title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.DataFrame.info
`pandas.DataFrame.info` Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and columns, non-null values and memory usage. ``` >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 ```
DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None, show_counts=None, null_counts=None)[source]# Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and columns, non-null values and memory usage. Parameters verbosebool, optionalWhether to print the full summary. By default, the setting in pandas.options.display.max_info_columns is followed. bufwritable buffer, defaults to sys.stdoutWhere to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than max_cols columns, the truncated output is used. By default, the setting in pandas.options.display.max_info_columns is used. memory_usagebool, str, optionalSpecifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the pandas.options.display.memory_usage setting. True always show memory usage. False never shows memory usage. A value of ‘deep’ is equivalent to “True with deep introspection”. Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. See the Frequently Asked Questions for more details. show_countsbool, optionalWhether to show the non-null counts. By default, this is shown only if the DataFrame is smaller than pandas.options.display.max_info_rows and pandas.options.display.max_info_columns. A value of True always shows the counts, and False never shows the counts. null_countsbool, optional Deprecated since version 1.2.0: Use show_counts instead. Returns NoneThis method prints a summary of a DataFrame and returns None. See also DataFrame.describeGenerate descriptive statistics of DataFrame columns. DataFrame.memory_usageMemory usage of DataFrame columns. Examples >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: ... f.write(s) 260 The memory_usage parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 165.9 MB
reference/api/pandas.DataFrame.info.html
pandas.tseries.offsets.Micro.is_month_end
`pandas.tseries.offsets.Micro.is_month_end` Return boolean whether a timestamp occurs on the month end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
Micro.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.Micro.is_month_end.html
pandas.tseries.offsets.FY5253.freqstr
`pandas.tseries.offsets.FY5253.freqstr` Return a string representing the frequency. ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
FY5253.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.FY5253.freqstr.html
pandas.core.groupby.GroupBy.apply
`pandas.core.groupby.GroupBy.apply` Apply function func group-wise and combine the results together. ``` >>> df = pd.DataFrame({'A': 'a a b'.split(), ... 'B': [1,2,3], ... 'C': [4,6,5]}) >>> g1 = df.groupby('A', group_keys=False) >>> g2 = df.groupby('A', group_keys=True) ```
GroupBy.apply(func, *args, **kwargs)[source]# Apply function func group-wise and combine the results together. The function passed to apply must take a dataframe as its first argument and return a DataFrame, Series or scalar. apply will then take care of combining the results back together into a single dataframe or series. apply is therefore a highly flexible grouping method. While apply is a very flexible method, its downside is that using it can be quite a bit slower than using more specific methods like agg or transform. Pandas offers a wide range of method that will be much faster than using apply for their specific purposes, so try to use them before reaching for apply. Parameters funccallableA callable that takes a dataframe as its first argument, and returns a dataframe, a series or a scalar. In addition the callable may take positional and keyword arguments. args, kwargstuple and dictOptional positional and keyword arguments to pass to func. Returns appliedSeries or DataFrame See also pipeApply function to the full GroupBy object instead of to each group. aggregateApply aggregate function to the GroupBy object. transformApply function column-by-column to the GroupBy object. Series.applyApply a function to a Series. DataFrame.applyApply a function to each row or column of a DataFrame. Notes Changed in version 1.3.0: The resulting dtype will reflect the return value of the passed func, see the examples below. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. Examples >>> df = pd.DataFrame({'A': 'a a b'.split(), ... 'B': [1,2,3], ... 'C': [4,6,5]}) >>> g1 = df.groupby('A', group_keys=False) >>> g2 = df.groupby('A', group_keys=True) Notice that g1 have g2 have two groups, a and b, and only differ in their group_keys argument. Calling apply in various ways, we can get different grouping results: Example 1: below the function passed to apply takes a DataFrame as its argument and returns a DataFrame. apply combines the result for each group together into a new DataFrame: >>> g1[['B', 'C']].apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0 In the above, the groups are not part of the index. We can have them included by using g2 where group_keys=True: >>> g2[['B', 'C']].apply(lambda x: x / x.sum()) B C A a 0 0.333333 0.4 1 0.666667 0.6 b 2 1.000000 1.0 Example 2: The function passed to apply takes a DataFrame as its argument and returns a Series. apply combines the result for each group together into a new DataFrame. Changed in version 1.3.0: The resulting dtype will reflect the return value of the passed func. >>> g1[['B', 'C']].apply(lambda x: x.astype(float).max() - x.min()) B C A a 1.0 2.0 b 0.0 0.0 >>> g2[['B', 'C']].apply(lambda x: x.astype(float).max() - x.min()) B C A a 1.0 2.0 b 0.0 0.0 The group_keys argument has no effect here because the result is not like-indexed (i.e. a transform) when compared to the input. Example 3: The function passed to apply takes a DataFrame as its argument and returns a scalar. apply combines the result for each group together into a Series, including setting the index as appropriate: >>> g1.apply(lambda x: x.C.max() - x.B.min()) A a 5 b 2 dtype: int64
reference/api/pandas.core.groupby.GroupBy.apply.html
pandas.tseries.offsets.Tick.n
pandas.tseries.offsets.Tick.n
Tick.n#
reference/api/pandas.tseries.offsets.Tick.n.html
pandas.DatetimeIndex.day_of_week
`pandas.DatetimeIndex.day_of_week` The day of the week with Monday=0, Sunday=6. ``` >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64 ```
property DatetimeIndex.day_of_week[source]# The day of the week with Monday=0, Sunday=6. Return the day of the week. It is assumed the week starts on Monday, which is denoted by 0 and ends on Sunday which is denoted by 6. This method is available on both Series with datetime values (using the dt accessor) or DatetimeIndex. Returns Series or IndexContaining integers indicating the day number. See also Series.dt.dayofweekAlias. Series.dt.weekdayAlias. Series.dt.day_nameReturns the name of the day of the week. Examples >>> s = pd.date_range('2016-12-31', '2017-01-08', freq='D').to_series() >>> s.dt.dayofweek 2016-12-31 5 2017-01-01 6 2017-01-02 0 2017-01-03 1 2017-01-04 2 2017-01-05 3 2017-01-06 4 2017-01-07 5 2017-01-08 6 Freq: D, dtype: int64
reference/api/pandas.DatetimeIndex.day_of_week.html
pandas.errors.OutOfBoundsDatetime
`pandas.errors.OutOfBoundsDatetime` Raised when the datetime is outside the range that can be represented.
exception pandas.errors.OutOfBoundsDatetime# Raised when the datetime is outside the range that can be represented.
reference/api/pandas.errors.OutOfBoundsDatetime.html
pandas.DataFrame.corr
`pandas.DataFrame.corr` Compute pairwise correlation of columns, excluding NA/null values. ``` >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 ```
DataFrame.corr(method='pearson', min_periods=1, numeric_only=_NoDefault.no_default)[source]# Compute pairwise correlation of columns, excluding NA/null values. Parameters method{‘pearson’, ‘kendall’, ‘spearman’} or callableMethod of correlation: pearson : standard correlation coefficient kendall : Kendall Tau correlation coefficient spearman : Spearman rank correlation callable: callable with input two 1d ndarraysand returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable’s behavior. min_periodsint, optionalMinimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. numeric_onlybool, default TrueInclude only float, int or boolean data. New in version 1.5.0. Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas. Returns DataFrameCorrelation matrix. See also DataFrame.corrwithCompute pairwise correlation with another DataFrame or Series. Series.corrCompute the correlation between two Series. Notes Pearson, Kendall and Spearman correlation are currently computed using pairwise complete observations. Pearson correlation coefficient Kendall rank correlation coefficient Spearman’s rank correlation coefficient Examples >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 >>> df = pd.DataFrame([(1, 1), (2, np.nan), (np.nan, 3), (4, 4)], ... columns=['dogs', 'cats']) >>> df.corr(min_periods=3) dogs cats dogs 1.0 NaN cats NaN 1.0
reference/api/pandas.DataFrame.corr.html
pandas.core.groupby.DataFrameGroupBy.nunique
`pandas.core.groupby.DataFrameGroupBy.nunique` Return DataFrame with counts of unique elements in each position. ``` >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y ```
DataFrameGroupBy.nunique(dropna=True)[source]# Return DataFrame with counts of unique elements in each position. Parameters dropnabool, default TrueDon’t include NaN in the counts. Returns nunique: DataFrame Examples >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() value1 value2 id egg 1 1 ham 1 2 spam 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y
reference/api/pandas.core.groupby.DataFrameGroupBy.nunique.html
pandas.api.extensions.ExtensionDtype.construct_from_string
`pandas.api.extensions.ExtensionDtype.construct_from_string` Construct this type from a string. This is useful mainly for data types that accept parameters. For example, a period dtype accepts a frequency parameter that can be set as period[H] (where H means hourly frequency). ``` >>> @classmethod ... def construct_from_string(cls, string): ... pattern = re.compile(r"^my_type\[(?P<arg_name>.+)\]$") ... match = pattern.match(string) ... if match: ... return cls(**match.groupdict()) ... else: ... raise TypeError( ... f"Cannot construct a '{cls.__name__}' from '{string}'" ... ) ```
classmethod ExtensionDtype.construct_from_string(string)[source]# Construct this type from a string. This is useful mainly for data types that accept parameters. For example, a period dtype accepts a frequency parameter that can be set as period[H] (where H means hourly frequency). By default, in the abstract class, just the name of the type is expected. But subclasses can overwrite this method to accept parameters. Parameters stringstrThe name of the type, for example category. Returns ExtensionDtypeInstance of the dtype. Raises TypeErrorIf a class cannot be constructed from this ‘string’. Examples For extension dtypes with arguments the following may be an adequate implementation. >>> @classmethod ... def construct_from_string(cls, string): ... pattern = re.compile(r"^my_type\[(?P<arg_name>.+)\]$") ... match = pattern.match(string) ... if match: ... return cls(**match.groupdict()) ... else: ... raise TypeError( ... f"Cannot construct a '{cls.__name__}' from '{string}'" ... )
reference/api/pandas.api.extensions.ExtensionDtype.construct_from_string.html
pandas.Series.to_clipboard
`pandas.Series.to_clipboard` Copy object to the system clipboard. ``` >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) ```
Series.to_clipboard(excel=True, sep=None, **kwargs)[source]# Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters excelbool, default TrueProduce output in a csv format for easy pasting into excel. True, use the provided separator for csv pasting. False, write a string representation of the object to the clipboard. sepstr, default '\t'Field delimiter. **kwargsThese parameters will be passed to DataFrame.to_csv. See also DataFrame.to_csvWrite a DataFrame to a comma-separated values (csv) file. read_clipboardRead text from clipboard and pass to read_csv. Notes Requirements for your platform. Linux : xclip, or xsel (with PyQt4 modules) Windows : none macOS : none This method uses the processes developed for the package pyperclip. A solution to render any output string format is given in the examples. Examples Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the index by passing the keyword index and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 Using the original pyperclip package for any string output format. import pyperclip html = df.style.to_html() pyperclip.copy(html)
reference/api/pandas.Series.to_clipboard.html
pandas.Series.str.title
`pandas.Series.str.title` Convert strings in the Series/Index to titlecase. ``` >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object ```
Series.str.title()[source]# Convert strings in the Series/Index to titlecase. Equivalent to str.title(). Returns Series or Index of object See also Series.str.lowerConverts all characters to lowercase. Series.str.upperConverts all characters to uppercase. Series.str.titleConverts first character of each word to uppercase and remaining to lowercase. Series.str.capitalizeConverts first character to uppercase and remaining to lowercase. Series.str.swapcaseConverts uppercase to lowercase and lowercase to uppercase. Series.str.casefoldRemoves all case distinctions in the string. Examples >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.lower() 0 lower 1 capitals 2 this is a sentence 3 swapcase dtype: object >>> s.str.upper() 0 LOWER 1 CAPITALS 2 THIS IS A SENTENCE 3 SWAPCASE dtype: object >>> s.str.title() 0 Lower 1 Capitals 2 This Is A Sentence 3 Swapcase dtype: object >>> s.str.capitalize() 0 Lower 1 Capitals 2 This is a sentence 3 Swapcase dtype: object >>> s.str.swapcase() 0 LOWER 1 capitals 2 THIS IS A SENTENCE 3 sWaPcAsE dtype: object
reference/api/pandas.Series.str.title.html
pandas.DataFrame.isnull
`pandas.DataFrame.isnull` DataFrame.isnull is an alias for DataFrame.isna. ``` >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker ```
DataFrame.isnull()[source]# DataFrame.isnull is an alias for DataFrame.isna. Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). Returns DataFrameMask of bool values for each element in DataFrame that indicates whether an element is an NA value. See also DataFrame.isnullAlias of isna. DataFrame.notnaBoolean inverse of isna. DataFrame.dropnaOmit axes labels with missing values. isnaTop-level isna. Examples Show which entries in a DataFrame are NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool
reference/api/pandas.DataFrame.isnull.html
pandas.Series.ffill
`pandas.Series.ffill` Synonym for DataFrame.fillna() with method='ffill'. Object with missing values filled or None if inplace=True.
Series.ffill(*, axis=None, inplace=False, limit=None, downcast=None)[source]# Synonym for DataFrame.fillna() with method='ffill'. Returns Series/DataFrame or NoneObject with missing values filled or None if inplace=True.
reference/api/pandas.Series.ffill.html
pandas.ExcelWriter.handles
`pandas.ExcelWriter.handles` Handles to Excel sheets.
property ExcelWriter.handles[source]# Handles to Excel sheets. Deprecated since version 1.5.0.
reference/api/pandas.ExcelWriter.handles.html
pandas.Series.swaplevel
`pandas.Series.swaplevel` Swap levels i and j in a MultiIndex. ``` >>> s = pd.Series( ... ["A", "B", "A", "C"], ... index=[ ... ["Final exam", "Final exam", "Coursework", "Coursework"], ... ["History", "Geography", "History", "Geography"], ... ["January", "February", "March", "April"], ... ], ... ) >>> s Final exam History January A Geography February B Coursework History March A Geography April C dtype: object ```
Series.swaplevel(i=- 2, j=- 1, copy=True)[source]# Swap levels i and j in a MultiIndex. Default is to swap the two innermost levels of the index. Parameters i, jint or strLevels of the indices to be swapped. Can pass level name as string. copybool, default TrueWhether to copy underlying data. Returns SeriesSeries with levels swapped in MultiIndex. Examples >>> s = pd.Series( ... ["A", "B", "A", "C"], ... index=[ ... ["Final exam", "Final exam", "Coursework", "Coursework"], ... ["History", "Geography", "History", "Geography"], ... ["January", "February", "March", "April"], ... ], ... ) >>> s Final exam History January A Geography February B Coursework History March A Geography April C dtype: object In the following example, we will swap the levels of the indices. Here, we will swap the levels column-wise, but levels can be swapped row-wise in a similar manner. Note that column-wise is the default behaviour. By not supplying any arguments for i and j, we swap the last and second to last indices. >>> s.swaplevel() Final exam January History A February Geography B Coursework March History A April Geography C dtype: object By supplying one argument, we can choose which index to swap the last index with. We can for example swap the first index with the last one as follows. >>> s.swaplevel(0) January History Final exam A February Geography Final exam B March History Coursework A April Geography Coursework C dtype: object We can also define explicitly which indices we want to swap by supplying values for both i and j. Here, we for example swap the first and second indices. >>> s.swaplevel(0, 1) History Final exam January A Geography Final exam February B History Coursework March A Geography Coursework April C dtype: object
reference/api/pandas.Series.swaplevel.html
pandas.Series.tshift
`pandas.Series.tshift` Shift the time index, using the index’s frequency if available.
Series.tshift(periods=1, freq=None, axis=0)[source]# Shift the time index, using the index’s frequency if available. Deprecated since version 1.1.0: Use shift instead. Parameters periodsintNumber of periods to move, can be positive or negative. freqDateOffset, timedelta, or str, default NoneIncrement to use from the tseries module or time rule expressed as a string (e.g. ‘EOM’). axis{0 or ‘index’, 1 or ‘columns’, None}, default 0Corresponds to the axis that contains the Index. For Series this parameter is unused and defaults to 0. Returns shiftedSeries/DataFrame Notes If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown
reference/api/pandas.Series.tshift.html
pandas.tseries.offsets.BusinessMonthBegin.is_month_end
`pandas.tseries.offsets.BusinessMonthBegin.is_month_end` Return boolean whether a timestamp occurs on the month end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
BusinessMonthBegin.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.BusinessMonthBegin.is_month_end.html
pandas.core.groupby.GroupBy.mean
`pandas.core.groupby.GroupBy.mean` Compute mean of groups, excluding missing values. Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. ``` >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) ```
final GroupBy.mean(numeric_only=_NoDefault.no_default, engine='cython', engine_kwargs=None)[source]# Compute mean of groups, excluding missing values. Parameters numeric_onlybool, default TrueInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.4.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {{'nopython': True, 'nogil': False, 'parallel': False}} New in version 1.4.0. Returns pandas.Series or pandas.DataFrame See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. Examples >>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2], ... 'B': [np.nan, 2, 3, 4, 5], ... 'C': [1, 2, 1, 1, 2]}, columns=['A', 'B', 'C']) Groupby one column and return the mean of the remaining columns in each group. >>> df.groupby('A').mean() B C A 1 3.0 1.333333 2 4.0 1.500000 Groupby two columns and return the mean of the remaining column. >>> df.groupby(['A', 'B']).mean() C A B 1 2.0 2.0 4.0 1.0 2 3.0 1.0 5.0 2.0 Groupby one column and return the mean of only particular column in the group. >>> df.groupby('A')['B'].mean() A 1 3.0 2 4.0 Name: B, dtype: float64
reference/api/pandas.core.groupby.GroupBy.mean.html
pandas.tseries.offsets.MonthEnd.is_quarter_end
`pandas.tseries.offsets.MonthEnd.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
MonthEnd.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.MonthEnd.is_quarter_end.html
pandas.core.window.ewm.ExponentialMovingWindow.cov
`pandas.core.window.ewm.ExponentialMovingWindow.cov` Calculate the ewm (exponential weighted moment) sample covariance.
