series. In [236]: series1 = pd.Series([1, 2, 3]) In [237]: series1.dtype Out[237]: dtype('int64') In [238]: res = series1.reindex([0, 4]) In [239]: res.dtype Out[239]: dtype('float64') In [240]: res Out[240]: 0 1.0 4 NaN dtype: float64 In [241]: series2 = pd.Series([True]) In [242]: series2.dtype Out[242]: dtype('bool') In [243]: res = series2.reindex_like(series1) In [244]: res.dtype Out[244]: dtype('O') In [245]: res Out[245]: 0 True 1 NaN 2 NaN dtype: object This is because the (re)indexing operations above silently inserts NaNs and the dtype changes accordingly. This can cause some issues when using numpy ufuncs such as numpy.logical_and. See the GH2388 for a more detailed discussion.
user_guide/advanced.html
pandas.io.formats.style.Styler.hide_index
`pandas.io.formats.style.Styler.hide_index` Hide the entire index, or specific keys in the index from rendering.
Styler.hide_index(subset=None, level=None, names=False)[source]# Hide the entire index, or specific keys in the index from rendering. This method has dual functionality: if subset is None then the entire index, or specified levels, will be hidden whilst displaying all data-rows. if a subset is given then those specific rows will be hidden whilst the index itself remains visible. Changed in version 1.3.0. Deprecated since version 1.4.0: This method should be replaced by hide(axis="index", **kwargs) Parameters subsetlabel, array-like, IndexSlice, optionalA valid 1d input or single key along the index axis within DataFrame.loc[<subset>, :], to limit data to before applying the function. levelint, str, listThe level(s) to hide in a MultiIndex if hiding the entire index. Cannot be used simultaneously with subset. New in version 1.4.0. namesboolWhether to hide the index name(s), in the case the index or part of it remains visible. New in version 1.4.0. Returns selfStyler See also Styler.hideHide the entire index / columns, or specific rows / columns.
reference/api/pandas.io.formats.style.Styler.hide_index.html
API reference
This page gives an overview of all public pandas objects, functions and methods. All classes and functions exposed in pandas.* namespace are public. Some subpackages are public which include pandas.errors, pandas.plotting, and pandas.testing. Public functions in pandas.io and pandas.tseries submodules are mentioned in the documentation. pandas.api.types subpackage holds some public functions related to data types in pandas. Warning The pandas.core, pandas.compat, and pandas.util top-level modules are PRIVATE. Stable functionality in such modules is not guaranteed. Input/output Pickling Flat file Clipboard Excel JSON HTML XML Latex HDFStore: PyTables (HDF5) Feather Parquet ORC SAS SPSS SQL Google BigQuery STATA General functions Data manipulations Top-level missing data Top-level dealing with numeric data Top-level dealing with datetimelike data Top-level dealing with Interval data Top-level evaluation Hashing Importing from other DataFrame libraries Series Constructor Attributes Conversion Indexing, iteration Binary operator functions Function application, GroupBy & window Computations / descriptive stats Reindexing / selection / label manipulation Missing data handling Reshaping, sorting Combining / comparing / joining / merging Time Series-related Accessors Plotting Serialization / IO / conversion DataFrame Constructor Attributes and underlying data Conversion Indexing, iteration Binary operator functions Function application, GroupBy & window Computations / descriptive stats Reindexing / selection / label manipulation Missing data handling Reshaping, sorting, transposing Combining / comparing / joining / merging Time Series-related Flags Metadata Plotting Sparse accessor Serialization / IO / conversion pandas arrays, scalars, and data types Objects Utilities Index objects Index Numeric Index CategoricalIndex IntervalIndex MultiIndex DatetimeIndex TimedeltaIndex PeriodIndex Date offsets DateOffset BusinessDay BusinessHour CustomBusinessDay CustomBusinessHour MonthEnd MonthBegin BusinessMonthEnd BusinessMonthBegin CustomBusinessMonthEnd CustomBusinessMonthBegin SemiMonthEnd SemiMonthBegin Week WeekOfMonth LastWeekOfMonth BQuarterEnd BQuarterBegin QuarterEnd QuarterBegin BYearEnd BYearBegin YearEnd YearBegin FY5253 FY5253Quarter Easter Tick Day Hour Minute Second Milli Micro Nano Frequencies pandas.tseries.frequencies.to_offset Window Rolling window functions Weighted window functions Expanding window functions Exponentially-weighted window functions Window indexer GroupBy Indexing, iteration Function application Computations / descriptive stats Resampling Indexing, iteration Function application Upsampling Computations / descriptive stats Style Styler constructor Styler properties Style application Builtin styles Style export and import Plotting pandas.plotting.andrews_curves pandas.plotting.autocorrelation_plot pandas.plotting.bootstrap_plot pandas.plotting.boxplot pandas.plotting.deregister_matplotlib_converters pandas.plotting.lag_plot pandas.plotting.parallel_coordinates pandas.plotting.plot_params pandas.plotting.radviz pandas.plotting.register_matplotlib_converters pandas.plotting.scatter_matrix pandas.plotting.table Options and settings Working with options Extensions pandas.api.extensions.register_extension_dtype pandas.api.extensions.register_dataframe_accessor pandas.api.extensions.register_series_accessor pandas.api.extensions.register_index_accessor pandas.api.extensions.ExtensionDtype pandas.api.extensions.ExtensionArray pandas.arrays.PandasArray pandas.api.indexers.check_array_indexer Testing Assertion functions Exceptions and warnings Bug report function Test suite runner
reference/index.html
null
pandas.tseries.offsets.CustomBusinessMonthEnd.name
`pandas.tseries.offsets.CustomBusinessMonthEnd.name` Return a string representing the base frequency. Examples ``` >>> pd.offsets.Hour().name 'H' ```
CustomBusinessMonthEnd.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.name.html
pandas.Series.rfloordiv
`pandas.Series.rfloordiv` Return Integer division of series and other, element-wise (binary operator rfloordiv). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64 ```
Series.rfloordiv(other, level=None, fill_value=None, axis=0)[source]# Return Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // series, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.floordivElement-wise Integer division, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64
reference/api/pandas.Series.rfloordiv.html
pandas.tseries.offsets.Easter.rollback
`pandas.tseries.offsets.Easter.rollback` Roll provided date backward to next offset only if not on offset.
Easter.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.Easter.rollback.html
pandas.Series.dot
`pandas.Series.dot` Compute the dot product between the Series and the columns of other. ``` >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) ```
Series.dot(other)[source]# Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using self @ other in Python >= 3.5. Parameters otherSeries, DataFrame or array-likeThe other object to compute the dot product with its columns. Returns scalar, Series or numpy.ndarrayReturn the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See also DataFrame.dotCompute the matrix product with the DataFrame. Series.mulMultiplication of series and other, element-wise. Notes The Series and other has to share the same index if other is a Series or a DataFrame. Examples >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14])
reference/api/pandas.Series.dot.html
pandas.tseries.offsets.YearBegin.isAnchored
pandas.tseries.offsets.YearBegin.isAnchored
YearBegin.isAnchored()#
reference/api/pandas.tseries.offsets.YearBegin.isAnchored.html
pandas.tseries.offsets.FY5253.is_quarter_end
`pandas.tseries.offsets.FY5253.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
FY5253.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.FY5253.is_quarter_end.html
pandas.tseries.offsets.Nano.__call__
`pandas.tseries.offsets.Nano.__call__` Call self as a function.