ExponentialMovingWindow.cov(other=None, pairwise=None, bias=False, numeric_only=False, **kwargs)[source]# Calculate the ewm (exponential weighted moment) sample covariance. Parameters otherSeries or DataFrame , optionalIf not supplied then will default to self and produce pairwise output. pairwisebool, default NoneIf False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. biasbool, default FalseUse a standard estimation bias correction. numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.ewmCalling ewm with Series data. pandas.DataFrame.ewmCalling ewm with DataFrames. pandas.Series.covAggregating cov for Series. pandas.DataFrame.covAggregating cov for DataFrame.
reference/api/pandas.core.window.ewm.ExponentialMovingWindow.cov.html
pandas.tseries.offsets.FY5253Quarter.freqstr
`pandas.tseries.offsets.FY5253Quarter.freqstr` Return a string representing the frequency. ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
FY5253Quarter.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.FY5253Quarter.freqstr.html
pandas.Series.to_markdown
`pandas.Series.to_markdown` Print Series in Markdown-friendly format. ``` >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | ```
Series.to_markdown(buf=None, mode='wt', index=True, storage_options=None, **kwargs)[source]# Print Series in Markdown-friendly format. New in version 1.0.0. Parameters bufstr, Path or StringIO-like, optional, default NoneBuffer to write to. If None, the output is returned as a string. modestr, optionalMode in which file is opened, “wt” by default. indexbool, optional, default TrueAdd index (row) labels. New in version 1.1.0. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2.0. **kwargsThese parameters will be passed to tabulate. Returns strSeries in Markdown-friendly format. Notes Requires the tabulate package. Examples >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | Output markdown with a tabulate option. >>> print(s.to_markdown(tablefmt="grid")) +----+----------+ | | animal | +====+==========+ | 0 | elk | +----+----------+ | 1 | pig | +----+----------+ | 2 | dog | +----+----------+ | 3 | quetzal | +----+----------+
reference/api/pandas.Series.to_markdown.html
pandas.DatetimeIndex.is_month_end
`pandas.DatetimeIndex.is_month_end` Indicates whether the date is the last day of the month. For Series, returns a Series with boolean values. For DatetimeIndex, returns a boolean array. ``` >>> s = pd.Series(pd.date_range("2018-02-27", periods=3)) >>> s 0 2018-02-27 1 2018-02-28 2 2018-03-01 dtype: datetime64[ns] >>> s.dt.is_month_start 0 False 1 False 2 True dtype: bool >>> s.dt.is_month_end 0 False 1 True 2 False dtype: bool ```
property DatetimeIndex.is_month_end[source]# Indicates whether the date is the last day of the month. Returns Series or arrayFor Series, returns a Series with boolean values. For DatetimeIndex, returns a boolean array. See also is_month_startReturn a boolean indicating whether the date is the first day of the month. is_month_endReturn a boolean indicating whether the date is the last day of the month. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> s = pd.Series(pd.date_range("2018-02-27", periods=3)) >>> s 0 2018-02-27 1 2018-02-28 2 2018-03-01 dtype: datetime64[ns] >>> s.dt.is_month_start 0 False 1 False 2 True dtype: bool >>> s.dt.is_month_end 0 False 1 True 2 False dtype: bool >>> idx = pd.date_range("2018-02-27", periods=3) >>> idx.is_month_start array([False, False, True]) >>> idx.is_month_end array([False, True, False])
reference/api/pandas.DatetimeIndex.is_month_end.html
pandas.DataFrame.cov
`pandas.DataFrame.cov` Compute pairwise covariance of columns, excluding NA/null values. ``` >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 ```
DataFrame.cov(min_periods=None, ddof=1, numeric_only=_NoDefault.no_default)[source]# Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the covariance matrix of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as NaN. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters min_periodsint, optionalMinimum number of observations required per pair of columns to have a valid result. ddofint, default 1Delta degrees of freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. New in version 1.1.0. numeric_onlybool, default TrueInclude only float, int or boolean data. New in version 1.5.0. Deprecated since version 1.5.0: The default value of numeric_only will be False in a future version of pandas. Returns DataFrameThe covariance matrix of the series of the DataFrame. See also Series.covCompute covariance with another Series. core.window.ewm.ExponentialMovingWindow.covExponential weighted sample covariance. core.window.expanding.Expanding.covExpanding sample covariance. core.window.rolling.Rolling.covRolling sample covariance. Notes Returns the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-ddof. For DataFrames that have Series that are missing data (assuming that data is missing at random) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details. Examples >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 Minimum number of periods This method also supports an optional min_periods keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202
reference/api/pandas.DataFrame.cov.html
pandas.DataFrame.aggregate
`pandas.DataFrame.aggregate` Aggregate using one or more operations over the specified axis. ``` >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) ```
DataFrame.aggregate(func=None, axis=0, *args, **kwargs)[source]# Aggregate using one or more operations over the specified axis. Parameters funcfunction, str, list or dictFunction to use for aggregating the data. If a function, must either work when passed a DataFrame or when passed to DataFrame.apply. Accepted combinations are: function string function name list of functions and/or function names, e.g. [np.sum, 'mean'] dict of axis labels -> functions, function names or list of such. axis{0 or ‘index’, 1 or ‘columns’}, default 0If 0 or ‘index’: apply function to each column. If 1 or ‘columns’: apply function to each row. *argsPositional arguments to pass to func. **kwargsKeyword arguments to pass to func. Returns scalar, Series or DataFrameThe return can be: scalar : when Series.agg is called with single function Series : when DataFrame.agg is called with a single function DataFrame : when DataFrame.agg is called with several functions Return scalar, Series or DataFrame. The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from numpy aggregation functions (mean, median, prod, sum, std, var), where the default is to compute the aggregation of the flattened array, e.g., numpy.mean(arr_2d) as opposed to numpy.mean(arr_2d, axis=0). agg is an alias for aggregate. Use the alias. See also DataFrame.applyPerform any type of operations. DataFrame.transformPerform transformation type operations. core.groupby.GroupByPerform operations over groups. core.resample.ResamplerPerform operations over resampled bins. core.window.RollingPerform operations over rolling window. core.window.ExpandingPerform operations over expanding window. core.window.ExponentialMovingWindowPerform operation over exponential weighted window. Notes agg is an alias for aggregate. Use the alias. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. A passed user-defined-function will be passed a Series for evaluation. Examples >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B sum 12.0 NaN min 1.0 2.0 max NaN 8.0 Aggregate different functions over the columns and rename the index of the resulting DataFrame. >>> df.agg(x=('A', max), y=('B', 'min'), z=('C', np.mean)) A B C x 7.0 NaN NaN y NaN 2.0 NaN z NaN NaN 6.0 Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64
reference/api/pandas.DataFrame.aggregate.html
pandas.tseries.offsets.BusinessDay.kwds
`pandas.tseries.offsets.BusinessDay.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
BusinessDay.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.BusinessDay.kwds.html
pandas.errors.NullFrequencyError
`pandas.errors.NullFrequencyError` Exception raised when a freq cannot be null.
exception pandas.errors.NullFrequencyError[source]# Exception raised when a freq cannot be null. Particularly DatetimeIndex.shift, TimedeltaIndex.shift, PeriodIndex.shift.
reference/api/pandas.errors.NullFrequencyError.html
pandas.PeriodIndex.to_timestamp
`pandas.PeriodIndex.to_timestamp` Cast to DatetimeArray/Index.
PeriodIndex.to_timestamp(freq=None, how='start')[source]# Cast to DatetimeArray/Index. Parameters freqstr or DateOffset, optionalTarget frequency. The default is ‘D’ for week or longer, ‘S’ otherwise. how{‘s’, ‘e’, ‘start’, ‘end’}Whether to use the start or end of the time period being converted. Returns DatetimeArray/Index
reference/api/pandas.PeriodIndex.to_timestamp.html
pandas.tseries.offsets.BusinessDay.onOffset
pandas.tseries.offsets.BusinessDay.onOffset
BusinessDay.onOffset()#
reference/api/pandas.tseries.offsets.BusinessDay.onOffset.html
Roadmap
Roadmap This page provides an overview of the major themes in pandas’ development. Each of these items requires a relatively large amount of effort to implement. These may be achieved more quickly with dedicated funding or interest from contributors. An item being on the roadmap does not mean that it will necessarily happen, even with unlimited funding. During the implementation period we may discover issues preventing the adoption of the feature. Additionally, an item not being on the roadmap does not exclude it from inclusion in pandas. The roadmap is intended for larger, fundamental changes to the project that are likely to take months or years of developer time. Smaller-scoped items will continue to be tracked on our issue tracker. See Roadmap evolution for proposing changes to this document. pandas Extension types allow for extending NumPy types with custom data types and array storage. pandas uses extension types internally, and provides an interface for 3rd-party libraries to define their own custom data types.
This page provides an overview of the major themes in pandas’ development. Each of these items requires a relatively large amount of effort to implement. These may be achieved more quickly with dedicated funding or interest from contributors. An item being on the roadmap does not mean that it will necessarily happen, even with unlimited funding. During the implementation period we may discover issues preventing the adoption of the feature. Additionally, an item not being on the roadmap does not exclude it from inclusion in pandas. The roadmap is intended for larger, fundamental changes to the project that are likely to take months or years of developer time. Smaller-scoped items will continue to be tracked on our issue tracker. See Roadmap evolution for proposing changes to this document. Extensibility# pandas Extension types allow for extending NumPy types with custom data types and array storage. pandas uses extension types internally, and provides an interface for 3rd-party libraries to define their own custom data types. Many parts of pandas still unintentionally convert data to a NumPy array. These problems are especially pronounced for nested data. We’d like to improve the handling of extension arrays throughout the library, making their behavior more consistent with the handling of NumPy arrays. We’ll do this by cleaning up pandas’ internals and adding new methods to the extension array interface. String data type# Currently, pandas stores text data in an object -dtype NumPy array. The current implementation has two primary drawbacks: First, object -dtype is not specific to strings: any Python object can be stored in an object -dtype array, not just strings. Second: this is not efficient. The NumPy memory model isn’t especially well-suited to variable width text data. To solve the first issue, we propose a new extension type for string data. This will initially be opt-in, with users explicitly requesting dtype="string". The array backing this string dtype may initially be the current implementation: an object -dtype NumPy array of Python strings. To solve the second issue (performance), we’ll explore alternative in-memory array libraries (for example, Apache Arrow). As part of the work, we may need to implement certain operations expected by pandas users (for example the algorithm used in, Series.str.upper). That work may be done outside of pandas. Consistent missing value handling# Currently, pandas handles missing data differently for different data types. We use different types to indicate that a value is missing (np.nan for floating-point data, np.nan or None for object-dtype data – typically strings or booleans – with missing values, and pd.NaT for datetimelike data). Integer data cannot store missing data or are cast to float. In addition, pandas 1.0 introduced a new missing value sentinel, pd.NA, which is being used for the experimental nullable integer, boolean, and string data types. These different missing values have different behaviors in user-facing operations. Specifically, we introduced different semantics for the nullable data types for certain operations (e.g. propagating in comparison operations instead of comparing as False). Long term, we want to introduce consistent missing data handling for all data types. This includes consistent behavior in all operations (indexing, arithmetic operations, comparisons, etc.). There has been discussion of eventually making the new semantics the default. This has been discussed at GH28095 (and linked issues), and described in more detail in this design doc. Apache Arrow interoperability# Apache Arrow is a cross-language development platform for in-memory data. The Arrow logical types are closely aligned with typical pandas use cases. We’d like to provide better-integrated support for Arrow memory and data types within pandas. This will let us take advantage of its I/O capabilities and provide for better interoperability with other languages and libraries using Arrow. Block manager rewrite# We’d like to replace pandas current internal data structures (a collection of 1 or 2-D arrays) with a simpler collection of 1-D arrays. pandas internal data model is quite complex. A DataFrame is made up of one or more 2-dimensional “blocks”, with one or more blocks per dtype. This collection of 2-D arrays is managed by the BlockManager. The primary benefit of the BlockManager is improved performance on certain operations (construction from a 2D array, binary operations, reductions across the columns), especially for wide DataFrames. However, the BlockManager substantially increases the complexity and maintenance burden of pandas. By replacing the BlockManager we hope to achieve Substantially simpler code Easier extensibility with new logical types Better user control over memory use and layout Improved micro-performance Option to provide a C / Cython API to pandas’ internals See these design documents for more. Decoupling of indexing and internals# The code for getting and setting values in pandas’ data structures needs refactoring. In particular, we must clearly separate code that converts keys (e.g., the argument to DataFrame.loc) to positions from code that uses these positions to get or set values. This is related to the proposed BlockManager rewrite. Currently, the BlockManager sometimes uses label-based, rather than position-based, indexing. We propose that it should only work with positional indexing, and the translation of keys to positions should be entirely done at a higher level. Indexing is a complicated API with many subtleties. This refactor will require care and attention. The following principles should inspire refactoring of indexing code and should result on cleaner, simpler, and more performant code. 1. Label indexing must never involve looking in an axis twice for the same label(s). This implies that any validation step must either: limit validation to general features (e.g. dtype/structure of the key/index), or reuse the result for the actual indexing. 2. Indexers must never rely on an explicit call to other indexers. For instance, it is OK to have some internal method of .loc call some internal method of __getitem__ (or of their common base class), but never in the code flow of .loc should the_obj[something] appear. 3. Execution of positional indexing must never involve labels (as currently, sadly, happens). That is, the code flow of a getter call (or a setter call in which the right hand side is non-indexed) to .iloc should never involve the axes of the object in any way. 4. Indexing must never involve accessing/modifying values (i.e., act on ._data or .values) more than once. The following steps must hence be clearly decoupled: find positions we need to access/modify on each axis (if we are accessing) derive the type of object we need to return (dimensionality) actually access/modify the values (if we are accessing) construct the return object 5. As a corollary to the decoupling between 4.i and 4.iii, any code which deals on how data is stored (including any combination of handling multiple dtypes, and sparse storage, categoricals, third-party types) must be independent from code that deals with identifying affected rows/columns, and take place only once step 4.i is completed. In particular, such code should most probably not live in pandas/core/indexing.py … and must not depend in any way on the type(s) of axes (e.g. no MultiIndex special cases) 6. As a corollary to point 1.i, ``Index`` (sub)classes must provide separate methods for any desired validity check of label(s) which does not involve actual lookup, on the one side, and for any required conversion/adaptation/lookup of label(s), on the other. 7. Use of trial and error should be limited, and anyway restricted to catch only exceptions which are actually expected (typically KeyError). In particular, code should never (intentionally) raise new exceptions in the except portion of a try... exception 8. Any code portion which is not specific to setters and getters must be shared, and when small differences in behavior are expected (e.g. getting with .loc raises for missing labels, setting still doesn’t), they can be managed with a specific parameter. Numba-accelerated operations# Numba is a JIT compiler for Python code. We’d like to provide ways for users to apply their own Numba-jitted functions where pandas accepts user-defined functions (for example, Series.apply(), DataFrame.apply(), DataFrame.applymap(), and in groupby and window contexts). This will improve the performance of user-defined-functions in these operations by staying within compiled code. Performance monitoring# pandas uses airspeed velocity to monitor for performance regressions. ASV itself is a fabulous tool, but requires some additional work to be integrated into an open source project’s workflow. The asv-runner organization, currently made up of pandas maintainers, provides tools built on top of ASV. We have a physical machine for running a number of project’s benchmarks, and tools managing the benchmark runs and reporting on results. We’d like to fund improvements and maintenance of these tools to Be more stable. Currently, they’re maintained on the nights and weekends when a maintainer has free time. Tune the system for benchmarks to improve stability, following https://pyperf.readthedocs.io/en/latest/system.html Build a GitHub bot to request ASV runs before a PR is merged. Currently, the benchmarks are only run nightly. Roadmap evolution# pandas continues to evolve. The direction is primarily determined by community interest. Everyone is welcome to review existing items on the roadmap and to propose a new item. Each item on the roadmap should be a short summary of a larger design proposal. The proposal should include Short summary of the changes, which would be appropriate for inclusion in the roadmap if accepted. Motivation for the changes. An explanation of why the change is in scope for pandas. Detailed design: Preferably with example-usage (even if not implemented yet) and API documentation API Change: Any API changes that may result from the proposal. That proposal may then be submitted as a GitHub issue, where the pandas maintainers can review and comment on the design. The pandas mailing list should be notified of the proposal. When there’s agreement that an implementation would be welcome, the roadmap should be updated to include the summary and a link to the discussion issue. Completed items# This section records now completed items from the pandas roadmap. Documentation improvements# We improved the pandas documentation The pandas community worked with others to build the pydata-sphinx-theme, which is now used for https://pandas.pydata.org/docs/ (GH15556). Getting started contains a number of resources intended for new pandas users coming from a variety of backgrounds (GH26831).
development/roadmap.html
pandas.CategoricalIndex.codes
`pandas.CategoricalIndex.codes` The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array.
property CategoricalIndex.codes[source]# The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ndarray[int]A non-writable view of the codes array.
reference/api/pandas.CategoricalIndex.codes.html
pandas.tseries.offsets.YearBegin.rollforward
`pandas.tseries.offsets.YearBegin.rollforward` Roll provided date forward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
YearBegin.rollforward()# Roll provided date forward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.YearBegin.rollforward.html
pandas.Series.dt.time
`pandas.Series.dt.time` Returns numpy array of datetime.time objects.
Series.dt.time[source]# Returns numpy array of datetime.time objects. The time part of the Timestamps.
reference/api/pandas.Series.dt.time.html
pandas.Index.memory_usage
`pandas.Index.memory_usage` Memory usage of the values.