Nano.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.Nano.__call__.html
pandas.api.types.union_categoricals
`pandas.api.types.union_categoricals` Combine list-like of Categorical-like, unioning categories. ``` >>> a = pd.Categorical(["b", "c"]) >>> b = pd.Categorical(["a", "b"]) >>> pd.api.types.union_categoricals([a, b]) ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a'] ```
pandas.api.types.union_categoricals(to_union, sort_categories=False, ignore_order=False)[source]# Combine list-like of Categorical-like, unioning categories. All categories must have the same dtype. Parameters to_unionlist-likeCategorical, CategoricalIndex, or Series with dtype=’category’. sort_categoriesbool, default FalseIf true, resulting categories will be lexsorted, otherwise they will be ordered as they appear in the data. ignore_orderbool, default FalseIf true, the ordered attribute of the Categoricals will be ignored. Results in an unordered categorical. Returns Categorical Raises TypeError all inputs do not have the same dtype all inputs do not have the same ordered property all inputs are ordered and their categories are not identical sort_categories=True and Categoricals are ordered ValueErrorEmpty list of categoricals passed Notes To learn more about categories, see link Examples If you want to combine categoricals that do not necessarily have the same categories, union_categoricals will combine a list-like of categoricals. The new categories will be the union of the categories being combined. >>> a = pd.Categorical(["b", "c"]) >>> b = pd.Categorical(["a", "b"]) >>> pd.api.types.union_categoricals([a, b]) ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a'] By default, the resulting categories will be ordered as they appear in the categories of the data. If you want the categories to be lexsorted, use sort_categories=True argument. >>> pd.api.types.union_categoricals([a, b], sort_categories=True) ['b', 'c', 'a', 'b'] Categories (3, object): ['a', 'b', 'c'] union_categoricals also works with the case of combining two categoricals of the same categories and order information (e.g. what you could also append for). >>> a = pd.Categorical(["a", "b"], ordered=True) >>> b = pd.Categorical(["a", "b", "a"], ordered=True) >>> pd.api.types.union_categoricals([a, b]) ['a', 'b', 'a', 'b', 'a'] Categories (2, object): ['a' < 'b'] Raises TypeError because the categories are ordered and not identical. >>> a = pd.Categorical(["a", "b"], ordered=True) >>> b = pd.Categorical(["a", "b", "c"], ordered=True) >>> pd.api.types.union_categoricals([a, b]) Traceback (most recent call last): ... TypeError: to union ordered Categoricals, all categories must be the same New in version 0.20.0 Ordered categoricals with different categories or orderings can be combined by using the ignore_ordered=True argument. >>> a = pd.Categorical(["a", "b", "c"], ordered=True) >>> b = pd.Categorical(["c", "b", "a"], ordered=True) >>> pd.api.types.union_categoricals([a, b], ignore_order=True) ['a', 'b', 'c', 'c', 'b', 'a'] Categories (3, object): ['a', 'b', 'c'] union_categoricals also works with a CategoricalIndex, or Series containing categorical data, but note that the resulting array will always be a plain Categorical >>> a = pd.Series(["b", "c"], dtype='category') >>> b = pd.Series(["a", "b"], dtype='category') >>> pd.api.types.union_categoricals([a, b]) ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a']
reference/api/pandas.api.types.union_categoricals.html
pandas.Series.take
`pandas.Series.take` Return the elements in the given positional indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. ``` >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN ```
Series.take(indices, axis=0, is_copy=None, **kwargs)[source]# Return the elements in the given positional indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters indicesarray-likeAn array of ints indicating which positions to take. axis{0 or ‘index’, 1 or ‘columns’, None}, default 0The axis on which to select elements. 0 means that we are selecting rows, 1 means that we are selecting columns. For Series this parameter is unused and defaults to 0. is_copyboolBefore pandas 1.0, is_copy=False can be specified to ensure that the return value is an actual copy. Starting with pandas 1.0, take always returns a copy, and the keyword is therefore deprecated. Deprecated since version 1.0.0. **kwargsFor compatibility with numpy.take(). Has no effect on the output. Returns takensame type as callerAn array-like containing the elements taken from the object. See also DataFrame.locSelect a subset of a DataFrame by labels. DataFrame.ilocSelect a subset of a DataFrame by positions. numpy.takeTake elements from an array along an axis. Examples >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN Take elements at positions 0 and 3 along the axis 0 (default). Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That’s because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. >>> df.take([0, 3]) name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN Take elements at indices 1 and 2 along the axis 1 (column selection). >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. >>> df.take([-1, -2]) name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5
reference/api/pandas.Series.take.html
pandas.Timedelta.delta
`pandas.Timedelta.delta` Return the timedelta in nanoseconds (ns), for internal compatibility. ``` >>> td = pd.Timedelta('1 days 42 ns') >>> td.delta 86400000000042 ```
Timedelta.delta# Return the timedelta in nanoseconds (ns), for internal compatibility. Deprecated since version 1.5.0: This argument is deprecated. Returns intTimedelta in nanoseconds. Examples >>> td = pd.Timedelta('1 days 42 ns') >>> td.delta 86400000000042 >>> td = pd.Timedelta('3 s') >>> td.delta 3000000000 >>> td = pd.Timedelta('3 ms 5 us') >>> td.delta 3005000 >>> td = pd.Timedelta(42, unit='ns') >>> td.delta 42
reference/api/pandas.Timedelta.delta.html
General functions
General functions
Data manipulations# melt(frame[, id_vars, value_vars, var_name, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot(data, *[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. pivot_table(data[, values, index, columns, ...]) Create a spreadsheet-style pivot table as a DataFrame. crosstab(index, columns[, values, rownames, ...]) Compute a simple cross tabulation of two (or more) factors. cut(x, bins[, right, labels, retbins, ...]) Bin values into discrete intervals. qcut(x, q[, labels, retbins, precision, ...]) Quantile-based discretization function. merge(left, right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. merge_ordered(left, right[, on, left_on, ...]) Perform a merge for ordered data with optional filling/interpolation. merge_asof(left, right[, on, left_on, ...]) Perform a merge by key distance. concat(objs, *[, axis, join, ignore_index, ...]) Concatenate pandas objects along a particular axis. get_dummies(data[, prefix, prefix_sep, ...]) Convert categorical variable into dummy/indicator variables. from_dummies(data[, sep, default_category]) Create a categorical DataFrame from a DataFrame of dummy variables. factorize(values[, sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. unique(values) Return unique values based on a hash table. wide_to_long(df, stubnames, i, j[, sep, suffix]) Unpivot a DataFrame from wide to long format. Top-level missing data# isna(obj) Detect missing values for an array-like object. isnull(obj) Detect missing values for an array-like object. notna(obj) Detect non-missing values for an array-like object. notnull(obj) Detect non-missing values for an array-like object. Top-level dealing with numeric data# to_numeric(arg[, errors, downcast]) Convert argument to a numeric type. Top-level dealing with datetimelike data# to_datetime(arg[, errors, dayfirst, ...]) Convert argument to datetime. to_timedelta(arg[, unit, errors]) Convert argument to timedelta. date_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex. bdate_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex with business day as the default. period_range([start, end, periods, freq, name]) Return a fixed frequency PeriodIndex. timedelta_range([start, end, periods, freq, ...]) Return a fixed frequency TimedeltaIndex with day as the default. infer_freq(index[, warn]) Infer the most likely frequency given the input index. Top-level dealing with Interval data# interval_range([start, end, periods, freq, ...]) Return a fixed frequency IntervalIndex. Top-level evaluation# eval(expr[, parser, engine, truediv, ...]) Evaluate a Python expression as a string using various backends. Hashing# util.hash_array(vals[, encoding, hash_key, ...]) Given a 1d array, return an array of deterministic integers. util.hash_pandas_object(obj[, index, ...]) Return a data hash of the Index/Series/DataFrame. Importing from other DataFrame libraries# api.interchange.from_dataframe(df[, allow_copy]) Build a pd.DataFrame from any DataFrame supporting the interchange protocol.
reference/general_functions.html
pandas.core.groupby.GroupBy.ohlc
`pandas.core.groupby.GroupBy.ohlc` Compute open, high, low and close values of a group, excluding missing values.
final GroupBy.ohlc()[source]# Compute open, high, low and close values of a group, excluding missing values. For multiple groupings, the result index will be a MultiIndex Returns DataFrameOpen, high, low and close values within each group. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.GroupBy.ohlc.html
pandas.Series.loc
`pandas.Series.loc` Access a group of rows and columns by label(s) or a boolean array. ``` >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 ```
property Series.loc[source]# Access a group of rows and columns by label(s) or a boolean array. .loc[] is primarily label based, but may also be used with a boolean array. Allowed inputs are: A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index). A list or array of labels, e.g. ['a', 'b', 'c']. A slice object with labels, e.g. 'a':'f'. Warning Note that contrary to usual python slices, both the start and the stop are included A boolean array of the same length as the axis being sliced, e.g. [True, False, True]. An alignable boolean Series. The index of the key will be aligned before masking. An alignable Index. The Index of the returned selection will be the input. A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at Selection by Label. Raises KeyErrorIf any items are not found. IndexingErrorIf an indexed key is passed and its index is unalignable to the frame index. See also DataFrame.atAccess a single value for a row/column label pair. DataFrame.ilocAccess group of rows and columns by integer position(s). DataFrame.xsReturns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.locAccess group of values using labels. Examples Getting values >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using [[]] returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Alignable boolean Series: >>> df.loc[pd.Series([False, True, False], ... index=['viper', 'sidewinder', 'cobra'])] max_speed shield sidewinder 7 8 Index (same behavior as df.reindex) >>> df.loc[pd.Index(["cobra", "viper"], name="foo")] max_speed shield foo cobra 1 2 viper 4 5 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 Setting values Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 Getting values on a DataFrame with an index that has integer labels Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 Getting values with a MultiIndex A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using [[]] returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 Please see the user guide for more details and explanations of advanced indexing.
reference/api/pandas.Series.loc.html
pandas.Timestamp.isocalendar
`pandas.Timestamp.isocalendar` Return a 3-tuple containing ISO year, week number, and weekday.
Timestamp.isocalendar()# Return a 3-tuple containing ISO year, week number, and weekday.
reference/api/pandas.Timestamp.isocalendar.html
pandas.Timestamp.minute
pandas.Timestamp.minute
Timestamp.minute#
reference/api/pandas.Timestamp.minute.html
pandas.Index.to_flat_index
`pandas.Index.to_flat_index` Identity method.
Index.to_flat_index()[source]# Identity method. This is implemented for compatibility with subclass implementations when chaining. Returns pd.IndexCaller. See also MultiIndex.to_flat_indexSubclass implementation.
reference/api/pandas.Index.to_flat_index.html
pandas.DataFrame.cumsum
`pandas.DataFrame.cumsum` Return cumulative sum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative sum. ``` >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 ```
DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)[source]# Return cumulative sum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative sum. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargsAdditional keywords have no effect but might be accepted for compatibility with NumPy. Returns Series or DataFrameReturn cumulative sum of Series or DataFrame. See also core.window.expanding.Expanding.sumSimilar functionality but ignores NaN values. DataFrame.sumReturn the sum over DataFrame axis. DataFrame.cummaxReturn cumulative maximum over DataFrame axis. DataFrame.cumminReturn cumulative minimum over DataFrame axis. DataFrame.cumsumReturn cumulative sum over DataFrame axis. DataFrame.cumprodReturn cumulative product over DataFrame axis. Examples Series >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 To include NA values in the operation, use skipna=False >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 DataFrame >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or axis='index'. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 To iterate over columns and find the sum in each row, use axis=1 >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0
reference/api/pandas.DataFrame.cumsum.html
pandas.DataFrame.truediv
`pandas.DataFrame.truediv` Get Floating division of dataframe and other, element-wise (binary operator truediv). ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.truediv(other, axis='columns', level=None, fill_value=None)[source]# Get Floating division of dataframe and other, element-wise (binary operator truediv). Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, rtruediv. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.truediv.html
pandas.tseries.offsets.Week.is_month_end
`pandas.tseries.offsets.Week.is_month_end` Return boolean whether a timestamp occurs on the month end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
Week.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.Week.is_month_end.html
pandas.Period.start_time
`pandas.Period.start_time` Get the Timestamp for the start of the period. ``` >>> period = pd.Period('2012-1-1', freq='D') >>> period Period('2012-01-01', 'D') ```
Period.start_time# Get the Timestamp for the start of the period. Returns Timestamp See also Period.end_timeReturn the end Timestamp. Period.dayofyearReturn the day of year. Period.daysinmonthReturn the days in that month. Period.dayofweekReturn the day of the week. Examples >>> period = pd.Period('2012-1-1', freq='D') >>> period Period('2012-01-01', 'D') >>> period.start_time Timestamp('2012-01-01 00:00:00') >>> period.end_time Timestamp('2012-01-01 23:59:59.999999999')
reference/api/pandas.Period.start_time.html
pandas.tseries.offsets.CustomBusinessMonthBegin.rollforward
`pandas.tseries.offsets.CustomBusinessMonthBegin.rollforward` Roll provided date forward to next offset only if not on offset.
CustomBusinessMonthBegin.rollforward()# Roll provided date forward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.rollforward.html
pandas.Series.dt.is_year_start
`pandas.Series.dt.is_year_start` Indicate whether the date is the first day of a year. The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. ``` >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] ```
Series.dt.is_year_start[source]# Indicate whether the date is the first day of a year. Returns Series or DatetimeIndexThe same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See also is_year_endSimilar property indicating the last day of the year. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> dates = pd.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_start 0 False 1 False 2 True dtype: bool >>> idx = pd.date_range("2017-12-30", periods=3) >>> idx DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq='D') >>> idx.is_year_start array([False, False, True])
reference/api/pandas.Series.dt.is_year_start.html
pandas.tseries.offsets.BusinessMonthEnd.normalize
pandas.tseries.offsets.BusinessMonthEnd.normalize
BusinessMonthEnd.normalize#
reference/api/pandas.tseries.offsets.BusinessMonthEnd.normalize.html
pandas.CategoricalIndex.as_unordered
`pandas.CategoricalIndex.as_unordered` Set the Categorical to be unordered.
CategoricalIndex.as_unordered(*args, **kwargs)[source]# Set the Categorical to be unordered. Parameters inplacebool, default FalseWhether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Deprecated since version 1.5.0. Returns Categorical or NoneUnordered Categorical or None if inplace=True.
reference/api/pandas.CategoricalIndex.as_unordered.html
pandas.tseries.offsets.YearBegin.is_quarter_end
`pandas.tseries.offsets.YearBegin.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
YearBegin.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.YearBegin.is_quarter_end.html
pandas.interval_range
`pandas.interval_range` Return a fixed frequency IntervalIndex. Left bound for generating intervals. ``` >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]') ```
pandas.interval_range(start=None, end=None, periods=None, freq=None, name=None, closed='right')[source]# Return a fixed frequency IntervalIndex. Parameters startnumeric or datetime-like, default NoneLeft bound for generating intervals. endnumeric or datetime-like, default NoneRight bound for generating intervals. periodsint, default NoneNumber of periods to generate. freqnumeric, str, or DateOffset, default NoneThe length of each interval. Must be consistent with the type of start and end, e.g. 2 for numeric, or ‘5H’ for datetime-like. Default is 1 for numeric and ‘D’ for datetime-like. namestr, default NoneName of the resulting IntervalIndex. closed{‘left’, ‘right’, ‘both’, ‘neither’}, default ‘right’Whether the intervals are closed on the left-side, right-side, both or neither. Returns IntervalIndex See also IntervalIndexAn Index of intervals that are all closed on the same side. Notes Of the four parameters start, end, periods, and freq, exactly three must be specified. If freq is omitted, the resulting IntervalIndex will have periods linearly spaced elements between start and end, inclusively. To learn more about datetime-like frequency strings, please see this link. Examples Numeric start and end is supported. >>> pd.interval_range(start=0, end=5) IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]], dtype='interval[int64, right]') Additionally, datetime-like input is also supported. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... end=pd.Timestamp('2017-01-04')) IntervalIndex([(2017-01-01, 2017-01-02], (2017-01-02, 2017-01-03], (2017-01-03, 2017-01-04]], dtype='interval[datetime64[ns], right]') The freq parameter specifies the frequency between the left and right. endpoints of the individual intervals within the IntervalIndex. For numeric start and end, the frequency must also be numeric. >>> pd.interval_range(start=0, periods=4, freq=1.5) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]') Similarly, for datetime-like start and end, the frequency must be convertible to a DateOffset. >>> pd.interval_range(start=pd.Timestamp('2017-01-01'), ... periods=3, freq='MS') IntervalIndex([(2017-01-01, 2017-02-01], (2017-02-01, 2017-03-01], (2017-03-01, 2017-04-01]], dtype='interval[datetime64[ns], right]') Specify start, end, and periods; the frequency is generated automatically (linearly spaced). >>> pd.interval_range(start=0, end=6, periods=4) IntervalIndex([(0.0, 1.5], (1.5, 3.0], (3.0, 4.5], (4.5, 6.0]], dtype='interval[float64, right]') The closed parameter specifies which endpoints of the individual intervals within the IntervalIndex are closed. >>> pd.interval_range(end=5, periods=4, closed='both') IntervalIndex([[1, 2], [2, 3], [3, 4], [4, 5]], dtype='interval[int64, both]')
reference/api/pandas.interval_range.html
pandas.core.window.expanding.Expanding.median
`pandas.core.window.expanding.Expanding.median` Calculate the expanding median.