Index.memory_usage(deep=False)[source]# Memory usage of the values. Parameters deepbool, default FalseIntrospect the data deeply, interrogate object dtypes for system-level memory consumption. Returns bytes used See also numpy.ndarray.nbytesTotal bytes consumed by the elements of the array. Notes Memory usage does not include memory consumed by elements that are not components of the array if deep=False or if used on PyPy
reference/api/pandas.Index.memory_usage.html
pandas.errors.PossibleDataLossError
`pandas.errors.PossibleDataLossError` Exception raised when trying to open a HDFStore file when already opened. ``` >>> store = pd.HDFStore('my-store', 'a') >>> store.open("w") ... # PossibleDataLossError: Re-opening the file [my-store] with mode [a]... ```
exception pandas.errors.PossibleDataLossError[source]# Exception raised when trying to open a HDFStore file when already opened. Examples >>> store = pd.HDFStore('my-store', 'a') >>> store.open("w") ... # PossibleDataLossError: Re-opening the file [my-store] with mode [a]...
reference/api/pandas.errors.PossibleDataLossError.html
pandas.Series.equals
`pandas.Series.equals` Test whether two objects contain the same elements. ``` >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 ```
Series.equals(other)[source]# Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The row/column index do not need to have the same type, as long as the values are considered equal. Corresponding columns must be of the same dtype. Parameters otherSeries or DataFrameThe other Series or DataFrame to be compared with the first. Returns boolTrue if all elements are the same in both objects, False otherwise. See also Series.eqCompare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eqCompare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. testing.assert_series_equalRaises an AssertionError if left and right are not equal. Provides an easy interface to ignore inequality in dtypes, indexes and precision among others. testing.assert_frame_equalLike assert_series_equal, but targets DataFrames. numpy.array_equalReturn True if two arrays have the same shape and elements, False otherwise. Examples >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False
reference/api/pandas.Series.equals.html
pandas.tseries.offsets.BusinessMonthEnd.is_anchored
`pandas.tseries.offsets.BusinessMonthEnd.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). Examples ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
BusinessMonthEnd.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.BusinessMonthEnd.is_anchored.html
pandas.tseries.offsets.Tick.apply_index
`pandas.tseries.offsets.Tick.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
Tick.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.Tick.apply_index.html
pandas.Series.reset_index
`pandas.Series.reset_index` Generate a new DataFrame or Series with the index reset. ``` >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) ```
Series.reset_index(level=None, *, drop=False, name=_NoDefault.no_default, inplace=False, allow_duplicates=False)[source]# Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters levelint, str, tuple, or list, default optionalFor a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. dropbool, default FalseJust reset the index, without inserting it as a column in the new DataFrame. nameobject, optionalThe name to use for the column containing the original Series values. Uses self.name by default. This argument is ignored when drop is True. inplacebool, default FalseModify the Series in place (do not create a new object). allow_duplicatesbool, default FalseAllow duplicate column labels to be created. New in version 1.5.0. Returns Series or DataFrame or NoneWhen drop is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When drop is True, a Series is returned. In either case, if inplace=True, no value is returned. See also DataFrame.reset_indexAnalogous function for DataFrame. Examples >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use name. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set drop to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set inplace to True. Note that it also requires drop=True. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The level parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use level. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If level is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3
reference/api/pandas.Series.reset_index.html
pandas.tseries.offsets.Micro.is_year_end
`pandas.tseries.offsets.Micro.is_year_end` Return boolean whether a timestamp occurs on the year end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
Micro.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.Micro.is_year_end.html
pandas.errors.PyperclipWindowsException
`pandas.errors.PyperclipWindowsException` Exception raised when clipboard functionality is unsupported by Windows. Access to the clipboard handle would be denied due to some other window process is accessing it.
exception pandas.errors.PyperclipWindowsException(message)[source]# Exception raised when clipboard functionality is unsupported by Windows. Access to the clipboard handle would be denied due to some other window process is accessing it.
reference/api/pandas.errors.PyperclipWindowsException.html
pandas.Series.multiply
`pandas.Series.multiply` Return Multiplication of series and other, element-wise (binary operator mul). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64 ```
Series.multiply(other, level=None, fill_value=None, axis=0)[source]# Return Multiplication of series and other, element-wise (binary operator mul). Equivalent to series * other, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.rmulReverse of the Multiplication operator, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64
reference/api/pandas.Series.multiply.html
pandas.MultiIndex.sortlevel
`pandas.MultiIndex.sortlevel` Sort MultiIndex at the requested level. ``` >>> mi = pd.MultiIndex.from_arrays([[0, 0], [2, 1]]) >>> mi MultiIndex([(0, 2), (0, 1)], ) ```
MultiIndex.sortlevel(level=0, ascending=True, sort_remaining=True)[source]# Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level. Parameters levellist-like, int or str, default 0If a string is given, must be a name of the level. If list-like must be names or ints of levels. ascendingbool, default TrueFalse to sort in descending order. Can also be a list to specify a directed ordering. sort_remainingsort by the remaining levels after level Returns sorted_indexpd.MultiIndexResulting index. indexernp.ndarray[np.intp]Indices of output values in original index. Examples >>> mi = pd.MultiIndex.from_arrays([[0, 0], [2, 1]]) >>> mi MultiIndex([(0, 2), (0, 1)], ) >>> mi.sortlevel() (MultiIndex([(0, 1), (0, 2)], ), array([1, 0])) >>> mi.sortlevel(sort_remaining=False) (MultiIndex([(0, 2), (0, 1)], ), array([0, 1])) >>> mi.sortlevel(1) (MultiIndex([(0, 1), (0, 2)], ), array([1, 0])) >>> mi.sortlevel(1, ascending=False) (MultiIndex([(0, 2), (0, 1)], ), array([0, 1]))
reference/api/pandas.MultiIndex.sortlevel.html
pandas.tseries.offsets.CustomBusinessDay.offset
`pandas.tseries.offsets.CustomBusinessDay.offset` Alias for self._offset.
CustomBusinessDay.offset# Alias for self._offset.
reference/api/pandas.tseries.offsets.CustomBusinessDay.offset.html
pandas.DataFrame.product
`pandas.DataFrame.product` Return the product of the values over the requested axis. ``` >>> pd.Series([], dtype="float64").prod() 1.0 ```
DataFrame.product(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)[source]# Return the product of the values over the requested axis. Parameters axis{index (0), columns (1)}Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values when computing the result. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. min_countint, default 0The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. **kwargsAdditional keyword arguments to be passed to the function. Returns Series or DataFrame (if level specified) See also Series.sumReturn the sum. Series.minReturn the minimum. Series.maxReturn the maximum. Series.idxminReturn the index of the minimum. Series.idxmaxReturn the index of the maximum. DataFrame.sumReturn the sum over the requested axis. DataFrame.minReturn the minimum over the requested axis. DataFrame.maxReturn the maximum over the requested axis. DataFrame.idxminReturn the index of the minimum over the requested axis. DataFrame.idxmaxReturn the index of the maximum over the requested axis. Examples By default, the product of an empty or all-NA Series is 1 >>> pd.Series([], dtype="float64").prod() 1.0 This can be controlled with the min_count parameter >>> pd.Series([], dtype="float64").prod(min_count=1) nan Thanks to the skipna parameter, min_count handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan
reference/api/pandas.DataFrame.product.html
pandas.Series.abs
`pandas.Series.abs` Return a Series/DataFrame with absolute numeric value of each element. ``` >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 ```
Series.abs()[source]# Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns absSeries/DataFrame containing the absolute value of each element. See also numpy.absoluteCalculate the absolute value element-wise. Notes For complex inputs, 1.2 + 1j, the absolute value is \(\sqrt{ a^2 + b^2 }\). Examples Absolute numeric values in a Series. >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a Series with complex numbers. >>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64 Absolute numeric values in a Series with a Timedelta element. >>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns] Select rows with data closest to certain value using argsort (from StackOverflow). >>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50
reference/api/pandas.Series.abs.html
pandas.Series.transform
`pandas.Series.transform` Call func on self producing a Series with the same axis shape as self. ``` >>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)}) >>> df A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1) A B 0 1 2 1 2 3 2 3 4 ```
Series.transform(func, axis=0, *args, **kwargs)[source]# Call func on self producing a Series with the same axis shape as self. Parameters funcfunction, str, list-like or dict-likeFunction to use for transforming the data. If a function, must either work when passed a Series or when passed to Series.apply. If func is both list-like and dict-like, dict-like behavior takes precedence. Accepted combinations are: function string function name list-like of functions and/or function names, e.g. [np.exp, 'sqrt'] dict-like of axis labels -> functions, function names or list-like of such. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. *argsPositional arguments to pass to func. **kwargsKeyword arguments to pass to func. Returns SeriesA Series that must have the same length as self. Raises ValueErrorIf the returned Series has a different length than self. See also Series.aggOnly perform aggregating type operations. Series.applyInvoke function on a Series. Notes Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. Examples >>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)}) >>> df A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1) A B 0 1 2 1 2 3 2 3 4 Even though the resulting Series must have the same length as the input Series, it is possible to provide several input functions: >>> s = pd.Series(range(3)) >>> s 0 0 1 1 2 2 dtype: int64 >>> s.transform([np.sqrt, np.exp]) sqrt exp 0 0.000000 1.000000 1 1.000000 2.718282 2 1.414214 7.389056 You can call transform on a GroupBy object: >>> df = pd.DataFrame({ ... "Date": [ ... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05", ... "2015-05-08", "2015-05-07", "2015-05-06", "2015-05-05"], ... "Data": [5, 8, 6, 1, 50, 100, 60, 120], ... }) >>> df Date Data 0 2015-05-08 5 1 2015-05-07 8 2 2015-05-06 6 3 2015-05-05 1 4 2015-05-08 50 5 2015-05-07 100 6 2015-05-06 60 7 2015-05-05 120 >>> df.groupby('Date')['Data'].transform('sum') 0 55 1 108 2 66 3 121 4 55 5 108 6 66 7 121 Name: Data, dtype: int64 >>> df = pd.DataFrame({ ... "c": [1, 1, 1, 2, 2, 2, 2], ... "type": ["m", "n", "o", "m", "m", "n", "n"] ... }) >>> df c type 0 1 m 1 1 n 2 1 o 3 2 m 4 2 m 5 2 n 6 2 n >>> df['size'] = df.groupby('c')['type'].transform(len) >>> df c type size 0 1 m 3 1 1 n 3 2 1 o 3 3 2 m 4 4 2 m 4 5 2 n 4 6 2 n 4
reference/api/pandas.Series.transform.html
pandas.tseries.offsets.BMonthBegin
`pandas.tseries.offsets.BMonthBegin` alias of pandas._libs.tslibs.offsets.BusinessMonthBegin
pandas.tseries.offsets.BMonthBegin# alias of pandas._libs.tslibs.offsets.BusinessMonthBegin
reference/api/pandas.tseries.offsets.BMonthBegin.html
pandas.tseries.offsets.Milli.is_year_start
`pandas.tseries.offsets.Milli.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
Milli.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.Milli.is_year_start.html
pandas.tseries.offsets.BusinessHour.is_on_offset
`pandas.tseries.offsets.BusinessHour.is_on_offset` Return boolean whether a timestamp intersects with this frequency. Timestamp to check intersections with frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
BusinessHour.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.BusinessHour.is_on_offset.html
Window
Window
Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. ExponentialMovingWindow objects are returned by .ewm calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc. Rolling window functions# Rolling.count([numeric_only]) Calculate the rolling count of non NaN observations. Rolling.sum([numeric_only, engine, ...]) Calculate the rolling sum. Rolling.mean([numeric_only, engine, ...]) Calculate the rolling mean. Rolling.median([numeric_only, engine, ...]) Calculate the rolling median. Rolling.var([ddof, numeric_only, engine, ...]) Calculate the rolling variance. Rolling.std([ddof, numeric_only, engine, ...]) Calculate the rolling standard deviation. Rolling.min([numeric_only, engine, ...]) Calculate the rolling minimum. Rolling.max([numeric_only, engine, ...]) Calculate the rolling maximum. Rolling.corr([other, pairwise, ddof, ...]) Calculate the rolling correlation. Rolling.cov([other, pairwise, ddof, ...]) Calculate the rolling sample covariance. Rolling.skew([numeric_only]) Calculate the rolling unbiased skewness. Rolling.kurt([numeric_only]) Calculate the rolling Fisher's definition of kurtosis without bias. Rolling.apply(func[, raw, engine, ...]) Calculate the rolling custom aggregation function. Rolling.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Rolling.quantile(quantile[, interpolation, ...]) Calculate the rolling quantile. Rolling.sem([ddof, numeric_only]) Calculate the rolling standard error of mean. Rolling.rank([method, ascending, pct, ...]) Calculate the rolling rank. Weighted window functions# Window.mean([numeric_only]) Calculate the rolling weighted window mean. Window.sum([numeric_only]) Calculate the rolling weighted window sum. Window.var([ddof, numeric_only]) Calculate the rolling weighted window variance. Window.std([ddof, numeric_only]) Calculate the rolling weighted window standard deviation. Expanding window functions# Expanding.count([numeric_only]) Calculate the expanding count of non NaN observations. Expanding.sum([numeric_only, engine, ...]) Calculate the expanding sum. Expanding.mean([numeric_only, engine, ...]) Calculate the expanding mean. Expanding.median([numeric_only, engine, ...]) Calculate the expanding median. Expanding.var([ddof, numeric_only, engine, ...]) Calculate the expanding variance. Expanding.std([ddof, numeric_only, engine, ...]) Calculate the expanding standard deviation. Expanding.min([numeric_only, engine, ...]) Calculate the expanding minimum. Expanding.max([numeric_only, engine, ...]) Calculate the expanding maximum. Expanding.corr([other, pairwise, ddof, ...]) Calculate the expanding correlation. Expanding.cov([other, pairwise, ddof, ...]) Calculate the expanding sample covariance. Expanding.skew([numeric_only]) Calculate the expanding unbiased skewness. Expanding.kurt([numeric_only]) Calculate the expanding Fisher's definition of kurtosis without bias. Expanding.apply(func[, raw, engine, ...]) Calculate the expanding custom aggregation function. Expanding.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Expanding.quantile(quantile[, ...]) Calculate the expanding quantile. Expanding.sem([ddof, numeric_only]) Calculate the expanding standard error of mean. Expanding.rank([method, ascending, pct, ...]) Calculate the expanding rank. Exponentially-weighted window functions# ExponentialMovingWindow.mean([numeric_only, ...]) Calculate the ewm (exponential weighted moment) mean. ExponentialMovingWindow.sum([numeric_only, ...]) Calculate the ewm (exponential weighted moment) sum. ExponentialMovingWindow.std([bias, numeric_only]) Calculate the ewm (exponential weighted moment) standard deviation. ExponentialMovingWindow.var([bias, numeric_only]) Calculate the ewm (exponential weighted moment) variance. ExponentialMovingWindow.corr([other, ...]) Calculate the ewm (exponential weighted moment) sample correlation. ExponentialMovingWindow.cov([other, ...]) Calculate the ewm (exponential weighted moment) sample covariance. Window indexer# Base class for defining custom window boundaries. api.indexers.BaseIndexer([index_array, ...]) Base class for window bounds calculations. api.indexers.FixedForwardWindowIndexer([...]) Creates window boundaries for fixed-length windows that include the current row. api.indexers.VariableOffsetWindowIndexer([...]) Calculate window boundaries based on a non-fixed offset such as a BusinessDay.
reference/window.html
pandas.Series.dt.is_leap_year
`pandas.Series.dt.is_leap_year` Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. ``` >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False]) ```
Series.dt.is_leap_year[source]# Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns Series or ndarrayBooleans indicating if dates belong to a leap year. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False]) >>> dates_series = pd.Series(idx) >>> dates_series 0 2012-12-31 1 2013-12-31 2 2014-12-31 dtype: datetime64[ns] >>> dates_series.dt.is_leap_year 0 True 1 False 2 False dtype: bool
reference/api/pandas.Series.dt.is_leap_year.html
pandas.Index.sortlevel
`pandas.Index.sortlevel` For internal compatibility with the Index API.
Index.sortlevel(level=None, ascending=True, sort_remaining=None)[source]# For internal compatibility with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ascendingbool, default TrueFalse to sort in descending order level, sort_remaining are compat parameters Returns Index
reference/api/pandas.Index.sortlevel.html
pandas.DataFrame.plot.kde
`pandas.DataFrame.plot.kde` Generate Kernel Density Estimate plot using Gaussian kernels. In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination. ``` >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() ```
DataFrame.plot.kde(bw_method=None, ind=None, **kwargs)[source]# Generate Kernel Density Estimate plot using Gaussian kernels. In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination. Parameters bw_methodstr, scalar or callable, optionalThe method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If None (default), ‘scott’ is used. See scipy.stats.gaussian_kde for more information. indNumPy array or int, optionalEvaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used. **kwargsAdditional keyword arguments are documented in DataFrame.plot(). Returns matplotlib.axes.Axes or numpy.ndarray of them See also scipy.stats.gaussian_kdeRepresentation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF. Examples Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default): >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: >>> ax = s.plot.kde(bw_method=0.3) >>> ax = s.plot.kde(bw_method=3) Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF: >>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5]) For DataFrame, it works in the same way: >>> df = pd.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> ax = df.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: >>> ax = df.plot.kde(bw_method=0.3) >>> ax = df.plot.kde(bw_method=3) Finally, the ind parameter determines the evaluation points for the plot of the estimated PDF: >>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6])
reference/api/pandas.DataFrame.plot.kde.html
pandas arrays, scalars, and data types
pandas arrays, scalars, and data types
Objects# For most data types, pandas uses NumPy arrays as the concrete objects contained with a Index, Series, or DataFrame. For some data types, pandas extends NumPy’s type system. String aliases for these types can be found at dtypes. Kind of Data pandas Data Type Scalar Array TZ-aware datetime DatetimeTZDtype Timestamp Datetimes Timedeltas (none) Timedelta Timedeltas Period (time spans) PeriodDtype Period Periods Intervals IntervalDtype Interval Intervals Nullable Integer Int64Dtype, … (none) Nullable integer Categorical CategoricalDtype (none) Categoricals Sparse SparseDtype (none) Sparse Strings StringDtype str Strings Boolean (with NA) BooleanDtype bool Nullable Boolean PyArrow ArrowDtype Python Scalars or NA PyArrow pandas and third-party libraries can extend NumPy’s type system (see Extension types). The top-level array() method can be used to create a new array, which may be stored in a Series, Index, or as a column in a DataFrame. array(data[, dtype, copy]) Create an array. PyArrow# Warning This feature is experimental, and the API can change in a future release without warning. The arrays.ArrowExtensionArray is backed by a pyarrow.ChunkedArray with a pyarrow.DataType instead of a NumPy array and data type. The .dtype of a arrays.ArrowExtensionArray is an ArrowDtype. Pyarrow provides similar array and data type support as NumPy including first-class nullability support for all data types, immutability and more. Note For string types (pyarrow.string(), string[pyarrow]), PyArrow support is still facilitated by arrays.ArrowStringArray and StringDtype("pyarrow"). See the string section below. While individual values in an arrays.ArrowExtensionArray are stored as a PyArrow objects, scalars are returned as Python scalars corresponding to the data type, e.g. a PyArrow int64 will be returned as Python int, or NA for missing values. arrays.ArrowExtensionArray(values) Pandas ExtensionArray backed by a PyArrow ChunkedArray. ArrowDtype(pyarrow_dtype) An ExtensionDtype for PyArrow data types. Datetimes# NumPy cannot natively represent timezone-aware datetimes. pandas supports this with the arrays.DatetimeArray extension array, which can hold timezone-naive or timezone-aware values. Timestamp, a subclass of datetime.datetime, is pandas’ scalar type for timezone-naive or timezone-aware datetime data. Timestamp([ts_input, freq, tz, unit, year, ...]) Pandas replacement for python datetime.datetime object. Properties# Timestamp.asm8 Return numpy datetime64 format in nanoseconds. Timestamp.day Timestamp.dayofweek Return day of the week. Timestamp.day_of_week Return day of the week. Timestamp.dayofyear Return the day of the year. Timestamp.day_of_year Return the day of the year. Timestamp.days_in_month Return the number of days in the month. Timestamp.daysinmonth Return the number of days in the month. Timestamp.fold Timestamp.hour Timestamp.is_leap_year Return True if year is a leap year. Timestamp.is_month_end Return True if date is last day of month. Timestamp.is_month_start Return True if date is first day of month. Timestamp.is_quarter_end Return True if date is last day of the quarter. Timestamp.is_quarter_start Return True if date is first day of the quarter. Timestamp.is_year_end Return True if date is last day of the year. Timestamp.is_year_start Return True if date is first day of the year. Timestamp.max Timestamp.microsecond Timestamp.min Timestamp.minute Timestamp.month Timestamp.nanosecond Timestamp.quarter Return the quarter of the year. Timestamp.resolution Timestamp.second Timestamp.tz Alias for tzinfo. Timestamp.tzinfo Timestamp.value Timestamp.week Return the week number of the year. Timestamp.weekofyear Return the week number of the year. Timestamp.year Methods# Timestamp.astimezone(tz) Convert timezone-aware Timestamp to another time zone. Timestamp.ceil(freq[, ambiguous, nonexistent]) Return a new Timestamp ceiled to this resolution. Timestamp.combine(date, time) Combine date, time into datetime with same date and time fields. Timestamp.ctime Return ctime() style string. Timestamp.date Return date object with same year, month and day. Timestamp.day_name Return the day name of the Timestamp with specified locale. Timestamp.dst Return self.tzinfo.dst(self). Timestamp.floor(freq[, ambiguous, nonexistent]) Return a new Timestamp floored to this resolution. Timestamp.freq Timestamp.freqstr Return the total number of days in the month. Timestamp.fromordinal(ordinal[, freq, tz]) Construct a timestamp from a a proleptic Gregorian ordinal. Timestamp.fromtimestamp(ts) Transform timestamp[, tz] to tz's local time from POSIX timestamp. Timestamp.isocalendar Return a 3-tuple containing ISO year, week number, and weekday. Timestamp.isoformat Return the time formatted according to ISO 8610. Timestamp.isoweekday() Return the day of the week represented by the date. Timestamp.month_name Return the month name of the Timestamp with specified locale. Timestamp.normalize Normalize Timestamp to midnight, preserving tz information. Timestamp.now([tz]) Return new Timestamp object representing current time local to tz. Timestamp.replace([year, month, day, hour, ...]) Implements datetime.replace, handles nanoseconds. Timestamp.round(freq[, ambiguous, nonexistent]) Round the Timestamp to the specified resolution. Timestamp.strftime(format) Return a formatted string of the Timestamp. Timestamp.strptime(string, format) Function is not implemented. Timestamp.time Return time object with same time but with tzinfo=None. Timestamp.timestamp Return POSIX timestamp as float. Timestamp.timetuple Return time tuple, compatible with time.localtime(). Timestamp.timetz Return time object with same time and tzinfo. Timestamp.to_datetime64 Return a numpy.datetime64 object with 'ns' precision. Timestamp.to_numpy Convert the Timestamp to a NumPy datetime64. Timestamp.to_julian_date() Convert TimeStamp to a Julian Date. Timestamp.to_period Return an period of which this timestamp is an observation. Timestamp.to_pydatetime Convert a Timestamp object to a native Python datetime object. Timestamp.today([tz]) Return the current time in the local timezone. Timestamp.toordinal Return proleptic Gregorian ordinal. Timestamp.tz_convert(tz) Convert timezone-aware Timestamp to another time zone. Timestamp.tz_localize(tz[, ambiguous, ...]) Localize the Timestamp to a timezone. Timestamp.tzname Return self.tzinfo.tzname(self). Timestamp.utcfromtimestamp(ts) Construct a naive UTC datetime from a POSIX timestamp. Timestamp.utcnow() Return a new Timestamp representing UTC day and time. Timestamp.utcoffset Return self.tzinfo.utcoffset(self). Timestamp.utctimetuple Return UTC time tuple, compatible with time.localtime(). Timestamp.weekday() Return the day of the week represented by the date. A collection of timestamps may be stored in a arrays.DatetimeArray. For timezone-aware data, the .dtype of a arrays.DatetimeArray is a DatetimeTZDtype. For timezone-naive data, np.dtype("datetime64[ns]") is used. If the data are timezone-aware, then every value in the array must have the same timezone. arrays.DatetimeArray(values[, dtype, freq, copy]) Pandas ExtensionArray for tz-naive or tz-aware datetime data. DatetimeTZDtype([unit, tz]) An ExtensionDtype for timezone-aware datetime data. Timedeltas# NumPy can natively represent timedeltas. pandas provides Timedelta for symmetry with Timestamp. Timedelta([value, unit]) Represents a duration, the difference between two dates or times. Properties# Timedelta.asm8 Return a numpy timedelta64 array scalar view. Timedelta.components Return a components namedtuple-like. Timedelta.days Timedelta.delta (DEPRECATED) Return the timedelta in nanoseconds (ns), for internal compatibility. Timedelta.freq (DEPRECATED) Freq property. Timedelta.is_populated (DEPRECATED) Is_populated property. Timedelta.max Timedelta.microseconds Timedelta.min Timedelta.nanoseconds Return the number of nanoseconds (n), where 0 <= n < 1 microsecond. Timedelta.resolution Timedelta.seconds Timedelta.value Timedelta.view Array view compatibility. Methods# Timedelta.ceil(freq) Return a new Timedelta ceiled to this resolution. Timedelta.floor(freq) Return a new Timedelta floored to this resolution. Timedelta.isoformat Format the Timedelta as ISO 8601 Duration. Timedelta.round(freq) Round the Timedelta to the specified resolution. Timedelta.to_pytimedelta Convert a pandas Timedelta object into a python datetime.timedelta object. Timedelta.to_timedelta64 Return a numpy.timedelta64 object with 'ns' precision. Timedelta.to_numpy Convert the Timedelta to a NumPy timedelta64. Timedelta.total_seconds Total seconds in the duration. A collection of Timedelta may be stored in a TimedeltaArray. arrays.TimedeltaArray(values[, dtype, freq, ...]) Pandas ExtensionArray for timedelta data. Periods# pandas represents spans of times as Period objects. Period# Period([value, freq, ordinal, year, month, ...]) Represents a period of time. Properties# Period.day Get day of the month that a Period falls on. Period.dayofweek Day of the week the period lies in, with Monday=0 and Sunday=6. Period.day_of_week Day of the week the period lies in, with Monday=0 and Sunday=6. Period.dayofyear Return the day of the year. Period.day_of_year Return the day of the year. Period.days_in_month Get the total number of days in the month that this period falls on. Period.daysinmonth Get the total number of days of the month that this period falls on. Period.end_time Get the Timestamp for the end of the period. Period.freq Period.freqstr Return a string representation of the frequency. Period.hour Get the hour of the day component of the Period. Period.is_leap_year Return True if the period's year is in a leap year. Period.minute Get minute of the hour component of the Period. Period.month Return the month this Period falls on. Period.ordinal Period.quarter Return the quarter this Period falls on. Period.qyear Fiscal year the Period lies in according to its starting-quarter. Period.second Get the second component of the Period. Period.start_time Get the Timestamp for the start of the period. Period.week Get the week of the year on the given Period. Period.weekday Day of the week the period lies in, with Monday=0 and Sunday=6. Period.weekofyear Get the week of the year on the given Period. Period.year Return the year this Period falls on. Methods# Period.asfreq Convert Period to desired frequency, at the start or end of the interval. Period.now Return the period of now's date. Period.strftime Returns a formatted string representation of the Period. Period.to_timestamp Return the Timestamp representation of the Period. A collection of Period may be stored in a arrays.PeriodArray. Every period in a arrays.PeriodArray must have the same freq. arrays.PeriodArray(values[, dtype, freq, copy]) Pandas ExtensionArray for storing Period data. PeriodDtype([freq]) An ExtensionDtype for Period data. Intervals# Arbitrary intervals can be represented as Interval objects. Interval Immutable object implementing an Interval, a bounded slice-like interval. Properties# Interval.closed String describing the inclusive side the intervals. Interval.closed_left Check if the interval is closed on the left side. Interval.closed_right Check if the interval is closed on the right side. Interval.is_empty Indicates if an interval is empty, meaning it contains no points. Interval.left Left bound for the interval. Interval.length Return the length of the Interval. Interval.mid Return the midpoint of the Interval. Interval.open_left Check if the interval is open on the left side. Interval.open_right Check if the interval is open on the right side. Interval.overlaps Check whether two Interval objects overlap. Interval.right Right bound for the interval. A collection of intervals may be stored in an arrays.IntervalArray. arrays.IntervalArray(data[, closed, dtype, ...]) Pandas array for interval data that are closed on the same side. IntervalDtype([subtype, closed]) An ExtensionDtype for Interval data. Nullable integer# numpy.ndarray cannot natively represent integer-data with missing values. pandas provides this through arrays.IntegerArray. arrays.IntegerArray(values, mask[, copy]) Array of integer (optional missing) values. Int8Dtype() An ExtensionDtype for int8 integer data. Int16Dtype() An ExtensionDtype for int16 integer data. Int32Dtype() An ExtensionDtype for int32 integer data. Int64Dtype() An ExtensionDtype for int64 integer data. UInt8Dtype() An ExtensionDtype for uint8 integer data. UInt16Dtype() An ExtensionDtype for uint16 integer data. UInt32Dtype() An ExtensionDtype for uint32 integer data. UInt64Dtype() An ExtensionDtype for uint64 integer data. Categoricals# pandas defines a custom data type for representing data that can take only a limited, fixed set of values. The dtype of a Categorical can be described by a CategoricalDtype. CategoricalDtype([categories, ordered]) Type for categorical data with the categories and orderedness. CategoricalDtype.categories An Index containing the unique categories allowed. CategoricalDtype.ordered Whether the categories have an ordered relationship. Categorical data can be stored in a pandas.Categorical Categorical(values[, categories, ordered, ...]) Represent a categorical variable in classic R / S-plus fashion. The alternative Categorical.from_codes() constructor can be used when you have the categories and integer codes already: Categorical.from_codes(codes[, categories, ...]) Make a Categorical type from codes and categories or dtype. The dtype information is available on the Categorical Categorical.dtype The CategoricalDtype for this instance. Categorical.categories The categories of this categorical. Categorical.ordered Whether the categories have an ordered relationship. Categorical.codes The category codes of this categorical. np.asarray(categorical) works by implementing the array interface. Be aware, that this converts the Categorical back to a NumPy array, so categories and order information is not preserved! Categorical.__array__([dtype]) The numpy array interface. A Categorical can be stored in a Series or DataFrame. To create a Series of dtype category, use cat = s.astype(dtype) or Series(..., dtype=dtype) where dtype is either the string 'category' an instance of CategoricalDtype. If the Series is of dtype CategoricalDtype, Series.cat can be used to change the categorical data. See Categorical accessor for more. Sparse# Data where a single value is repeated many times (e.g. 0 or NaN) may be stored efficiently as a arrays.SparseArray. arrays.SparseArray(data[, sparse_index, ...]) An ExtensionArray for storing sparse data. SparseDtype([dtype, fill_value]) Dtype for data stored in SparseArray. The Series.sparse accessor may be used to access sparse-specific attributes and methods if the Series contains sparse values. See Sparse accessor and the user guide for more. Strings# When working with text data, where each valid element is a string or missing, we recommend using StringDtype (with the alias "string"). arrays.StringArray(values[, copy]) Extension array for string data. arrays.ArrowStringArray(values) Extension array for string data in a pyarrow.ChunkedArray. StringDtype([storage]) Extension dtype for string data. The Series.str accessor is available for Series backed by a arrays.StringArray. See String handling for more. Nullable Boolean# The boolean dtype (with the alias "boolean") provides support for storing boolean data (True, False) with missing values, which is not possible with a bool numpy.ndarray. arrays.BooleanArray(values, mask[, copy]) Array of boolean (True/False) data with missing values. BooleanDtype() Extension dtype for boolean data. Utilities# Constructors# api.types.union_categoricals(to_union[, ...]) Combine list-like of Categorical-like, unioning categories. api.types.infer_dtype Return a string label of the type of a scalar or list-like of values. api.types.pandas_dtype(dtype) Convert input into a pandas only dtype object or a numpy dtype object. Data type introspection# api.types.is_bool_dtype(arr_or_dtype) Check whether the provided array or dtype is of a boolean dtype. api.types.is_categorical_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Categorical dtype. api.types.is_complex_dtype(arr_or_dtype) Check whether the provided array or dtype is of a complex dtype. api.types.is_datetime64_any_dtype(arr_or_dtype) Check whether the provided array or dtype is of the datetime64 dtype. api.types.is_datetime64_dtype(arr_or_dtype) Check whether an array-like or dtype is of the datetime64 dtype. api.types.is_datetime64_ns_dtype(arr_or_dtype) Check whether the provided array or dtype is of the datetime64[ns] dtype. api.types.is_datetime64tz_dtype(arr_or_dtype) Check whether an array-like or dtype is of a DatetimeTZDtype dtype. api.types.is_extension_type(arr) (DEPRECATED) Check whether an array-like is of a pandas extension class instance. api.types.is_extension_array_dtype(arr_or_dtype) Check if an object is a pandas extension array type. api.types.is_float_dtype(arr_or_dtype) Check whether the provided array or dtype is of a float dtype. api.types.is_int64_dtype(arr_or_dtype) Check whether the provided array or dtype is of the int64 dtype. api.types.is_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of an integer dtype. api.types.is_interval_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Interval dtype. api.types.is_numeric_dtype(arr_or_dtype) Check whether the provided array or dtype is of a numeric dtype. api.types.is_object_dtype(arr_or_dtype) Check whether an array-like or dtype is of the object dtype. api.types.is_period_dtype(arr_or_dtype) Check whether an array-like or dtype is of the Period dtype. api.types.is_signed_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of a signed integer dtype. api.types.is_string_dtype(arr_or_dtype) Check whether the provided array or dtype is of the string dtype. api.types.is_timedelta64_dtype(arr_or_dtype) Check whether an array-like or dtype is of the timedelta64 dtype. api.types.is_timedelta64_ns_dtype(arr_or_dtype) Check whether the provided array or dtype is of the timedelta64[ns] dtype. api.types.is_unsigned_integer_dtype(arr_or_dtype) Check whether the provided array or dtype is of an unsigned integer dtype. api.types.is_sparse(arr) Check whether an array-like is a 1-D pandas sparse array. Iterable introspection# api.types.is_dict_like(obj) Check if the object is dict-like. api.types.is_file_like(obj) Check if the object is a file-like object. api.types.is_list_like Check if the object is list-like. api.types.is_named_tuple(obj) Check if the object is a named tuple. api.types.is_iterator Check if the object is an iterator. Scalar introspection# api.types.is_bool Return True if given object is boolean. api.types.is_categorical(arr) (DEPRECATED) Check whether an array-like is a Categorical instance. api.types.is_complex Return True if given object is complex. api.types.is_float Return True if given object is float. api.types.is_hashable(obj) Return True if hash(obj) will succeed, False otherwise. api.types.is_integer Return True if given object is integer. api.types.is_interval api.types.is_number(obj) Check if the object is a number. api.types.is_re(obj) Check if the object is a regex pattern instance. api.types.is_re_compilable(obj) Check if the object can be compiled into a regex pattern instance. api.types.is_scalar Return True if given object is scalar.