Expanding.median(numeric_only=False, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the expanding median. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.medianAggregating median for Series. pandas.DataFrame.medianAggregating median for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
reference/api/pandas.core.window.expanding.Expanding.median.html
pandas.read_json
`pandas.read_json` Convert a JSON string to pandas object. ``` >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) ```
pandas.read_json(path_or_buf, *, orient=None, typ='frame', dtype=None, convert_axes=None, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, encoding_errors='strict', lines=False, chunksize=None, compression='infer', nrows=None, storage_options=None)[source]# Convert a JSON string to pandas object. Parameters path_or_bufa valid JSON str, path object or file-like objectAny valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.json. If you want to pass in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a read() method, such as a file handle (e.g. via builtin open function) or StringIO. orientstrIndication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is: 'split' : dict like {index -> [index], columns -> [columns], data -> [values]} 'records' : list like [{column -> value}, ... , {column -> value}] 'index' : dict like {index -> {column -> value}} 'columns' : dict like {column -> {index -> value}} 'values' : just the values array The allowed and default values depend on the value of the typ parameter. when typ == 'series', allowed orients are {'split','records','index'} default is 'index' The Series index must be unique for orient 'index'. when typ == 'frame', allowed orients are {'split','records','index', 'columns','values', 'table'} default is 'columns' The DataFrame index must be unique for orients 'index' and 'columns'. The DataFrame columns must be unique for orients 'index', 'columns', and 'records'. typ{‘frame’, ‘series’}, default ‘frame’The type of object to recover. dtypebool or dict, default NoneIf True, infer dtypes; if a dict of column to dtype, then use those; if False, then don’t infer dtypes at all, applies only to the data. For all orient values except 'table', default is True. Changed in version 0.25.0: Not applicable for orient='table'. convert_axesbool, default NoneTry to convert the axes to the proper dtypes. For all orient values except 'table', default is True. Changed in version 0.25.0: Not applicable for orient='table'. convert_datesbool or list of str, default TrueIf True then default datelike columns may be converted (depending on keep_default_dates). If False, no dates will be converted. If a list of column names, then those columns will be converted and default datelike columns may also be converted (depending on keep_default_dates). keep_default_datesbool, default TrueIf parsing dates (convert_dates is not False), then try to parse the default datelike columns. A column label is datelike if it ends with '_at', it ends with '_time', it begins with 'timestamp', it is 'modified', or it is 'date'. numpybool, default FalseDirect decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True. Deprecated since version 1.0.0. precise_floatbool, default FalseSet to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality. date_unitstr, default NoneThe timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively. encodingstr, default is ‘utf-8’The encoding to use to decode py3 bytes. encoding_errorsstr, optional, default “strict”How encoding errors are treated. List of possible values . New in version 1.3.0. linesbool, default FalseRead the file as a json object per line. chunksizeint, optionalReturn JsonReader object for iteration. See the line-delimited json docs for more information on chunksize. This can only be passed if lines=True. If this is None, the file will be read into memory all at once. Changed in version 1.2: JsonReader is a context manager. compressionstr or dict, default ‘infer’For on-the-fly decompression of on-disk data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to None for no decompression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdDecompressor or tarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: compression={'method': 'zstd', 'dict_data': my_compression_dict}. New in version 1.5.0: Added support for .tar files. Changed in version 1.4.0: Zstandard support. nrowsint, optionalThe number of lines from the line-delimited jsonfile that has to be read. This can only be passed if lines=True. If this is None, all the rows will be returned. New in version 1.1. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2.0. Returns Series or DataFrameThe type returned depends on the value of typ. See also DataFrame.to_jsonConvert a DataFrame to a JSON string. Series.to_jsonConvert a Series to a JSON string. json_normalizeNormalize semi-structured JSON data into a flat table. Notes Specific to orient='table', if a DataFrame with a literal Index name of index gets written with to_json(), the subsequent read operation will incorrectly set the Index name to None. This is because index is also used by DataFrame.to_json() to denote a missing Index name, and the subsequent read_json() operation cannot distinguish between the two. The same limitation is encountered with a MultiIndex and any names beginning with 'level_'. Examples >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) Encoding/decoding a Dataframe using 'split' formatted JSON: >>> df.to_json(orient='split') '{"columns":["col 1","col 2"],"index":["row 1","row 2"],"data":[["a","b"],["c","d"]]}' >>> pd.read_json(_, orient='split') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using 'index' formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' >>> pd.read_json(_, orient='index') col 1 col 2 row 1 a b row 2 c d Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' >>> pd.read_json(_, orient='records') col 1 col 2 0 a b 1 c d Encoding with Table Schema >>> df.to_json(orient='table') '{"schema":{"fields":[{"name":"index","type":"string"},{"name":"col 1","type":"string"},{"name":"col 2","type":"string"}],"primaryKey":["index"],"pandas_version":"1.4.0"},"data":[{"index":"row 1","col 1":"a","col 2":"b"},{"index":"row 2","col 1":"c","col 2":"d"}]}'
reference/api/pandas.read_json.html
pandas.Int32Dtype
`pandas.Int32Dtype` An ExtensionDtype for int32 integer data.
class pandas.Int32Dtype[source]# An ExtensionDtype for int32 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan. Attributes None Methods None
reference/api/pandas.Int32Dtype.html
pandas.tseries.offsets.Hour.rollback
`pandas.tseries.offsets.Hour.rollback` Roll provided date backward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
Hour.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.Hour.rollback.html
pandas.core.window.expanding.Expanding.mean
`pandas.core.window.expanding.Expanding.mean` Calculate the expanding mean.
Expanding.mean(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the expanding mean. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.meanAggregating mean for Series. pandas.DataFrame.meanAggregating mean for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
reference/api/pandas.core.window.expanding.Expanding.mean.html
pandas.core.resample.Resampler.pad
`pandas.core.resample.Resampler.pad` Forward fill the values. Deprecated since version 1.4: Use ffill instead.