reference/arrays.html
General functions
General functions
Data manipulations# melt(frame[, id_vars, value_vars, var_name, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot(data, *[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. pivot_table(data[, values, index, columns, ...]) Create a spreadsheet-style pivot table as a DataFrame. crosstab(index, columns[, values, rownames, ...]) Compute a simple cross tabulation of two (or more) factors. cut(x, bins[, right, labels, retbins, ...]) Bin values into discrete intervals. qcut(x, q[, labels, retbins, precision, ...]) Quantile-based discretization function. merge(left, right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. merge_ordered(left, right[, on, left_on, ...]) Perform a merge for ordered data with optional filling/interpolation. merge_asof(left, right[, on, left_on, ...]) Perform a merge by key distance. concat(objs, *[, axis, join, ignore_index, ...]) Concatenate pandas objects along a particular axis. get_dummies(data[, prefix, prefix_sep, ...]) Convert categorical variable into dummy/indicator variables. from_dummies(data[, sep, default_category]) Create a categorical DataFrame from a DataFrame of dummy variables. factorize(values[, sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. unique(values) Return unique values based on a hash table. wide_to_long(df, stubnames, i, j[, sep, suffix]) Unpivot a DataFrame from wide to long format. Top-level missing data# isna(obj) Detect missing values for an array-like object. isnull(obj) Detect missing values for an array-like object. notna(obj) Detect non-missing values for an array-like object. notnull(obj) Detect non-missing values for an array-like object. Top-level dealing with numeric data# to_numeric(arg[, errors, downcast]) Convert argument to a numeric type. Top-level dealing with datetimelike data# to_datetime(arg[, errors, dayfirst, ...]) Convert argument to datetime. to_timedelta(arg[, unit, errors]) Convert argument to timedelta. date_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex. bdate_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex with business day as the default. period_range([start, end, periods, freq, name]) Return a fixed frequency PeriodIndex. timedelta_range([start, end, periods, freq, ...]) Return a fixed frequency TimedeltaIndex with day as the default. infer_freq(index[, warn]) Infer the most likely frequency given the input index. Top-level dealing with Interval data# interval_range([start, end, periods, freq, ...]) Return a fixed frequency IntervalIndex. Top-level evaluation# eval(expr[, parser, engine, truediv, ...]) Evaluate a Python expression as a string using various backends. Hashing# util.hash_array(vals[, encoding, hash_key, ...]) Given a 1d array, return an array of deterministic integers. util.hash_pandas_object(obj[, index, ...]) Return a data hash of the Index/Series/DataFrame. Importing from other DataFrame libraries# api.interchange.from_dataframe(df[, allow_copy]) Build a pd.DataFrame from any DataFrame supporting the interchange protocol.
reference/general_functions.html
Extensions
Extensions
These are primarily intended for library authors looking to extend pandas objects. api.extensions.register_extension_dtype(cls) Register an ExtensionType with pandas as class decorator. api.extensions.register_dataframe_accessor(name) Register a custom accessor on DataFrame objects. api.extensions.register_series_accessor(name) Register a custom accessor on Series objects. api.extensions.register_index_accessor(name) Register a custom accessor on Index objects. api.extensions.ExtensionDtype() A custom data type, to be paired with an ExtensionArray. api.extensions.ExtensionArray() Abstract base class for custom 1-D array types. arrays.PandasArray(values[, copy]) A pandas ExtensionArray for NumPy data. Additionally, we have some utility methods for ensuring your object behaves correctly. api.indexers.check_array_indexer(array, indexer) Check if indexer is a valid array indexer for array. The sentinel pandas.api.extensions.no_default is used as the default value in some methods. Use an is comparison to check if the user provides a non-default value.
reference/extensions.html
pandas.api.extensions.register_dataframe_accessor
`pandas.api.extensions.register_dataframe_accessor` Register a custom accessor on DataFrame objects. Name under which the accessor should be registered. A warning is issued if this name conflicts with a preexisting attribute. ``` >>> pd.Series(['a', 'b']).dt Traceback (most recent call last): ... AttributeError: Can only use .dt accessor with datetimelike values ```
pandas.api.extensions.register_dataframe_accessor(name)[source]# Register a custom accessor on DataFrame objects. Parameters namestrName under which the accessor should be registered. A warning is issued if this name conflicts with a preexisting attribute. Returns callableA class decorator. See also register_dataframe_accessorRegister a custom accessor on DataFrame objects. register_series_accessorRegister a custom accessor on Series objects. register_index_accessorRegister a custom accessor on Index objects. Notes When accessed, your accessor will be initialized with the pandas object the user is interacting with. So the signature must be def __init__(self, pandas_object): # noqa: E999 ... For consistency with pandas methods, you should raise an AttributeError if the data passed to your accessor has an incorrect dtype. >>> pd.Series(['a', 'b']).dt Traceback (most recent call last): ... AttributeError: Can only use .dt accessor with datetimelike values Examples In your library code: import pandas as pd @pd.api.extensions.register_dataframe_accessor("geo") class GeoAccessor: def __init__(self, pandas_obj): self._obj = pandas_obj @property def center(self): # return the geographic center point of this DataFrame lat = self._obj.latitude lon = self._obj.longitude return (float(lon.mean()), float(lat.mean())) def plot(self): # plot this array's data on a map, e.g., using Cartopy pass Back in an interactive IPython session: In [1]: ds = pd.DataFrame({"longitude": np.linspace(0, 10), ...: "latitude": np.linspace(0, 20)}) In [2]: ds.geo.center Out[2]: (5.0, 10.0) In [3]: ds.geo.plot() # plots data on a map
reference/api/pandas.api.extensions.register_dataframe_accessor.html
pandas.Series.update
`pandas.Series.update` Modify Series in place using values from passed Series. ``` >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 ```
Series.update(other)[source]# Modify Series in place using values from passed Series. Uses non-NA values from passed Series to make updates. Aligns on index. Parameters otherSeries, or object coercible into Series Examples >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If other contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 other can also be a non-Series object type that is coercible into a Series >>> s = pd.Series([1, 2, 3]) >>> s.update([4, np.nan, 6]) >>> s 0 4 1 2 2 6 dtype: int64 >>> s = pd.Series([1, 2, 3]) >>> s.update({1: 9}) >>> s 0 1 1 9 2 3 dtype: int64
reference/api/pandas.Series.update.html
pandas.MultiIndex.names
`pandas.MultiIndex.names` Names of levels in MultiIndex. Examples ``` >>> mi = pd.MultiIndex.from_arrays( ... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z']) >>> mi MultiIndex([(1, 3, 5), (2, 4, 6)], names=['x', 'y', 'z']) >>> mi.names FrozenList(['x', 'y', 'z']) ```
property MultiIndex.names[source]# Names of levels in MultiIndex. Examples >>> mi = pd.MultiIndex.from_arrays( ... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z']) >>> mi MultiIndex([(1, 3, 5), (2, 4, 6)], names=['x', 'y', 'z']) >>> mi.names FrozenList(['x', 'y', 'z'])
reference/api/pandas.MultiIndex.names.html
pandas.Int16Dtype
`pandas.Int16Dtype` An ExtensionDtype for int16 integer data.
class pandas.Int16Dtype[source]# An ExtensionDtype for int16 integer data. Changed in version 1.0.0: Now uses pandas.NA as its missing value, rather than numpy.nan. Attributes None Methods None
reference/api/pandas.Int16Dtype.html
pandas.Series.sparse.density
`pandas.Series.sparse.density` The percent of non- fill_value points, as decimal. ``` >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.density 0.6 ```
Series.sparse.density[source]# The percent of non- fill_value points, as decimal. Examples >>> s = SparseArray([0, 0, 1, 1, 1], fill_value=0) >>> s.density 0.6
reference/api/pandas.Series.sparse.density.html
pandas.Series.dt.strftime
`pandas.Series.dt.strftime` Convert to Index using specified date_format. ``` >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%B %d, %Y, %r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') ```
Series.dt.strftime(*args, **kwargs)[source]# Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in python string format doc. Formats supported by the C strftime API but not by the python string format doc (such as “%R”, “%r”) are not officially supported and should be preferably replaced with their supported equivalents (such as “%H:%M”, “%I:%M:%S %p”). Note that PeriodIndex support additional directives, detailed in Period.strftime. Parameters date_formatstrDate format string (e.g. “%Y-%m-%d”). Returns ndarray[object]NumPy ndarray of formatted strings. See also to_datetimeConvert the given argument to datetime. DatetimeIndex.normalizeReturn DatetimeIndex with times to midnight. DatetimeIndex.roundRound the DatetimeIndex to the specified freq. DatetimeIndex.floorFloor the DatetimeIndex to the specified freq. Timestamp.strftimeFormat a single Timestamp. Period.strftimeFormat a single Period. Examples >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%B %d, %Y, %r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object')
reference/api/pandas.Series.dt.strftime.html
pandas.tseries.offsets.CustomBusinessMonthBegin.is_month_start
`pandas.tseries.offsets.CustomBusinessMonthBegin.is_month_start` Return boolean whether a timestamp occurs on the month start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
CustomBusinessMonthBegin.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.is_month_start.html
Date offsets
Date offsets
DateOffset# DateOffset Standard kind of date increment used for a date range. Properties# DateOffset.freqstr Return a string representing the frequency. DateOffset.kwds Return a dict of extra parameters for the offset. DateOffset.name Return a string representing the base frequency. DateOffset.nanos DateOffset.normalize DateOffset.rule_code DateOffset.n DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. Methods# DateOffset.apply DateOffset.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. DateOffset.copy Return a copy of the frequency. DateOffset.isAnchored DateOffset.onOffset DateOffset.is_anchored Return boolean whether the frequency is a unit frequency (n=1). DateOffset.is_on_offset Return boolean whether a timestamp intersects with this frequency. DateOffset.__call__(*args, **kwargs) Call self as a function. DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. DateOffset.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. DateOffset.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. DateOffset.is_year_start Return boolean whether a timestamp occurs on the year start. DateOffset.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessDay# BusinessDay DateOffset subclass representing possibly n business days. Alias: BDay alias of pandas._libs.tslibs.offsets.BusinessDay Properties# BusinessDay.freqstr Return a string representing the frequency. BusinessDay.kwds Return a dict of extra parameters for the offset. BusinessDay.name Return a string representing the base frequency. BusinessDay.nanos BusinessDay.normalize BusinessDay.rule_code BusinessDay.n BusinessDay.weekmask BusinessDay.holidays BusinessDay.calendar Methods# BusinessDay.apply BusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessDay.copy Return a copy of the frequency. BusinessDay.isAnchored BusinessDay.onOffset BusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessDay.__call__(*args, **kwargs) Call self as a function. BusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessHour# BusinessHour DateOffset subclass representing possibly n business hours. Properties# BusinessHour.freqstr Return a string representing the frequency. BusinessHour.kwds Return a dict of extra parameters for the offset. BusinessHour.name Return a string representing the base frequency. BusinessHour.nanos BusinessHour.normalize BusinessHour.rule_code BusinessHour.n BusinessHour.start BusinessHour.end BusinessHour.weekmask BusinessHour.holidays BusinessHour.calendar Methods# BusinessHour.apply BusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessHour.copy Return a copy of the frequency. BusinessHour.isAnchored BusinessHour.onOffset BusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessHour.__call__(*args, **kwargs) Call self as a function. BusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessDay# CustomBusinessDay DateOffset subclass representing custom business days excluding holidays. Alias: CDay alias of pandas._libs.tslibs.offsets.CustomBusinessDay Properties# CustomBusinessDay.freqstr Return a string representing the frequency. CustomBusinessDay.kwds Return a dict of extra parameters for the offset. CustomBusinessDay.name Return a string representing the base frequency. CustomBusinessDay.nanos CustomBusinessDay.normalize CustomBusinessDay.rule_code CustomBusinessDay.n CustomBusinessDay.weekmask CustomBusinessDay.calendar CustomBusinessDay.holidays Methods# CustomBusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessDay.apply CustomBusinessDay.copy Return a copy of the frequency. CustomBusinessDay.isAnchored CustomBusinessDay.onOffset CustomBusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessDay.__call__(*args, **kwargs) Call self as a function. CustomBusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessHour# CustomBusinessHour DateOffset subclass representing possibly n custom business days. Properties# CustomBusinessHour.freqstr Return a string representing the frequency. CustomBusinessHour.kwds Return a dict of extra parameters for the offset. CustomBusinessHour.name Return a string representing the base frequency. CustomBusinessHour.nanos CustomBusinessHour.normalize CustomBusinessHour.rule_code CustomBusinessHour.n CustomBusinessHour.weekmask CustomBusinessHour.calendar CustomBusinessHour.holidays CustomBusinessHour.start CustomBusinessHour.end Methods# CustomBusinessHour.apply CustomBusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessHour.copy Return a copy of the frequency. CustomBusinessHour.isAnchored CustomBusinessHour.onOffset CustomBusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessHour.__call__(*args, **kwargs) Call self as a function. CustomBusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. MonthEnd# MonthEnd DateOffset of one month end. Properties# MonthEnd.freqstr Return a string representing the frequency. MonthEnd.kwds Return a dict of extra parameters for the offset. MonthEnd.name Return a string representing the base frequency. MonthEnd.nanos MonthEnd.normalize MonthEnd.rule_code MonthEnd.n Methods# MonthEnd.apply MonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthEnd.copy Return a copy of the frequency. MonthEnd.isAnchored MonthEnd.onOffset MonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthEnd.__call__(*args, **kwargs) Call self as a function. MonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. MonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. MonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. MonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. MonthBegin# MonthBegin DateOffset of one month at beginning. Properties# MonthBegin.freqstr Return a string representing the frequency. MonthBegin.kwds Return a dict of extra parameters for the offset. MonthBegin.name Return a string representing the base frequency. MonthBegin.nanos MonthBegin.normalize MonthBegin.rule_code MonthBegin.n Methods# MonthBegin.apply MonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthBegin.copy Return a copy of the frequency. MonthBegin.isAnchored MonthBegin.onOffset MonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthBegin.__call__(*args, **kwargs) Call self as a function. MonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. MonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. MonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. MonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthEnd# BusinessMonthEnd DateOffset increments between the last business day of the month. Alias: BMonthEnd alias of pandas._libs.tslibs.offsets.BusinessMonthEnd Properties# BusinessMonthEnd.freqstr Return a string representing the frequency. BusinessMonthEnd.kwds Return a dict of extra parameters for the offset. BusinessMonthEnd.name Return a string representing the base frequency. BusinessMonthEnd.nanos BusinessMonthEnd.normalize BusinessMonthEnd.rule_code BusinessMonthEnd.n Methods# BusinessMonthEnd.apply BusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthEnd.copy Return a copy of the frequency. BusinessMonthEnd.isAnchored BusinessMonthEnd.onOffset BusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. BusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthBegin# BusinessMonthBegin DateOffset of one month at the first business day. Alias: BMonthBegin alias of pandas._libs.tslibs.offsets.BusinessMonthBegin Properties# BusinessMonthBegin.freqstr Return a string representing the frequency. BusinessMonthBegin.kwds Return a dict of extra parameters for the offset. BusinessMonthBegin.name Return a string representing the base frequency. BusinessMonthBegin.nanos BusinessMonthBegin.normalize BusinessMonthBegin.rule_code BusinessMonthBegin.n Methods# BusinessMonthBegin.apply BusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthBegin.copy Return a copy of the frequency. BusinessMonthBegin.isAnchored BusinessMonthBegin.onOffset BusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthBegin.__call__(*args, **kwargs) Call self as a function. BusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthEnd# CustomBusinessMonthEnd Attributes Alias: CBMonthEnd alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd Properties# CustomBusinessMonthEnd.freqstr Return a string representing the frequency. CustomBusinessMonthEnd.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthEnd.m_offset CustomBusinessMonthEnd.name Return a string representing the base frequency. CustomBusinessMonthEnd.nanos CustomBusinessMonthEnd.normalize CustomBusinessMonthEnd.rule_code CustomBusinessMonthEnd.n CustomBusinessMonthEnd.weekmask CustomBusinessMonthEnd.calendar CustomBusinessMonthEnd.holidays Methods# CustomBusinessMonthEnd.apply CustomBusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthEnd.copy Return a copy of the frequency. CustomBusinessMonthEnd.isAnchored CustomBusinessMonthEnd.onOffset CustomBusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. CustomBusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthBegin# CustomBusinessMonthBegin Attributes Alias: CBMonthBegin alias of pandas._libs.tslibs.offsets.CustomBusinessMonthBegin Properties# CustomBusinessMonthBegin.freqstr Return a string representing the frequency. CustomBusinessMonthBegin.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthBegin.m_offset CustomBusinessMonthBegin.name Return a string representing the base frequency. CustomBusinessMonthBegin.nanos CustomBusinessMonthBegin.normalize CustomBusinessMonthBegin.rule_code CustomBusinessMonthBegin.n CustomBusinessMonthBegin.weekmask CustomBusinessMonthBegin.calendar CustomBusinessMonthBegin.holidays Methods# CustomBusinessMonthBegin.apply CustomBusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthBegin.copy Return a copy of the frequency. CustomBusinessMonthBegin.isAnchored CustomBusinessMonthBegin.onOffset CustomBusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthBegin.__call__(*args, ...) Call self as a function. CustomBusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthEnd# SemiMonthEnd Two DateOffset's per month repeating on the last day of the month & day_of_month. Properties# SemiMonthEnd.freqstr Return a string representing the frequency. SemiMonthEnd.kwds Return a dict of extra parameters for the offset. SemiMonthEnd.name Return a string representing the base frequency. SemiMonthEnd.nanos SemiMonthEnd.normalize SemiMonthEnd.rule_code SemiMonthEnd.n SemiMonthEnd.day_of_month Methods# SemiMonthEnd.apply SemiMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthEnd.copy Return a copy of the frequency. SemiMonthEnd.isAnchored SemiMonthEnd.onOffset SemiMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthEnd.__call__(*args, **kwargs) Call self as a function. SemiMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthBegin# SemiMonthBegin Two DateOffset's per month repeating on the first day of the month & day_of_month. Properties# SemiMonthBegin.freqstr Return a string representing the frequency. SemiMonthBegin.kwds Return a dict of extra parameters for the offset. SemiMonthBegin.name Return a string representing the base frequency. SemiMonthBegin.nanos SemiMonthBegin.normalize SemiMonthBegin.rule_code SemiMonthBegin.n SemiMonthBegin.day_of_month Methods# SemiMonthBegin.apply SemiMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthBegin.copy Return a copy of the frequency. SemiMonthBegin.isAnchored SemiMonthBegin.onOffset SemiMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthBegin.__call__(*args, **kwargs) Call self as a function. SemiMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. Week# Week Weekly offset. Properties# Week.freqstr Return a string representing the frequency. Week.kwds Return a dict of extra parameters for the offset. Week.name Return a string representing the base frequency. Week.nanos Week.normalize Week.rule_code Week.n Week.weekday Methods# Week.apply Week.