Resampler.pad(limit=None)[source]# Forward fill the values. Deprecated since version 1.4: Use ffill instead. Parameters limitint, optionalLimit of how many values to fill. Returns An upsampled Series.
reference/api/pandas.core.resample.Resampler.pad.html
pandas.tseries.offsets.CustomBusinessHour.freqstr
`pandas.tseries.offsets.CustomBusinessHour.freqstr` Return a string representing the frequency. Examples ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
CustomBusinessHour.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.CustomBusinessHour.freqstr.html
pandas.Series.str.istitle
`pandas.Series.str.istitle` Check whether all characters in each string are titlecase. ``` >>> s1 = pd.Series(['one', 'one1', '1', '']) ```
Series.str.istitle()[source]# Check whether all characters in each string are titlecase. This is equivalent to running the Python string method str.istitle() for each element of the Series/Index. If a string has zero characters, False is returned for that check. Returns Series or Index of boolSeries or Index of boolean values with the same length as the original Series/Index. See also Series.str.isalphaCheck whether all characters are alphabetic. Series.str.isnumericCheck whether all characters are numeric. Series.str.isalnumCheck whether all characters are alphanumeric. Series.str.isdigitCheck whether all characters are digits. Series.str.isdecimalCheck whether all characters are decimal. Series.str.isspaceCheck whether all characters are whitespace. Series.str.islowerCheck whether all characters are lowercase. Series.str.isupperCheck whether all characters are uppercase. Series.str.istitleCheck whether all characters are titlecase. Examples Checks for Alphabetic and Numeric Characters >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool More Detailed Checks for Numeric Characters There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The s3.str.isdecimal method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The s.str.isdigit method is the same as s3.str.isdecimal but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The s.str.isnumeric method is the same as s3.str.isdigit but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool Checks for Whitespace >>> s4 = pd.Series([' ', '\t\r\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool Checks for Character Case >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The s5.str.istitle method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool
reference/api/pandas.Series.str.istitle.html
pandas.api.types.is_integer_dtype
`pandas.api.types.is_integer_dtype` Check whether the provided array or dtype is of an integer dtype. Unlike in is_any_int_dtype, timedelta64 instances will return False. ``` >>> is_integer_dtype(str) False >>> is_integer_dtype(int) True >>> is_integer_dtype(float) False >>> is_integer_dtype(np.uint64) True >>> is_integer_dtype('int8') True >>> is_integer_dtype('Int8') True >>> is_integer_dtype(pd.Int8Dtype) True >>> is_integer_dtype(np.datetime64) False >>> is_integer_dtype(np.timedelta64) False >>> is_integer_dtype(np.array(['a', 'b'])) False >>> is_integer_dtype(pd.Series([1, 2])) True >>> is_integer_dtype(np.array([], dtype=np.timedelta64)) False >>> is_integer_dtype(pd.Index([1, 2.])) # float False ```
pandas.api.types.is_integer_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of an integer dtype. Unlike in is_any_int_dtype, timedelta64 instances will return False. The nullable Integer dtypes (e.g. pandas.Int64Dtype) are also considered as integer by this function. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns booleanWhether or not the array or dtype is of an integer dtype and not an instance of timedelta64. Examples >>> is_integer_dtype(str) False >>> is_integer_dtype(int) True >>> is_integer_dtype(float) False >>> is_integer_dtype(np.uint64) True >>> is_integer_dtype('int8') True >>> is_integer_dtype('Int8') True >>> is_integer_dtype(pd.Int8Dtype) True >>> is_integer_dtype(np.datetime64) False >>> is_integer_dtype(np.timedelta64) False >>> is_integer_dtype(np.array(['a', 'b'])) False >>> is_integer_dtype(pd.Series([1, 2])) True >>> is_integer_dtype(np.array([], dtype=np.timedelta64)) False >>> is_integer_dtype(pd.Index([1, 2.])) # float False
reference/api/pandas.api.types.is_integer_dtype.html
pandas.tseries.offsets.CustomBusinessMonthEnd.n
pandas.tseries.offsets.CustomBusinessMonthEnd.n
CustomBusinessMonthEnd.n#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.n.html
Style
Style
Styler objects are returned by pandas.DataFrame.style. Styler constructor# Styler(data[, precision, table_styles, ...]) Helps style a DataFrame or Series according to the data with HTML and CSS. Styler.from_custom_template(searchpath[, ...]) Factory function for creating a subclass of Styler. Styler properties# Styler.env Styler.template_html Styler.template_html_style Styler.template_html_table Styler.template_latex Styler.template_string Styler.loader Style application# Styler.apply(func[, axis, subset]) Apply a CSS-styling function column-wise, row-wise, or table-wise. Styler.applymap(func[, subset]) Apply a CSS-styling function elementwise. Styler.apply_index(func[, axis, level]) Apply a CSS-styling function to the index or column headers, level-wise. Styler.applymap_index(func[, axis, level]) Apply a CSS-styling function to the index or column headers, elementwise. Styler.format([formatter, subset, na_rep, ...]) Format the text display value of cells. Styler.format_index([formatter, axis, ...]) Format the text display value of index labels or column headers. Styler.relabel_index(labels[, axis, level]) Relabel the index, or column header, keys to display a set of specified values. Styler.hide([subset, axis, level, names]) Hide the entire index / column headers, or specific rows / columns from display. Styler.concat(other) Append another Styler to combine the output into a single table. Styler.set_td_classes(classes) Set the class attribute of <td> HTML elements. Styler.set_table_styles([table_styles, ...]) Set the table styles included within the <style> HTML element. Styler.set_table_attributes(attributes) Set the table attributes added to the <table> HTML element. Styler.set_tooltips(ttips[, props, css_class]) Set the DataFrame of strings on Styler generating :hover tooltips. Styler.set_caption(caption) Set the text added to a <caption> HTML element. Styler.set_sticky([axis, pixel_size, levels]) Add CSS to permanently display the index or column headers in a scrolling frame. Styler.set_properties([subset]) Set defined CSS-properties to each <td> HTML element for the given subset. Styler.set_uuid(uuid) Set the uuid applied to id attributes of HTML elements. Styler.clear() Reset the Styler, removing any previously applied styles. Styler.pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs), and return the result. Builtin styles# Styler.highlight_null([color, subset, ...]) Highlight missing values with a style. Styler.highlight_max([subset, color, axis, ...]) Highlight the maximum with a style. Styler.highlight_min([subset, color, axis, ...]) Highlight the minimum with a style. Styler.highlight_between([subset, color, ...]) Highlight a defined range with a style. Styler.highlight_quantile([subset, color, ...]) Highlight values defined by a quantile with a style. Styler.background_gradient([cmap, low, ...]) Color the background in a gradient style. Styler.text_gradient([cmap, low, high, ...]) Color the text in a gradient style. Styler.bar([subset, axis, color, cmap, ...]) Draw bar chart in the cell backgrounds. Style export and import# Styler.to_html([buf, table_uuid, ...]) Write Styler to a file, buffer or string in HTML-CSS format. Styler.to_latex([buf, column_format, ...]) Write Styler to a file, buffer or string in LaTeX format. Styler.to_excel(excel_writer[, sheet_name, ...]) Write Styler to an Excel sheet. Styler.to_string([buf, encoding, ...]) Write Styler to a file, buffer or string in text format. Styler.export() Export the styles applied to the current Styler. Styler.use(styles) Set the styles on the current Styler.
reference/style.html
pandas.DataFrame.cov
`pandas.DataFrame.cov` Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame. ``` >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 ```
DataFrame.cov(min_periods=None, ddof=1, numeric_only=_NoDefault.no_default)[source]# Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as NaN. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters min_periodsint, optionalMinimum number of observations required per pair of columns to have a valid result. ddofint, default 1Delta degrees of freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. New in version 1.1.0. numeric_onlybool, default TrueInclude only float, int or boolean data. New in version 1.5.0. Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas. Returns DataFrameThe covariance matrix of the series of the DataFrame. See also Series.covCompute covariance with another Series. core.window.ewm.ExponentialMovingWindow.covExponential weighted sample covariance. core.window.expanding.Expanding.covExpanding sample covariance. core.window.rolling.Rolling.covRolling sample covariance. Notes Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-ddof. For DataFrames that have Series that are missing data (assuming that data is missing at random) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details. Examples >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 Minimum number of periods This method also supports an optional min_periods keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202
reference/api/pandas.DataFrame.cov.html
pandas.Series.dt.weekofyear
`pandas.Series.dt.weekofyear` The week ordinal of the year according to the ISO 8601 standard.
Series.dt.weekofyear[source]# The week ordinal of the year according to the ISO 8601 standard. Deprecated since version 1.1.0. Series.dt.weekofyear and Series.dt.week have been deprecated. Please call Series.dt.isocalendar() and access the week column instead.
reference/api/pandas.Series.dt.weekofyear.html
pandas.DataFrame.drop_duplicates
`pandas.DataFrame.drop_duplicates` Return DataFrame with duplicate rows removed. ``` >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 ```
DataFrame.drop_duplicates(subset=None, *, keep='first', inplace=False, ignore_index=False)[source]# Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters subsetcolumn label or sequence of labels, optionalOnly consider certain columns for identifying duplicates, by default use all of the columns. keep{‘first’, ‘last’, False}, default ‘first’Determines which duplicates (if any) to keep. - first : Drop duplicates except for the first occurrence. - last : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplacebool, default FalseWhether to modify the DataFrame rather than creating a new one. ignore_indexbool, default FalseIf True, the resulting axis will be labeled 0, 1, …, n - 1. New in version 1.0.0. Returns DataFrame or NoneDataFrame with duplicates removed or None if inplace=True. See also DataFrame.value_countsCount unique combinations of columns. Examples Consider dataset containing ramen rating. >>> df = pd.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, it removes duplicate rows based on all columns. >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 To remove duplicates on specific column(s), use subset. >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 To remove duplicates and keep last occurrences, use keep. >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0
reference/api/pandas.DataFrame.drop_duplicates.html
pandas.api.types.union_categoricals
`pandas.api.types.union_categoricals` Combine list-like of Categorical-like, unioning categories. All categories must have the same dtype. ``` >>> a = pd.Categorical(["b", "c"]) >>> b = pd.Categorical(["a", "b"]) >>> pd.api.types.union_categoricals([a, b]) ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a'] ```
pandas.api.types.union_categoricals(to_union, sort_categories=False, ignore_order=False)[source]# Combine list-like of Categorical-like, unioning categories. All categories must have the same dtype. Parameters to_unionlist-likeCategorical, CategoricalIndex, or Series with dtype=’category’. sort_categoriesbool, default FalseIf true, resulting categories will be lexsorted, otherwise they will be ordered as they appear in the data. ignore_orderbool, default FalseIf true, the ordered attribute of the Categoricals will be ignored. Results in an unordered categorical. Returns Categorical Raises TypeError all inputs do not have the same dtype all inputs do not have the same ordered property all inputs are ordered and their categories are not identical sort_categories=True and Categoricals are ordered ValueErrorEmpty list of categoricals passed Notes To learn more about categories, see link Examples If you want to combine categoricals that do not necessarily have the same categories, union_categoricals will combine a list-like of categoricals. The new categories will be the union of the categories being combined. >>> a = pd.Categorical(["b", "c"]) >>> b = pd.Categorical(["a", "b"]) >>> pd.api.types.union_categoricals([a, b]) ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a'] By default, the resulting categories will be ordered as they appear in the categories of the data. If you want the categories to be lexsorted, use sort_categories=True argument. >>> pd.api.types.union_categoricals([a, b], sort_categories=True) ['b', 'c', 'a', 'b'] Categories (3, object): ['a', 'b', 'c'] union_categoricals also works with the case of combining two categoricals of the same categories and order information (e.g. what you could also append for). >>> a = pd.Categorical(["a", "b"], ordered=True) >>> b = pd.Categorical(["a", "b", "a"], ordered=True) >>> pd.api.types.union_categoricals([a, b]) ['a', 'b', 'a', 'b', 'a'] Categories (2, object): ['a' < 'b'] Raises TypeError because the categories are ordered and not identical. >>> a = pd.Categorical(["a", "b"], ordered=True) >>> b = pd.Categorical(["a", "b", "c"], ordered=True) >>> pd.api.types.union_categoricals([a, b]) Traceback (most recent call last): ... TypeError: to union ordered Categoricals, all categories must be the same New in version 0.20.0 Ordered categoricals with different categories or orderings can be combined by using the ignore_ordered=True argument. >>> a = pd.Categorical(["a", "b", "c"], ordered=True) >>> b = pd.Categorical(["c", "b", "a"], ordered=True) >>> pd.api.types.union_categoricals([a, b], ignore_order=True) ['a', 'b', 'c', 'c', 'b', 'a'] Categories (3, object): ['a', 'b', 'c'] union_categoricals also works with a CategoricalIndex, or Series containing categorical data, but note that the resulting array will always be a plain Categorical >>> a = pd.Series(["b", "c"], dtype='category') >>> b = pd.Series(["a", "b"], dtype='category') >>> pd.api.types.union_categoricals([a, b]) ['b', 'c', 'a', 'b'] Categories (3, object): ['b', 'c', 'a']
reference/api/pandas.api.types.union_categoricals.html
pandas.IntervalIndex.is_non_overlapping_monotonic
`pandas.IntervalIndex.is_non_overlapping_monotonic` Return a boolean whether the IntervalArray is non-overlapping and monotonic. Non-overlapping means (no Intervals share points), and monotonic means either monotonic increasing or monotonic decreasing.
IntervalIndex.is_non_overlapping_monotonic[source]# Return a boolean whether the IntervalArray is non-overlapping and monotonic. Non-overlapping means (no Intervals share points), and monotonic means either monotonic increasing or monotonic decreasing.
reference/api/pandas.IntervalIndex.is_non_overlapping_monotonic.html
pandas.tseries.offsets.WeekOfMonth.rollback
`pandas.tseries.offsets.WeekOfMonth.rollback` Roll provided date backward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
WeekOfMonth.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.WeekOfMonth.rollback.html
pandas.tseries.offsets.Milli.normalize
pandas.tseries.offsets.Milli.normalize
Milli.normalize#
reference/api/pandas.tseries.offsets.Milli.normalize.html
How to handle time series data with ease?