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Week.copy Return a copy of the frequency. Week.isAnchored Week.onOffset Week.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Week.is_on_offset Return boolean whether a timestamp intersects with this frequency. Week.__call__(*args, **kwargs) Call self as a function. Week.is_month_start Return boolean whether a timestamp occurs on the month start. Week.is_month_end Return boolean whether a timestamp occurs on the month end. Week.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Week.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Week.is_year_start Return boolean whether a timestamp occurs on the year start. Week.is_year_end Return boolean whether a timestamp occurs on the year end. WeekOfMonth# WeekOfMonth Describes monthly dates like "the Tuesday of the 2nd week of each month". Properties# WeekOfMonth.freqstr Return a string representing the frequency. WeekOfMonth.kwds Return a dict of extra parameters for the offset. WeekOfMonth.name Return a string representing the base frequency. WeekOfMonth.nanos WeekOfMonth.normalize WeekOfMonth.rule_code WeekOfMonth.n WeekOfMonth.week Methods# WeekOfMonth.apply WeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. WeekOfMonth.copy Return a copy of the frequency. WeekOfMonth.isAnchored WeekOfMonth.onOffset WeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). WeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. WeekOfMonth.__call__(*args, **kwargs) Call self as a function. WeekOfMonth.weekday WeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. WeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. WeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. WeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. WeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. WeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. LastWeekOfMonth# LastWeekOfMonth Describes monthly dates in last week of month. Properties# LastWeekOfMonth.freqstr Return a string representing the frequency. LastWeekOfMonth.kwds Return a dict of extra parameters for the offset. LastWeekOfMonth.name Return a string representing the base frequency. LastWeekOfMonth.nanos LastWeekOfMonth.normalize LastWeekOfMonth.rule_code LastWeekOfMonth.n LastWeekOfMonth.weekday LastWeekOfMonth.week Methods# LastWeekOfMonth.apply LastWeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. LastWeekOfMonth.copy Return a copy of the frequency. LastWeekOfMonth.isAnchored LastWeekOfMonth.onOffset LastWeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). LastWeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. LastWeekOfMonth.__call__(*args, **kwargs) Call self as a function. LastWeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. LastWeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. LastWeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. LastWeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. LastWeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. LastWeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterEnd# BQuarterEnd DateOffset increments between the last business day of each Quarter. Properties# BQuarterEnd.freqstr Return a string representing the frequency. BQuarterEnd.kwds Return a dict of extra parameters for the offset. BQuarterEnd.name Return a string representing the base frequency. BQuarterEnd.nanos BQuarterEnd.normalize BQuarterEnd.rule_code BQuarterEnd.n BQuarterEnd.startingMonth Methods# BQuarterEnd.apply BQuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterEnd.copy Return a copy of the frequency. BQuarterEnd.isAnchored BQuarterEnd.onOffset BQuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterEnd.__call__(*args, **kwargs) Call self as a function. BQuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterBegin# BQuarterBegin DateOffset increments between the first business day of each Quarter. Properties# BQuarterBegin.freqstr Return a string representing the frequency. BQuarterBegin.kwds Return a dict of extra parameters for the offset. BQuarterBegin.name Return a string representing the base frequency. BQuarterBegin.nanos BQuarterBegin.normalize BQuarterBegin.rule_code BQuarterBegin.n BQuarterBegin.startingMonth Methods# BQuarterBegin.apply BQuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterBegin.copy Return a copy of the frequency. BQuarterBegin.isAnchored BQuarterBegin.onOffset BQuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterBegin.__call__(*args, **kwargs) Call self as a function. BQuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterEnd# QuarterEnd DateOffset increments between Quarter end dates. Properties# QuarterEnd.freqstr Return a string representing the frequency. QuarterEnd.kwds Return a dict of extra parameters for the offset. QuarterEnd.name Return a string representing the base frequency. QuarterEnd.nanos QuarterEnd.normalize QuarterEnd.rule_code QuarterEnd.n QuarterEnd.startingMonth Methods# QuarterEnd.apply QuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterEnd.copy Return a copy of the frequency. QuarterEnd.isAnchored QuarterEnd.onOffset QuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterEnd.__call__(*args, **kwargs) Call self as a function. QuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterBegin# QuarterBegin DateOffset increments between Quarter start dates. Properties# QuarterBegin.freqstr Return a string representing the frequency. QuarterBegin.kwds Return a dict of extra parameters for the offset. QuarterBegin.name Return a string representing the base frequency. QuarterBegin.nanos QuarterBegin.normalize QuarterBegin.rule_code QuarterBegin.n QuarterBegin.startingMonth Methods# QuarterBegin.apply QuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterBegin.copy Return a copy of the frequency. QuarterBegin.isAnchored QuarterBegin.onOffset QuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterBegin.__call__(*args, **kwargs) Call self as a function. QuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BYearEnd# BYearEnd DateOffset increments between the last business day of the year. Properties# BYearEnd.freqstr Return a string representing the frequency. BYearEnd.kwds Return a dict of extra parameters for the offset. BYearEnd.name Return a string representing the base frequency. BYearEnd.nanos BYearEnd.normalize BYearEnd.rule_code BYearEnd.n BYearEnd.month Methods# BYearEnd.apply BYearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearEnd.copy Return a copy of the frequency. BYearEnd.isAnchored BYearEnd.onOffset BYearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearEnd.__call__(*args, **kwargs) Call self as a function. BYearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BYearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BYearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BYearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BYearBegin# BYearBegin DateOffset increments between the first business day of the year. Properties# BYearBegin.freqstr Return a string representing the frequency. BYearBegin.kwds Return a dict of extra parameters for the offset. BYearBegin.name Return a string representing the base frequency. BYearBegin.nanos BYearBegin.normalize BYearBegin.rule_code BYearBegin.n BYearBegin.month Methods# BYearBegin.apply BYearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearBegin.copy Return a copy of the frequency. BYearBegin.isAnchored BYearBegin.onOffset BYearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearBegin.__call__(*args, **kwargs) Call self as a function. BYearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BYearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BYearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BYearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. YearEnd# YearEnd DateOffset increments between calendar year ends. Properties# YearEnd.freqstr Return a string representing the frequency. YearEnd.kwds Return a dict of extra parameters for the offset. YearEnd.name Return a string representing the base frequency. YearEnd.nanos YearEnd.normalize YearEnd.rule_code YearEnd.n YearEnd.month Methods# YearEnd.apply YearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearEnd.copy Return a copy of the frequency. YearEnd.isAnchored YearEnd.onOffset YearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearEnd.__call__(*args, **kwargs) Call self as a function. YearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. YearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. YearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. YearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. YearBegin# YearBegin DateOffset increments between calendar year begin dates. Properties# YearBegin.freqstr Return a string representing the frequency. YearBegin.kwds Return a dict of extra parameters for the offset. YearBegin.name Return a string representing the base frequency. YearBegin.nanos YearBegin.normalize YearBegin.rule_code YearBegin.n YearBegin.month Methods# YearBegin.apply YearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearBegin.copy Return a copy of the frequency. YearBegin.isAnchored YearBegin.onOffset YearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearBegin.__call__(*args, **kwargs) Call self as a function. YearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. YearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. YearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. YearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253# FY5253 Describes 52-53 week fiscal year. Properties# FY5253.freqstr Return a string representing the frequency. FY5253.kwds Return a dict of extra parameters for the offset. FY5253.name Return a string representing the base frequency. FY5253.nanos FY5253.normalize FY5253.rule_code FY5253.n FY5253.startingMonth FY5253.variation FY5253.weekday Methods# FY5253.apply FY5253.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253.copy Return a copy of the frequency. FY5253.get_rule_code_suffix FY5253.get_year_end FY5253.isAnchored FY5253.onOffset FY5253.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253.__call__(*args, **kwargs) Call self as a function. FY5253.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253Quarter# FY5253Quarter DateOffset increments between business quarter dates for 52-53 week fiscal year. Properties# FY5253Quarter.freqstr Return a string representing the frequency. FY5253Quarter.kwds Return a dict of extra parameters for the offset. FY5253Quarter.name Return a string representing the base frequency. FY5253Quarter.nanos FY5253Quarter.normalize FY5253Quarter.rule_code FY5253Quarter.n FY5253Quarter.qtr_with_extra_week FY5253Quarter.startingMonth FY5253Quarter.variation FY5253Quarter.weekday Methods# FY5253Quarter.apply FY5253Quarter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253Quarter.copy Return a copy of the frequency. FY5253Quarter.get_rule_code_suffix FY5253Quarter.get_weeks FY5253Quarter.isAnchored FY5253Quarter.onOffset FY5253Quarter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253Quarter.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253Quarter.year_has_extra_week FY5253Quarter.__call__(*args, **kwargs) Call self as a function. FY5253Quarter.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253Quarter.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253Quarter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253Quarter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253Quarter.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253Quarter.is_year_end Return boolean whether a timestamp occurs on the year end. Easter# Easter DateOffset for the Easter holiday using logic defined in dateutil. Properties# Easter.freqstr Return a string representing the frequency. Easter.kwds Return a dict of extra parameters for the offset. Easter.name Return a string representing the base frequency. Easter.nanos Easter.normalize Easter.rule_code Easter.n Methods# Easter.apply Easter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Easter.copy Return a copy of the frequency. Easter.isAnchored Easter.onOffset Easter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Easter.is_on_offset Return boolean whether a timestamp intersects with this frequency. Easter.__call__(*args, **kwargs) Call self as a function. Easter.is_month_start Return boolean whether a timestamp occurs on the month start. Easter.is_month_end Return boolean whether a timestamp occurs on the month end. Easter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Easter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Easter.is_year_start Return boolean whether a timestamp occurs on the year start. Easter.is_year_end Return boolean whether a timestamp occurs on the year end. Tick# Tick Attributes Properties# Tick.delta Tick.freqstr Return a string representing the frequency. Tick.kwds Return a dict of extra parameters for the offset. Tick.name Return a string representing the base frequency. Tick.nanos Return an integer of the total number of nanoseconds. Tick.normalize Tick.rule_code Tick.n Methods# Tick.copy Return a copy of the frequency. Tick.isAnchored Tick.onOffset Tick.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Tick.is_on_offset Return boolean whether a timestamp intersects with this frequency. Tick.__call__(*args, **kwargs) Call self as a function. Tick.apply Tick.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Tick.is_month_start Return boolean whether a timestamp occurs on the month start. Tick.is_month_end Return boolean whether a timestamp occurs on the month end. Tick.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Tick.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Tick.is_year_start Return boolean whether a timestamp occurs on the year start. Tick.is_year_end Return boolean whether a timestamp occurs on the year end. Day# Day Attributes Properties# Day.delta Day.freqstr Return a string representing the frequency. Day.kwds Return a dict of extra parameters for the offset. Day.name Return a string representing the base frequency. Day.nanos Return an integer of the total number of nanoseconds. Day.normalize Day.rule_code Day.n Methods# Day.copy Return a copy of the frequency. Day.isAnchored Day.onOffset Day.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Day.is_on_offset Return boolean whether a timestamp intersects with this frequency. Day.__call__(*args, **kwargs) Call self as a function. Day.apply Day.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Day.is_month_start Return boolean whether a timestamp occurs on the month start. Day.is_month_end Return boolean whether a timestamp occurs on the month end. Day.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Day.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Day.is_year_start Return boolean whether a timestamp occurs on the year start. Day.is_year_end Return boolean whether a timestamp occurs on the year end. Hour# Hour Attributes Properties# Hour.delta Hour.freqstr Return a string representing the frequency. Hour.kwds Return a dict of extra parameters for the offset. Hour.name Return a string representing the base frequency. Hour.nanos Return an integer of the total number of nanoseconds. Hour.normalize Hour.rule_code Hour.n Methods# Hour.copy Return a copy of the frequency. Hour.isAnchored Hour.onOffset Hour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Hour.is_on_offset Return boolean whether a timestamp intersects with this frequency. Hour.__call__(*args, **kwargs) Call self as a function. Hour.apply Hour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Hour.is_month_start Return boolean whether a timestamp occurs on the month start. Hour.is_month_end Return boolean whether a timestamp occurs on the month end. Hour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Hour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Hour.is_year_start Return boolean whether a timestamp occurs on the year start. Hour.is_year_end Return boolean whether a timestamp occurs on the year end. Minute# Minute Attributes Properties# Minute.delta Minute.freqstr Return a string representing the frequency. Minute.kwds Return a dict of extra parameters for the offset. Minute.name Return a string representing the base frequency. Minute.nanos Return an integer of the total number of nanoseconds. Minute.normalize Minute.rule_code Minute.n Methods# Minute.copy Return a copy of the frequency. Minute.isAnchored Minute.onOffset Minute.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Minute.is_on_offset Return boolean whether a timestamp intersects with this frequency. Minute.__call__(*args, **kwargs) Call self as a function. Minute.apply Minute.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Minute.is_month_start Return boolean whether a timestamp occurs on the month start. Minute.is_month_end Return boolean whether a timestamp occurs on the month end. Minute.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Minute.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Minute.is_year_start Return boolean whether a timestamp occurs on the year start. Minute.is_year_end Return boolean whether a timestamp occurs on the year end. Second# Second Attributes Properties# Second.delta Second.freqstr Return a string representing the frequency. Second.kwds Return a dict of extra parameters for the offset. Second.name Return a string representing the base frequency. Second.nanos Return an integer of the total number of nanoseconds. Second.normalize Second.rule_code Second.n Methods# Second.copy Return a copy of the frequency. Second.isAnchored Second.onOffset Second.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Second.is_on_offset Return boolean whether a timestamp intersects with this frequency. Second.__call__(*args, **kwargs) Call self as a function. Second.apply Second.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Second.is_month_start Return boolean whether a timestamp occurs on the month start. Second.is_month_end Return boolean whether a timestamp occurs on the month end. Second.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Second.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Second.is_year_start Return boolean whether a timestamp occurs on the year start. Second.is_year_end Return boolean whether a timestamp occurs on the year end. Milli# Milli Attributes Properties# Milli.delta Milli.freqstr Return a string representing the frequency. Milli.kwds Return a dict of extra parameters for the offset. Milli.name Return a string representing the base frequency. Milli.nanos Return an integer of the total number of nanoseconds. Milli.normalize Milli.rule_code Milli.n Methods# Milli.copy Return a copy of the frequency. Milli.isAnchored Milli.onOffset Milli.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Milli.is_on_offset Return boolean whether a timestamp intersects with this frequency. Milli.__call__(*args, **kwargs) Call self as a function. Milli.apply Milli.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Milli.is_month_start Return boolean whether a timestamp occurs on the month start. Milli.is_month_end Return boolean whether a timestamp occurs on the month end. Milli.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Milli.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Milli.is_year_start Return boolean whether a timestamp occurs on the year start. Milli.is_year_end Return boolean whether a timestamp occurs on the year end. Micro# Micro Attributes Properties# Micro.delta Micro.freqstr Return a string representing the frequency. Micro.kwds Return a dict of extra parameters for the offset. Micro.name Return a string representing the base frequency. Micro.nanos Return an integer of the total number of nanoseconds. Micro.normalize Micro.rule_code Micro.n Methods# Micro.copy Return a copy of the frequency. Micro.isAnchored Micro.onOffset Micro.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Micro.is_on_offset Return boolean whether a timestamp intersects with this frequency. Micro.__call__(*args, **kwargs) Call self as a function. Micro.apply Micro.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Micro.is_month_start Return boolean whether a timestamp occurs on the month start. Micro.is_month_end Return boolean whether a timestamp occurs on the month end. Micro.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Micro.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Micro.is_year_start Return boolean whether a timestamp occurs on the year start. Micro.is_year_end Return boolean whether a timestamp occurs on the year end. Nano# Nano Attributes Properties# Nano.delta Nano.freqstr Return a string representing the frequency. Nano.kwds Return a dict of extra parameters for the offset. Nano.name Return a string representing the base frequency. Nano.nanos Return an integer of the total number of nanoseconds. Nano.normalize Nano.rule_code Nano.n Methods# Nano.copy Return a copy of the frequency. Nano.isAnchored Nano.onOffset Nano.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Nano.is_on_offset Return boolean whether a timestamp intersects with this frequency. Nano.__call__(*args, **kwargs) Call self as a function. Nano.apply Nano.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Nano.is_month_start Return boolean whether a timestamp occurs on the month start. Nano.is_month_end Return boolean whether a timestamp occurs on the month end. Nano.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Nano.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Nano.is_year_start Return boolean whether a timestamp occurs on the year start. Nano.is_year_end Return boolean whether a timestamp occurs on the year end. Frequencies# to_offset Return DateOffset object from string or datetime.timedelta object.