How to handle time series data with ease? For this tutorial, air quality data about \(NO_2\) and Particulate matter less than 2.5 micrometers is used, made available by OpenAQ and downloaded using the py-openaq package. The air_quality_no2_long.csv" data set provides \(NO_2\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London. For this tutorial, air quality data about \(NO_2\) and Particulate matter less than 2.5 micrometers is used, made available by OpenAQ and downloaded using the py-openaq package. The air_quality_no2_long.csv" data set provides \(NO_2\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London. I want to work with the dates in the column datetime as datetime objects instead of plain text Initially, the values in datetime are character strings and do not provide any datetime operations (e.g. extract the year, day of the week,…). By applying the to_datetime function, pandas interprets the strings and convert these to datetime (i.e. datetime64[ns, UTC]) objects. In pandas we call these datetime objects similar to datetime.datetime from the standard library as pandas.Timestamp. Note
matplotlib.pyplot as plt Data used for this tutorial: Air quality data For this tutorial, air quality data about \(NO_2\) and Particulate matter less than 2.5 micrometers is used, made available by OpenAQ and downloaded using the py-openaq package. The air_quality_no2_long.csv" data set provides \(NO_2\) values for the measurement stations FR04014, BETR801 and London Westminster in respectively Paris, Antwerp and London. To raw data In [3]: air_quality = pd.read_csv("data/air_quality_no2_long.csv") In [4]: air_quality = air_quality.rename(columns={"date.utc": "datetime"}) In [5]: air_quality.head() Out[5]: city country datetime location parameter value unit 0 Paris FR 2019-06-21 00:00:00+00:00 FR04014 no2 20.0 µg/m³ 1 Paris FR 2019-06-20 23:00:00+00:00 FR04014 no2 21.8 µg/m³ 2 Paris FR 2019-06-20 22:00:00+00:00 FR04014 no2 26.5 µg/m³ 3 Paris FR 2019-06-20 21:00:00+00:00 FR04014 no2 24.9 µg/m³ 4 Paris FR 2019-06-20 20:00:00+00:00 FR04014 no2 21.4 µg/m³ In [6]: air_quality.city.unique() Out[6]: array(['Paris', 'Antwerpen', 'London'], dtype=object) How to handle time series data with ease?# Using pandas datetime properties# I want to work with the dates in the column datetime as datetime objects instead of plain text In [7]: air_quality["datetime"] = pd.to_datetime(air_quality["datetime"]) In [8]: air_quality["datetime"] Out[8]: 0 2019-06-21 00:00:00+00:00 1 2019-06-20 23:00:00+00:00 2 2019-06-20 22:00:00+00:00 3 2019-06-20 21:00:00+00:00 4 2019-06-20 20:00:00+00:00 ... 2063 2019-05-07 06:00:00+00:00 2064 2019-05-07 04:00:00+00:00 2065 2019-05-07 03:00:00+00:00 2066 2019-05-07 02:00:00+00:00 2067 2019-05-07 01:00:00+00:00 Name: datetime, Length: 2068, dtype: datetime64[ns, UTC] Initially, the values in datetime are character strings and do not provide any datetime operations (e.g. extract the year, day of the week,…). By applying the to_datetime function, pandas interprets the strings and convert these to datetime (i.e. datetime64[ns, UTC]) objects. In pandas we call these datetime objects similar to datetime.datetime from the standard library as pandas.Timestamp. Note As many data sets do contain datetime information in one of the columns, pandas input function like pandas.read_csv() and pandas.read_json() can do the transformation to dates when reading the data using the parse_dates parameter with a list of the columns to read as Timestamp: pd.read_csv("../data/air_quality_no2_long.csv", parse_dates=["datetime"]) Why are these pandas.Timestamp objects useful? Let’s illustrate the added value with some example cases. What is the start and end date of the time series data set we are working with? In [9]: air_quality["datetime"].min(), air_quality["datetime"].max() Out[9]: (Timestamp('2019-05-07 01:00:00+0000', tz='UTC'), Timestamp('2019-06-21 00:00:00+0000', tz='UTC')) Using pandas.Timestamp for datetimes enables us to calculate with date information and make them comparable. Hence, we can use this to get the length of our time series: In [10]: air_quality["datetime"].max() - air_quality["datetime"].min() Out[10]: Timedelta('44 days 23:00:00') The result is a pandas.Timedelta object, similar to datetime.timedelta from the standard Python library and defining a time duration. To user guideThe various time concepts supported by pandas are explained in the user guide section on time related concepts. I want to add a new column to the DataFrame containing only the month of the measurement In [11]: air_quality["month"] = air_quality["datetime"].dt.month In [12]: air_quality.head() Out[12]: city country datetime ... value unit month 0 Paris FR 2019-06-21 00:00:00+00:00 ... 20.0 µg/m³ 6 1 Paris FR 2019-06-20 23:00:00+00:00 ... 21.8 µg/m³ 6 2 Paris FR 2019-06-20 22:00:00+00:00 ... 26.5 µg/m³ 6 3 Paris FR 2019-06-20 21:00:00+00:00 ... 24.9 µg/m³ 6 4 Paris FR 2019-06-20 20:00:00+00:00 ... 21.4 µg/m³ 6 [5 rows x 8 columns] By using Timestamp objects for dates, a lot of time-related properties are provided by pandas. For example the month, but also year, weekofyear, quarter,… All of these properties are accessible by the dt accessor. To user guideAn overview of the existing date properties is given in the time and date components overview table. More details about the dt accessor to return datetime like properties are explained in a dedicated section on the dt accessor. What is the average \(NO_2\) concentration for each day of the week for each of the measurement locations? In [13]: air_quality.groupby( ....: [air_quality["datetime"].dt.weekday, "location"])["value"].mean() ....: Out[13]: datetime location 0 BETR801 27.875000 FR04014 24.856250 London Westminster 23.969697 1 BETR801 22.214286 FR04014 30.999359 ... 5 FR04014 25.266154 London Westminster 24.977612 6 BETR801 21.896552 FR04014 23.274306 London Westminster 24.859155 Name: value, Length: 21, dtype: float64 Remember the split-apply-combine pattern provided by groupby from the tutorial on statistics calculation? Here, we want to calculate a given statistic (e.g. mean \(NO_2\)) for each weekday and for each measurement location. To group on weekdays, we use the datetime property weekday (with Monday=0 and Sunday=6) of pandas Timestamp, which is also accessible by the dt accessor. The grouping on both locations and weekdays can be done to split the calculation of the mean on each of these combinations. Danger As we are working with a very short time series in these examples, the analysis does not provide a long-term representative result! Plot the typical \(NO_2\) pattern during the day of our time series of all stations together. In other words, what is the average value for each hour of the day? In [14]: fig, axs = plt.subplots(figsize=(12, 4)) In [15]: air_quality.groupby(air_quality["datetime"].dt.hour)["value"].mean().plot( ....: kind='bar', rot=0, ax=axs ....: ) ....: Out[15]: <AxesSubplot: xlabel='datetime'> In [16]: plt.xlabel("Hour of the day"); # custom x label using Matplotlib In [17]: plt.ylabel("$NO_2 (µg/m^3)$"); Similar to the previous case, we want to calculate a given statistic (e.g. mean \(NO_2\)) for each hour of the day and we can use the split-apply-combine approach again. For this case, we use the datetime property hour of pandas Timestamp, which is also accessible by the dt accessor. Datetime as index# In the tutorial on reshaping, pivot() was introduced to reshape the data table with each of the measurements locations as a separate column: In [18]: no_2 = air_quality.pivot(index="datetime", columns="location", values="value") In [19]: no_2.head() Out[19]: location BETR801 FR04014 London Westminster datetime 2019-05-07 01:00:00+00:00 50.5 25.0 23.0 2019-05-07 02:00:00+00:00 45.0 27.7 19.0 2019-05-07 03:00:00+00:00 NaN 50.4 19.0 2019-05-07 04:00:00+00:00 NaN 61.9 16.0 2019-05-07 05:00:00+00:00 NaN 72.4 NaN Note By pivoting the data, the datetime information became the index of the table. In general, setting a column as an index can be achieved by the set_index function. Working with a datetime index (i.e. DatetimeIndex) provides powerful functionalities. For example, we do not need the dt accessor to get the time series properties, but have these properties available on the index directly: In [20]: no_2.index.year, no_2.index.weekday Out[20]: (Int64Index([2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, ... 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019], dtype='int64', name='datetime', length=1033), Int64Index([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 3, 3, 3, 3, 3, 3, 3, 3, 4], dtype='int64', name='datetime', length=1033)) Some other advantages are the convenient subsetting of time period or the adapted time scale on plots. Let’s apply this on our data. Create a plot of the \(NO_2\) values in the different stations from the 20th of May till the end of 21st of May In [21]: no_2["2019-05-20":"2019-05-21"].plot(); By providing a string that parses to a datetime, a specific subset of the data can be selected on a DatetimeIndex. To user guideMore information on the DatetimeIndex and the slicing by using strings is provided in the section on time series indexing. Resample a time series to another frequency# Aggregate the current hourly time series values to the monthly maximum value in each of the stations. In [22]: monthly_max = no_2.resample("M").max() In [23]: monthly_max Out[23]: location BETR801 FR04014 London Westminster datetime 2019-05-31 00:00:00+00:00 74.5 97.0 97.0 2019-06-30 00:00:00+00:00 52.5 84.7 52.0 A very powerful method on time series data with a datetime index, is the ability to resample() time series to another frequency (e.g., converting secondly data into 5-minutely data). The resample() method is similar to a groupby operation: it provides a time-based grouping, by using a string (e.g. M, 5H,…) that defines the target frequency it requires an aggregation function such as mean, max,… To user guideAn overview of the aliases used to define time series frequencies is given in the offset aliases overview table. When defined, the frequency of the time series is provided by the freq attribute: In [24]: monthly_max.index.freq Out[24]: <MonthEnd> Make a plot of the daily mean \(NO_2\) value in each of the stations. In [25]: no_2.resample("D").mean().plot(style="-o", figsize=(10, 5)); To user guideMore details on the power of time series resampling is provided in the user guide section on resampling. REMEMBER Valid date strings can be converted to datetime objects using to_datetime function or as part of read functions. Datetime objects in pandas support calculations, logical operations and convenient date-related properties using the dt accessor. A DatetimeIndex contains these date-related properties and supports convenient slicing. Resample is a powerful method to change the frequency of a time series. To user guideA full overview on time series is given on the pages on time series and date functionality.