reference/offset_frequency.html
pandas.concat
`pandas.concat` Concatenate pandas objects along a particular axis. Allows optional set logic along the other axes. ``` >>> s1 = pd.Series(['a', 'b']) >>> s2 = pd.Series(['c', 'd']) >>> pd.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object ```
pandas.concat(objs, *, axis=0, join='outer', ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, sort=False, copy=True)[source]# Concatenate pandas objects along a particular axis. Allows optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number. Parameters objsa sequence or mapping of Series or DataFrame objectsIf a mapping is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised. axis{0/’index’, 1/’columns’}, default 0The axis to concatenate along. join{‘inner’, ‘outer’}, default ‘outer’How to handle indexes on other axis (or axes). ignore_indexbool, default FalseIf True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, …, n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. keyssequence, default NoneIf multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level. levelslist of sequences, default NoneSpecific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys. nameslist, default NoneNames for the levels in the resulting hierarchical index. verify_integritybool, default FalseCheck whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation. sortbool, default FalseSort non-concatenation axis if it is not already aligned when join is ‘outer’. This has no effect when join='inner', which already preserves the order of the non-concatenation axis. Changed in version 1.0.0: Changed to not sort by default. copybool, default TrueIf False, do not copy data unnecessarily. Returns object, type of objsWhen concatenating all Series along the index (axis=0), a Series is returned. When objs contains at least one DataFrame, a DataFrame is returned. When concatenating along the columns (axis=1), a DataFrame is returned. See also DataFrame.joinJoin DataFrames using indexes. DataFrame.mergeMerge DataFrames by indexes or columns. Notes The keys, levels, and names arguments are all optional. A walkthrough of how this method fits in with other tools for combining pandas objects can be found here. It is not recommended to build DataFrames by adding single rows in a for loop. Build a list of rows and make a DataFrame in a single concat. Examples Combine two Series. >>> s1 = pd.Series(['a', 'b']) >>> s2 = pd.Series(['c', 'd']) >>> pd.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object Clear the existing index and reset it in the result by setting the ignore_index option to True. >>> pd.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object Add a hierarchical index at the outermost level of the data with the keys option. >>> pd.concat([s1, s2], keys=['s1', 's2']) s1 0 a 1 b s2 0 c 1 d dtype: object Label the index keys you create with the names option. >>> pd.concat([s1, s2], keys=['s1', 's2'], ... names=['Series name', 'Row ID']) Series name Row ID s1 0 a 1 b s2 0 c 1 d dtype: object Combine two DataFrame objects with identical columns. >>> df1 = pd.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 >>> df2 = pd.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 >>> pd.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine DataFrame objects with overlapping columns and return everything. Columns outside the intersection will be filled with NaN values. >>> df3 = pd.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog >>> pd.concat([df1, df3], sort=False) letter number animal 0 a 1 NaN 1 b 2 NaN 0 c 3 cat 1 d 4 dog Combine DataFrame objects with overlapping columns and return only those that are shared by passing inner to the join keyword argument. >>> pd.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine DataFrame objects horizontally along the x axis by passing in axis=1. >>> df4 = pd.DataFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) >>> pd.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george Prevent the result from including duplicate index values with the verify_integrity option. >>> df5 = pd.DataFrame([1], index=['a']) >>> df5 0 a 1 >>> df6 = pd.DataFrame([2], index=['a']) >>> df6 0 a 2 >>> pd.concat([df5, df6], verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: ['a'] Append a single row to the end of a DataFrame object. >>> df7 = pd.DataFrame({'a': 1, 'b': 2}, index=[0]) >>> df7 a b 0 1 2 >>> new_row = pd.Series({'a': 3, 'b': 4}) >>> new_row a 3 b 4 dtype: int64 >>> pd.concat([df7, new_row.to_frame().T], ignore_index=True) a b 0 1 2 1 3 4
reference/api/pandas.concat.html
pandas.tseries.offsets.CustomBusinessMonthEnd.normalize
pandas.tseries.offsets.CustomBusinessMonthEnd.normalize
CustomBusinessMonthEnd.normalize#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.normalize.html
pandas.core.groupby.GroupBy.bfill
`pandas.core.groupby.GroupBy.bfill` Backward fill the values.
final GroupBy.bfill(limit=None)[source]# Backward fill the values. Parameters limitint, optionalLimit of how many values to fill. Returns Series or DataFrameObject with missing values filled. See also Series.bfillBackward fill the missing values in the dataset. DataFrame.bfillBackward fill the missing values in the dataset. Series.fillnaFill NaN values of a Series. DataFrame.fillnaFill NaN values of a DataFrame.
reference/api/pandas.core.groupby.GroupBy.bfill.html
pandas.Series.cat.ordered
`pandas.Series.cat.ordered` Whether the categories have an ordered relationship.
Series.cat.ordered[source]# Whether the categories have an ordered relationship.
reference/api/pandas.Series.cat.ordered.html
pandas.io.formats.style.Styler.pipe
`pandas.io.formats.style.Styler.pipe` Apply func(self, *args, **kwargs), and return the result. ``` >>> def some_highlights(styler, min_color="red", max_color="blue"): ... styler.highlight_min(color=min_color, axis=None) ... styler.highlight_max(color=max_color, axis=None) ... styler.highlight_null() ... return styler >>> df = pd.DataFrame([[1, 2, 3, pd.NA], [pd.NA, 4, 5, 6]], dtype="Int64") >>> df.style.pipe(some_highlights, min_color="green") ```
Styler.pipe(func, *args, **kwargs)[source]# Apply func(self, *args, **kwargs), and return the result. Parameters funcfunctionFunction to apply to the Styler. Alternatively, a (callable, keyword) tuple where keyword is a string indicating the keyword of callable that expects the Styler. *argsoptionalArguments passed to func. **kwargsoptionalA dictionary of keyword arguments passed into func. Returns objectThe value returned by func. See also DataFrame.pipeAnalogous method for DataFrame. Styler.applyApply a CSS-styling function column-wise, row-wise, or table-wise. Notes Like DataFrame.pipe(), this method can simplify the application of several user-defined functions to a styler. Instead of writing: f(g(df.style.format(precision=3), arg1=a), arg2=b, arg3=c) users can write: (df.style.format(precision=3) .pipe(g, arg1=a) .pipe(f, arg2=b, arg3=c)) In particular, this allows users to define functions that take a styler object, along with other parameters, and return the styler after making styling changes (such as calling Styler.apply() or Styler.set_properties()). Examples Common Use A common usage pattern is to pre-define styling operations which can be easily applied to a generic styler in a single pipe call. >>> def some_highlights(styler, min_color="red", max_color="blue"): ... styler.highlight_min(color=min_color, axis=None) ... styler.highlight_max(color=max_color, axis=None) ... styler.highlight_null() ... return styler >>> df = pd.DataFrame([[1, 2, 3, pd.NA], [pd.NA, 4, 5, 6]], dtype="Int64") >>> df.style.pipe(some_highlights, min_color="green") Since the method returns a Styler object it can be chained with other methods as if applying the underlying highlighters directly. >>> df.style.format("{:.1f}") ... .pipe(some_highlights, min_color="green") ... .highlight_between(left=2, right=5) Advanced Use Sometimes it may be necessary to pre-define styling functions, but in the case where those functions rely on the styler, data or context. Since Styler.use and Styler.export are designed to be non-data dependent, they cannot be used for this purpose. Additionally the Styler.apply and Styler.format type methods are not context aware, so a solution is to use pipe to dynamically wrap this functionality. Suppose we want to code a generic styling function that highlights the final level of a MultiIndex. The number of levels in the Index is dynamic so we need the Styler context to define the level. >>> def highlight_last_level(styler): ... return styler.apply_index( ... lambda v: "background-color: pink; color: yellow", axis="columns", ... level=styler.columns.nlevels-1 ... ) >>> df.columns = pd.MultiIndex.from_product([["A", "B"], ["X", "Y"]]) >>> df.style.pipe(highlight_last_level) Additionally suppose we want to highlight a column header if there is any missing data in that column. In this case we need the data object itself to determine the effect on the column headers. >>> def highlight_header_missing(styler, level): ... def dynamic_highlight(s): ... return np.where( ... styler.data.isna().any(), "background-color: red;", "" ... ) ... return styler.apply_index(dynamic_highlight, axis=1, level=level) >>> df.style.pipe(highlight_header_missing, level=1)
reference/api/pandas.io.formats.style.Styler.pipe.html
pandas.tseries.offsets.Minute.delta
pandas.tseries.offsets.Minute.delta
Minute.delta#
reference/api/pandas.tseries.offsets.Minute.delta.html
pandas.tseries.offsets.Micro.rule_code
pandas.tseries.offsets.Micro.rule_code
Micro.rule_code#
reference/api/pandas.tseries.offsets.Micro.rule_code.html
pandas.tseries.offsets.QuarterBegin.normalize
pandas.tseries.offsets.QuarterBegin.normalize
QuarterBegin.normalize#
reference/api/pandas.tseries.offsets.QuarterBegin.normalize.html
pandas.tseries.offsets.LastWeekOfMonth.freqstr
`pandas.tseries.offsets.LastWeekOfMonth.freqstr` Return a string representing the frequency. ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
LastWeekOfMonth.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.LastWeekOfMonth.freqstr.html
pandas.UInt64Index
`pandas.UInt64Index` Immutable sequence used for indexing and alignment.
class pandas.UInt64Index(data=None, dtype=None, copy=False, name=None)[source]# Immutable sequence used for indexing and alignment. Deprecated since version 1.4.0: In pandas v2.0 UInt64Index will be removed and NumericIndex used instead. UInt64Index will remain fully functional for the duration of pandas 1.x. The basic object storing axis labels for all pandas objects. UInt64Index is a special case of Index with purely unsigned integer labels. . Parameters dataarray-like (1-dimensional) dtypeNumPy dtype (default: uint64) copyboolMake a copy of input ndarray. nameobjectName to be stored in the index. See also IndexThe base pandas Index type. NumericIndexIndex of numpy int/uint/float data. Notes An Index instance can only contain hashable objects. Attributes None Methods None
reference/api/pandas.UInt64Index.html
pandas.Series.to_json
`pandas.Series.to_json` Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. ``` >>> import json >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) ```
Series.to_json(path_or_buf=None, orient=None, date_format=None, double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False, compression='infer', index=True, indent=None, storage_options=None)[source]# Convert the object to a JSON string. Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters path_or_bufstr, path object, file-like object, or None, default NoneString, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. orientstrIndication of expected JSON string format. Series: default is ‘index’ allowed values are: {‘split’, ‘records’, ‘index’, ‘table’}. DataFrame: default is ‘columns’ allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’, ‘table’}. The format of the JSON string: ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]} ‘records’ : list like [{column -> value}, … , {column -> value}] ‘index’ : dict like {index -> {column -> value}} ‘columns’ : dict like {column -> {index -> value}} ‘values’ : just the values array ‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} Describing the data, where data component is like orient='records'. date_format{None, ‘epoch’, ‘iso’}Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For orient='table', the default is ‘iso’. For all other orients, the default is ‘epoch’. double_precisionint, default 10The number of decimal places to use when encoding floating point values. force_asciibool, default TrueForce encoded string to be ASCII. date_unitstr, default ‘ms’ (milliseconds)The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively. default_handlercallable, default NoneHandler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. linesbool, default FalseIf ‘orient’ is ‘records’ write out line-delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list-like. compressionstr or dict, default ‘infer’For on-the-fly compression of the output data. If ‘infer’ and ‘path_or_buf’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). Set to None for no compression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdCompressor or tarfile.TarFile, respectively. As an example, the following could be passed for faster compression and to create a reproducible gzip archive: compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}. New in version 1.5.0: Added support for .tar files. Changed in version 1.4.0: Zstandard support. indexbool, default TrueWhether to include the index values in the JSON string. Not including the index (index=False) is only supported when orient is ‘split’ or ‘table’. indentint, optionalLength of whitespace used to indent each record. New in version 1.0.0. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2.0. Returns None or strIf path_or_buf is None, returns the resulting json format as a string. Otherwise returns None. See also read_jsonConvert a JSON string to pandas object. Notes The behavior of indent=0 varies from the stdlib, which does not indent the output but does insert newlines. Currently, indent=0 and the default indent=None are equivalent in pandas, though this may change in a future release. orient='table' contains a ‘pandas_version’ field under ‘schema’. This stores the version of pandas used in the latest revision of the schema. Examples >>> import json >>> df = pd.DataFrame( ... [["a", "b"], ["c", "d"]], ... index=["row 1", "row 2"], ... columns=["col 1", "col 2"], ... ) >>> result = df.to_json(orient="split") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "columns": [ "col 1", "col 2" ], "index": [ "row 1", "row 2" ], "data": [ [ "a", "b" ], [ "c", "d" ] ] } Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved with this encoding. >>> result = df.to_json(orient="records") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) [ { "col 1": "a", "col 2": "b" }, { "col 1": "c", "col 2": "d" } ] Encoding/decoding a Dataframe using 'index' formatted JSON: >>> result = df.to_json(orient="index") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "row 1": { "col 1": "a", "col 2": "b" }, "row 2": { "col 1": "c", "col 2": "d" } } Encoding/decoding a Dataframe using 'columns' formatted JSON: >>> result = df.to_json(orient="columns") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "col 1": { "row 1": "a", "row 2": "c" }, "col 2": { "row 1": "b", "row 2": "d" } } Encoding/decoding a Dataframe using 'values' formatted JSON: >>> result = df.to_json(orient="values") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) [ [ "a", "b" ], [ "c", "d" ] ] Encoding with Table Schema: >>> result = df.to_json(orient="table") >>> parsed = json.loads(result) >>> json.dumps(parsed, indent=4) { "schema": { "fields": [ { "name": "index", "type": "string" }, { "name": "col 1", "type": "string" }, { "name": "col 2", "type": "string" } ], "primaryKey": [ "index" ], "pandas_version": "1.4.0" }, "data": [ { "index": "row 1", "col 1": "a", "col 2": "b" }, { "index": "row 2", "col 1": "c", "col 2": "d" } ] }
reference/api/pandas.Series.to_json.html
pandas.Series.str.index
`pandas.Series.str.index` Return lowest indexes in each string in Series/Index.
Series.str.index(sub, start=0, end=None)[source]# Return lowest indexes in each string in Series/Index. Each of the returned indexes corresponds to the position where the substring is fully contained between [start:end]. This is the same as str.find except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard str.index. Parameters substrSubstring being searched. startintLeft edge index. endintRight edge index. Returns Series or Index of object See also rindexReturn highest indexes in each strings.
reference/api/pandas.Series.str.index.html
pandas.DataFrame.median
`pandas.DataFrame.median` Return the median of the values over the requested axis.
DataFrame.median(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]# Return the median of the values over the requested axis. Parameters axis{index (0), columns (1)}Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values when computing the result. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. **kwargsAdditional keyword arguments to be passed to the function. Returns Series or DataFrame (if level specified)
reference/api/pandas.DataFrame.median.html
pandas.isnull
`pandas.isnull` Detect missing values for an array-like object. ``` >>> pd.isna('dog') False ```
pandas.isnull(obj)[source]# Detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike). Parameters objscalar or array-likeObject to check for null or missing values. Returns bool or array-like of boolFor scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing. See also notnaBoolean inverse of pandas.isna. Series.isnaDetect missing values in a Series. DataFrame.isnaDetect missing values in a DataFrame. Index.isnaDetect missing values in an Index. Examples Scalar arguments (including strings) result in a scalar boolean. >>> pd.isna('dog') False >>> pd.isna(pd.NA) True >>> pd.isna(np.nan) True ndarrays result in an ndarray of booleans. >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.isna(array) array([[False, True, False], [False, False, True]]) For indexes, an ndarray of booleans is returned. >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.isna(index) array([False, False, True, False]) For Series and DataFrame, the same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.isna(df) 0 1 2 0 False False False 1 False True False >>> pd.isna(df[1]) 0 False 1 True Name: 1, dtype: bool
reference/api/pandas.isnull.html
pandas.Timestamp.utcoffset
`pandas.Timestamp.utcoffset` Return self.tzinfo.utcoffset(self).
Timestamp.utcoffset()# Return self.tzinfo.utcoffset(self).
reference/api/pandas.Timestamp.utcoffset.html
pandas.Series.mode
`pandas.Series.mode` Return the mode(s) of the Series. The mode is the value that appears most often. There can be multiple modes.