getting_started/intro_tutorials/09_timeseries.html
pandas.DataFrame.notna
`pandas.DataFrame.notna` Detect existing (non-missing) values. ``` >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker ```
DataFrame.notna()[source]# Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Returns DataFrameMask of bool values for each element in DataFrame that indicates whether an element is not an NA value. See also DataFrame.notnullAlias of notna. DataFrame.isnaBoolean inverse of notna. DataFrame.dropnaOmit axes labels with missing values. notnaTop-level notna. Examples Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
reference/api/pandas.DataFrame.notna.html
pandas.tseries.offsets.Micro.normalize
pandas.tseries.offsets.Micro.normalize
Micro.normalize#
reference/api/pandas.tseries.offsets.Micro.normalize.html
pandas.ExcelWriter.cur_sheet
`pandas.ExcelWriter.cur_sheet` Current sheet for writing.
property ExcelWriter.cur_sheet[source]# Current sheet for writing. Deprecated since version 1.5.0.
reference/api/pandas.ExcelWriter.cur_sheet.html
pandas.Series.argsort
`pandas.Series.argsort` Return the integer indices that would sort the Series values.
Series.argsort(axis=0, kind='quicksort', order=None)[source]# Return the integer indices that would sort the Series values. Override ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. kind{‘mergesort’, ‘quicksort’, ‘heapsort’, ‘stable’}, default ‘quicksort’Choice of sorting algorithm. See numpy.sort() for more information. ‘mergesort’ and ‘stable’ are the only stable algorithms. orderNoneHas no effect but is accepted for compatibility with numpy. Returns Series[np.intp]Positions of values within the sort order with -1 indicating nan values. See also numpy.ndarray.argsortReturns the indices that would sort this array.
reference/api/pandas.Series.argsort.html
pandas.Series.str.casefold
`pandas.Series.str.casefold` Convert strings in the Series/Index to be casefolded. ``` >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object ```
Series.str.casefold()[source]# Convert strings in the Series/Index to be casefolded. New in version 0.25.0. Equivalent to str.casefold(). Returns Series or Index of object See also Series.str.lowerConverts all characters to lowercase. Series.str.upperConverts all characters to uppercase. Series.str.titleConverts first character of each word to uppercase and remaining to lowercase. Series.str.capitalizeConverts first character to uppercase and remaining to lowercase. Series.str.swapcaseConverts uppercase to lowercase and lowercase to uppercase. Series.str.casefoldRemoves all case distinctions in the string. Examples >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.lower() 0 lower 1 capitals 2 this is a sentence 3 swapcase dtype: object >>> s.str.upper() 0 LOWER 1 CAPITALS 2 THIS IS A SENTENCE 3 SWAPCASE dtype: object >>> s.str.title() 0 Lower 1 Capitals 2 This Is A Sentence 3 Swapcase dtype: object >>> s.str.capitalize() 0 Lower 1 Capitals 2 This is a sentence 3 Swapcase dtype: object >>> s.str.swapcase() 0 LOWER 1 capitals 2 THIS IS A SENTENCE 3 sWaPcAsE dtype: object
reference/api/pandas.Series.str.casefold.html
pandas.Categorical.from_codes
`pandas.Categorical.from_codes` Make a Categorical type from codes and categories or dtype. ``` >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) ['a', 'b', 'a', 'b'] Categories (2, object): ['a' < 'b'] ```
classmethod Categorical.from_codes(codes, categories=None, ordered=None, dtype=None)[source]# Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters codesarray-like of intAn integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categoriesindex-like, optionalThe categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in dtype. orderedbool, optionalWhether or not this categorical is treated as an ordered categorical. If not given here or in dtype, the resulting categorical will be unordered. dtypeCategoricalDtype or “category”, optionalIf CategoricalDtype, cannot be used together with categories or ordered. Returns Categorical Examples >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) ['a', 'b', 'a', 'b'] Categories (2, object): ['a' < 'b']
reference/api/pandas.Categorical.from_codes.html
pandas.Series.aggregate
`pandas.Series.aggregate` Aggregate using one or more operations over the specified axis. Function to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply. ``` >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 ```
Series.aggregate(func=None, axis=0, *args, **kwargs)[source]# Aggregate using one or more operations over the specified axis. Parameters funcfunction, str, list or dictFunction to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply. Accepted combinations are: function string function name list of functions and/or function names, e.g. [np.sum, 'mean'] dict of axis labels -> functions, function names or list of such. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. *argsPositional arguments to pass to func. **kwargsKeyword arguments to pass to func. Returns scalar, Series or DataFrameThe return can be: scalar : when Series.agg is called with single function Series : when DataFrame.agg is called with a single function DataFrame : when DataFrame.agg is called with several functions Return scalar, Series or DataFrame. See also Series.applyInvoke function on a Series. Series.transformTransform function producing a Series with like indexes. Notes agg is an alias for aggregate. Use the alias. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. A passed user-defined-function will be passed a Series for evaluation. Examples >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64
reference/api/pandas.Series.aggregate.html
pandas.tseries.offsets.CustomBusinessMonthBegin.kwds
`pandas.tseries.offsets.CustomBusinessMonthBegin.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
CustomBusinessMonthBegin.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.kwds.html
pandas.UInt64Dtype
`pandas.UInt64Dtype` An ExtensionDtype for uint64 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan.
class pandas.UInt64Dtype[source]# An ExtensionDtype for uint64 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan. Attributes None Methods None
reference/api/pandas.UInt64Dtype.html
pandas.tseries.offsets.Day.is_month_end
`pandas.tseries.offsets.Day.is_month_end` Return boolean whether a timestamp occurs on the month end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
Day.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.Day.is_month_end.html
pandas.tseries.offsets.YearBegin.is_year_end
`pandas.tseries.offsets.YearBegin.is_year_end` Return boolean whether a timestamp occurs on the year end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
YearBegin.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.YearBegin.is_year_end.html
pandas.tseries.offsets.DateOffset.is_quarter_end
`pandas.tseries.offsets.DateOffset.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
DateOffset.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.DateOffset.is_quarter_end.html
pandas.MultiIndex.from_arrays
`pandas.MultiIndex.from_arrays` Convert arrays to MultiIndex. ``` >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) ```
classmethod MultiIndex.from_arrays(arrays, sortorder=None, names=_NoDefault.no_default)[source]# Convert arrays to MultiIndex. Parameters arrayslist / sequence of array-likesEach array-like gives one level’s value for each data point. len(arrays) is the number of levels. sortorderint or NoneLevel of sortedness (must be lexicographically sorted by that level). nameslist / sequence of str, optionalNames for the levels in the index. Returns MultiIndex See also MultiIndex.from_tuplesConvert list of tuples to MultiIndex. MultiIndex.from_productMake a MultiIndex from cartesian product of iterables. MultiIndex.from_frameMake a MultiIndex from a DataFrame. Examples >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color'])
reference/api/pandas.MultiIndex.from_arrays.html
pandas.api.types.is_iterator
`pandas.api.types.is_iterator` Check if the object is an iterator. ``` >>> import datetime >>> is_iterator((x for x in [])) True >>> is_iterator([1, 2, 3]) False >>> is_iterator(datetime.datetime(2017, 1, 1)) False >>> is_iterator("foo") False >>> is_iterator(1) False ```
pandas.api.types.is_iterator()# Check if the object is an iterator. This is intended for generators, not list-like objects. Parameters objThe object to check Returns is_iterboolWhether obj is an iterator. Examples >>> import datetime >>> is_iterator((x for x in [])) True >>> is_iterator([1, 2, 3]) False >>> is_iterator(datetime.datetime(2017, 1, 1)) False >>> is_iterator("foo") False >>> is_iterator(1) False
reference/api/pandas.api.types.is_iterator.html