Series.mode(dropna=True)[source]# Return the mode(s) of the Series. The mode is the value that appears most often. There can be multiple modes. Always returns Series even if only one value is returned. Parameters dropnabool, default TrueDon’t consider counts of NaN/NaT. Returns SeriesModes of the Series in sorted order.
reference/api/pandas.Series.mode.html
pandas.Series.mul
`pandas.Series.mul` Return Multiplication of series and other, element-wise (binary operator mul). ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64 ```
Series.mul(other, level=None, fill_value=None, axis=0)[source]# Return Multiplication of series and other, element-wise (binary operator mul). Equivalent to series * other, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.rmulReverse of the Multiplication operator, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.multiply(b, fill_value=0) a 1.0 b 0.0 c 0.0 d 0.0 e NaN dtype: float64
reference/api/pandas.Series.mul.html
Python Module Index
Python Module Index
p   p pandas
py-modindex.html
pandas.tseries.offsets.Milli.apply_index
`pandas.tseries.offsets.Milli.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
Milli.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.Milli.apply_index.html
pandas.tseries.offsets.FY5253Quarter.onOffset
pandas.tseries.offsets.FY5253Quarter.onOffset
FY5253Quarter.onOffset()#
reference/api/pandas.tseries.offsets.FY5253Quarter.onOffset.html
pandas.Series.dt.to_period
`pandas.Series.dt.to_period` Cast to PeriodArray/Index at a particular frequency. ``` >>> df = pd.DataFrame({"y": [1, 2, 3]}, ... index=pd.to_datetime(["2000-03-31 00:00:00", ... "2000-05-31 00:00:00", ... "2000-08-31 00:00:00"])) >>> df.index.to_period("M") PeriodIndex(['2000-03', '2000-05', '2000-08'], dtype='period[M]') ```
Series.dt.to_period(*args, **kwargs)[source]# Cast to PeriodArray/Index at a particular frequency. Converts DatetimeArray/Index to PeriodArray/Index. Parameters freqstr or Offset, optionalOne of pandas’ offset strings or an Offset object. Will be inferred by default. Returns PeriodArray/Index Raises ValueErrorWhen converting a DatetimeArray/Index with non-regular values, so that a frequency cannot be inferred. See also PeriodIndexImmutable ndarray holding ordinal values. DatetimeIndex.to_pydatetimeReturn DatetimeIndex as object. Examples >>> df = pd.DataFrame({"y": [1, 2, 3]}, ... index=pd.to_datetime(["2000-03-31 00:00:00", ... "2000-05-31 00:00:00", ... "2000-08-31 00:00:00"])) >>> df.index.to_period("M") PeriodIndex(['2000-03', '2000-05', '2000-08'], dtype='period[M]') Infer the daily frequency >>> idx = pd.date_range("2017-01-01", periods=2) >>> idx.to_period() PeriodIndex(['2017-01-01', '2017-01-02'], dtype='period[D]')
reference/api/pandas.Series.dt.to_period.html
pandas ecosystem
pandas ecosystem
Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original requirements. This is an inexhaustive list of projects that build on pandas in order to provide tools in the PyData space. For a list of projects that depend on pandas, see the Github network dependents for pandas or search pypi for pandas. We’d like to make it easier for users to find these projects, if you know of other substantial projects that you feel should be on this list, please let us know. Data cleaning and validation# Pyjanitor# Pyjanitor provides a clean API for cleaning data, using method chaining. Pandera# Pandera provides a flexible and expressive API for performing data validation on dataframes to make data processing pipelines more readable and robust. Dataframes contain information that pandera explicitly validates at runtime. This is useful in production-critical data pipelines or reproducible research settings. pandas-path# Since Python 3.4, pathlib has been included in the Python standard library. Path objects provide a simple and delightful way to interact with the file system. The pandas-path package enables the Path API for pandas through a custom accessor .path. Getting just the filenames from a series of full file paths is as simple as my_files.path.name. Other convenient operations like joining paths, replacing file extensions, and checking if files exist are also available. Statistics and machine learning# pandas-tfrecords# Easy saving pandas dataframe to tensorflow tfrecords format and reading tfrecords to pandas. Statsmodels# Statsmodels is the prominent Python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation. sklearn-pandas# Use pandas DataFrames in your scikit-learn ML pipeline. Featuretools# Featuretools is a Python library for automated feature engineering built on top of pandas. It excels at transforming temporal and relational datasets into feature matrices for machine learning using reusable feature engineering “primitives”. Users can contribute their own primitives in Python and share them with the rest of the community. Compose# Compose is a machine learning tool for labeling data and prediction engineering. It allows you to structure the labeling process by parameterizing prediction problems and transforming time-driven relational data into target values with cutoff times that can be used for supervised learning. STUMPY# STUMPY is a powerful and scalable Python library for modern time series analysis. At its core, STUMPY efficiently computes something called a matrix profile, which can be used for a wide variety of time series data mining tasks. Visualization# Pandas has its own Styler class for table visualization, and while pandas also has built-in support for data visualization through charts with matplotlib, there are a number of other pandas-compatible libraries. Altair# Altair is a declarative statistical visualization library for Python. With Altair, you can spend more time understanding your data and its meaning. Altair’s API is simple, friendly and consistent and built on top of the powerful Vega-Lite JSON specification. This elegant simplicity produces beautiful and effective visualizations with a minimal amount of code. Altair works with pandas DataFrames. Bokeh# Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients. Pandas-Bokeh provides a high level API for Bokeh that can be loaded as a native pandas plotting backend via pd.set_option("plotting.backend", "pandas_bokeh") It is very similar to the matplotlib plotting backend, but provides interactive web-based charts and maps. Seaborn# Seaborn is a Python visualization library based on matplotlib. It provides a high-level, dataset-oriented interface for creating attractive statistical graphics. The plotting functions in seaborn understand pandas objects and leverage pandas grouping operations internally to support concise specification of complex visualizations. Seaborn also goes beyond matplotlib and pandas with the option to perform statistical estimation while plotting, aggregating across observations and visualizing the fit of statistical models to emphasize patterns in a dataset. plotnine# Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of any kind of data. Various implementations to other languages are available. A good implementation for Python users is has2k1/plotnine. IPython vega# IPython Vega leverages Vega to create plots within Jupyter Notebook. Plotly# Plotly’s Python API enables interactive figures and web shareability. Maps, 2D, 3D, and live-streaming graphs are rendered with WebGL and D3.js. The library supports plotting directly from a pandas DataFrame and cloud-based collaboration. Users of matplotlib, ggplot for Python, and Seaborn can convert figures into interactive web-based plots. Plots can be drawn in IPython Notebooks , edited with R or MATLAB, modified in a GUI, or embedded in apps and dashboards. Plotly is free for unlimited sharing, and has offline, or on-premise accounts for private use. Lux# Lux is a Python library that facilitates fast and easy experimentation with data by automating the visual data exploration process. To use Lux, simply add an extra import alongside pandas: import lux import pandas as pd df = pd.read_csv("data.csv") df # discover interesting insights! By printing out a dataframe, Lux automatically recommends a set of visualizations that highlights interesting trends and patterns in the dataframe. Users can leverage any existing pandas commands without modifying their code, while being able to visualize their pandas data structures (e.g., DataFrame, Series, Index) at the same time. Lux also offers a powerful, intuitive language that allow users to create Altair, matplotlib, or Vega-Lite visualizations without having to think at the level of code. Qtpandas# Spun off from the main pandas library, the qtpandas library enables DataFrame visualization and manipulation in PyQt4 and PySide applications. D-Tale# D-Tale is a lightweight web client for visualizing pandas data structures. It provides a rich spreadsheet-style grid which acts as a wrapper for a lot of pandas functionality (query, sort, describe, corr…) so users can quickly manipulate their data. There is also an interactive chart-builder using Plotly Dash allowing users to build nice portable visualizations. D-Tale can be invoked with the following command import dtale dtale.show(df) D-Tale integrates seamlessly with Jupyter notebooks, Python terminals, Kaggle & Google Colab. Here are some demos of the grid. hvplot# hvPlot is a high-level plotting API for the PyData ecosystem built on HoloViews. It can be loaded as a native pandas plotting backend via pd.set_option("plotting.backend", "hvplot") IDE# IPython# IPython is an interactive command shell and distributed computing environment. IPython tab completion works with pandas methods and also attributes like DataFrame columns. Jupyter Notebook / Jupyter Lab# Jupyter Notebook is a web application for creating Jupyter notebooks. A Jupyter notebook is a JSON document containing an ordered list of input/output cells which can contain code, text, mathematics, plots and rich media. Jupyter notebooks can be converted to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through ‘Download As’ in the web interface and jupyter convert in a shell. pandas DataFrames implement _repr_html_ and _repr_latex methods which are utilized by Jupyter Notebook for displaying (abbreviated) HTML or LaTeX tables. LaTeX output is properly escaped. (Note: HTML tables may or may not be compatible with non-HTML Jupyter output formats.) See Options and Settings and Available Options for pandas display. settings. Quantopian/qgrid# qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid. Spyder# Spyder is a cross-platform PyQt-based IDE combining the editing, analysis, debugging and profiling functionality of a software development tool with the data exploration, interactive execution, deep inspection and rich visualization capabilities of a scientific environment like MATLAB or Rstudio. Its Variable Explorer allows users to view, manipulate and edit pandas Index, Series, and DataFrame objects like a “spreadsheet”, including copying and modifying values, sorting, displaying a “heatmap”, converting data types and more. pandas objects can also be renamed, duplicated, new columns added, copied/pasted to/from the clipboard (as TSV), and saved/loaded to/from a file. Spyder can also import data from a variety of plain text and binary files or the clipboard into a new pandas DataFrame via a sophisticated import wizard. Most pandas classes, methods and data attributes can be autocompleted in Spyder’s Editor and IPython Console, and Spyder’s Help pane can retrieve and render Numpydoc documentation on pandas objects in rich text with Sphinx both automatically and on-demand. API# pandas-datareader# pandas-datareader is a remote data access library for pandas (PyPI:pandas-datareader). It is based on functionality that was located in pandas.io.data and pandas.io.wb but was split off in v0.19. See more in the pandas-datareader docs: The following data feeds are available: Google Finance Tiingo Morningstar IEX Robinhood Enigma Quandl FRED Fama/French World Bank OECD Eurostat TSP Fund Data Nasdaq Trader Symbol Definitions Stooq Index Data MOEX Data Quandl/Python# Quandl API for Python wraps the Quandl REST API to return pandas DataFrames with timeseries indexes. Pydatastream# PyDatastream is a Python interface to the Refinitiv Datastream (DWS) REST API to return indexed pandas DataFrames with financial data. This package requires valid credentials for this API (non free). pandaSDMX# pandaSDMX is a library to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1, an ISO-standard widely used by institutions such as statistics offices, central banks, and international organisations. pandaSDMX can expose datasets and related structural metadata including data flows, code-lists, and data structure definitions as pandas Series or MultiIndexed DataFrames. fredapi# fredapi is a Python interface to the Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of St. Louis. It works with both the FRED database and ALFRED database that contains point-in-time data (i.e. historic data revisions). fredapi provides a wrapper in Python to the FRED HTTP API, and also provides several convenient methods for parsing and analyzing point-in-time data from ALFRED. fredapi makes use of pandas and returns data in a Series or DataFrame. This module requires a FRED API key that you can obtain for free on the FRED website. dataframe_sql# dataframe_sql is a Python package that translates SQL syntax directly into operations on pandas DataFrames. This is useful when migrating from a database to using pandas or for users more comfortable with SQL looking for a way to interface with pandas. Domain specific# Geopandas# Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas. staircase# staircase is a data analysis package, built upon pandas and numpy, for modelling and manipulation of mathematical step functions. It provides a rich variety of arithmetic operations, relational operations, logical operations, statistical operations and aggregations for step functions defined over real numbers, datetime and timedelta domains. xarray# xarray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multi- dimensional arrays, rather than the tabular data for which pandas excels. IO# BCPandas# BCPandas provides high performance writes from pandas to Microsoft SQL Server, far exceeding the performance of the native df.to_sql method. Internally, it uses Microsoft’s BCP utility, but the complexity is fully abstracted away from the end user. Rigorously tested, it is a complete replacement for df.to_sql. Deltalake# Deltalake python package lets you access tables stored in Delta Lake natively in Python without the need to use Spark or JVM. It provides the delta_table.to_pyarrow_table().to_pandas() method to convert any Delta table into Pandas dataframe. Out-of-core# Blaze# Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, pandas, SQLAlchemy, MongoDB, PyTables, PySpark. Cylon# Cylon is a fast, scalable, distributed memory parallel runtime with a pandas like Python DataFrame API. ”Core Cylon” is implemented with C++ using Apache Arrow format to represent the data in-memory. Cylon DataFrame API implements most of the core operators of pandas such as merge, filter, join, concat, group-by, drop_duplicates, etc. These operators are designed to work across thousands of cores to scale applications. It can interoperate with pandas DataFrame by reading data from pandas or converting data to pandas so users can selectively scale parts of their pandas DataFrame applications. from pycylon import read_csv, DataFrame, CylonEnv from pycylon.net import MPIConfig # Initialize Cylon distributed environment config: MPIConfig = MPIConfig() env: CylonEnv = CylonEnv(config=config, distributed=True) df1: DataFrame = read_csv('/tmp/csv1.csv') df2: DataFrame = read_csv('/tmp/csv2.csv') # Using 1000s of cores across the cluster to compute the join df3: Table = df1.join(other=df2, on=[0], algorithm="hash", env=env) print(df3) Dask# Dask is a flexible parallel computing library for analytics. Dask provides a familiar DataFrame interface for out-of-core, parallel and distributed computing. Dask-ML# Dask-ML enables parallel and distributed machine learning using Dask alongside existing machine learning libraries like Scikit-Learn, XGBoost, and TensorFlow. Ibis# Ibis offers a standard way to write analytics code, that can be run in multiple engines. It helps in bridging the gap between local Python environments (like pandas) and remote storage and execution systems like Hadoop components (like HDFS, Impala, Hive, Spark) and SQL databases (Postgres, etc.). Koalas# Koalas provides a familiar pandas DataFrame interface on top of Apache Spark. It enables users to leverage multi-cores on one machine or a cluster of machines to speed up or scale their DataFrame code. Modin# The modin.pandas DataFrame is a parallel and distributed drop-in replacement for pandas. This means that you can use Modin with existing pandas code or write new code with the existing pandas API. Modin can leverage your entire machine or cluster to speed up and scale your pandas workloads, including traditionally time-consuming tasks like ingesting data (read_csv, read_excel, read_parquet, etc.). # import pandas as pd import modin.pandas as pd df = pd.read_csv("big.csv") # use all your cores! Odo# Odo provides a uniform API for moving data between different formats. It uses pandas own read_csv for CSV IO and leverages many existing packages such as PyTables, h5py, and pymongo to move data between non pandas formats. Its graph based approach is also extensible by end users for custom formats that may be too specific for the core of odo. Pandarallel# Pandarallel provides a simple way to parallelize your pandas operations on all your CPUs by changing only one line of code. If also displays progress bars. from pandarallel import pandarallel pandarallel.initialize(progress_bar=True) # df.apply(func) df.parallel_apply(func) Vaex# Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. Vaex is a Python library for Out-of-Core DataFrames (similar to pandas), to visualize and explore big tabular datasets. It can calculate statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid up to a billion (109) objects/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted). vaex.from_pandas vaex.to_pandas_df Extension data types# pandas provides an interface for defining extension types to extend NumPy’s type system. The following libraries implement that interface to provide types not found in NumPy or pandas, which work well with pandas’ data containers. Cyberpandas# Cyberpandas provides an extension type for storing arrays of IP Addresses. These arrays can be stored inside pandas’ Series and DataFrame. Pandas-Genomics# Pandas-Genomics provides extension types, extension arrays, and extension accessors for working with genomics data Pint-Pandas# Pint-Pandas provides an extension type for storing numeric arrays with units. These arrays can be stored inside pandas’ Series and DataFrame. Operations between Series and DataFrame columns which use pint’s extension array are then units aware. Text Extensions for Pandas# Text Extensions for Pandas provides extension types to cover common data structures for representing natural language data, plus library integrations that convert the outputs of popular natural language processing libraries into Pandas DataFrames. Accessors# A directory of projects providing extension accessors. This is for users to discover new accessors and for library authors to coordinate on the namespace. Library Accessor Classes Description cyberpandas ip Series Provides common operations for working with IP addresses. pdvega vgplot Series, DataFrame Provides plotting functions from the Altair library. pandas-genomics genomics Series, DataFrame Provides common operations for quality control and analysis of genomics data. pandas_path path Index, Series Provides pathlib.Path functions for Series. pint-pandas pint Series, DataFrame Provides units support for numeric Series and DataFrames. composeml slice DataFrame Provides a generator for enhanced data slicing. datatest validate Series, DataFrame, Index Provides validation, differences, and acceptance managers. woodwork ww Series, DataFrame Provides physical, logical, and semantic data typing information for Series and DataFrames. staircase sc Series Provides methods for querying, aggregating and plotting step functions Development tools# pandas-stubs# While pandas repository is partially typed, the package itself doesn’t expose this information for external use. Install pandas-stubs to enable basic type coverage of pandas API. Learn more by reading through GH14468, GH26766, GH28142. See installation and usage instructions on the github page.
ecosystem.html
pandas.tseries.offsets.CustomBusinessMonthBegin.rollback
`pandas.tseries.offsets.CustomBusinessMonthBegin.rollback` Roll provided date backward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
CustomBusinessMonthBegin.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.rollback.html
pandas.tseries.offsets.BusinessMonthBegin.kwds
`pandas.tseries.offsets.BusinessMonthBegin.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
BusinessMonthBegin.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.BusinessMonthBegin.kwds.html
pandas.api.types.is_numeric_dtype
`pandas.api.types.is_numeric_dtype` Check whether the provided array or dtype is of a numeric dtype. The array or dtype to check. ``` >>> is_numeric_dtype(str) False >>> is_numeric_dtype(int) True >>> is_numeric_dtype(float) True >>> is_numeric_dtype(np.uint64) True >>> is_numeric_dtype(np.datetime64) False >>> is_numeric_dtype(np.timedelta64) False >>> is_numeric_dtype(np.array(['a', 'b'])) False >>> is_numeric_dtype(pd.Series([1, 2])) True >>> is_numeric_dtype(pd.Index([1, 2.])) True >>> is_numeric_dtype(np.array([], dtype=np.timedelta64)) False ```
pandas.api.types.is_numeric_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of a numeric dtype. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns booleanWhether or not the array or dtype is of a numeric dtype. Examples >>> is_numeric_dtype(str) False >>> is_numeric_dtype(int) True >>> is_numeric_dtype(float) True >>> is_numeric_dtype(np.uint64) True >>> is_numeric_dtype(np.datetime64) False >>> is_numeric_dtype(np.timedelta64) False >>> is_numeric_dtype(np.array(['a', 'b'])) False >>> is_numeric_dtype(pd.Series([1, 2])) True >>> is_numeric_dtype(pd.Index([1, 2.])) True >>> is_numeric_dtype(np.array([], dtype=np.timedelta64)) False
reference/api/pandas.api.types.is_numeric_dtype.html
pandas.tseries.offsets.BusinessMonthEnd.freqstr
`pandas.tseries.offsets.BusinessMonthEnd.freqstr` Return a string representing the frequency. ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
BusinessMonthEnd.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.BusinessMonthEnd.freqstr.html
pandas.tseries.offsets.QuarterEnd.apply_index
`pandas.tseries.offsets.QuarterEnd.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
QuarterEnd.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.QuarterEnd.apply_index.html
pandas.tseries.offsets.MonthBegin.apply
pandas.tseries.offsets.MonthBegin.apply
MonthBegin.apply()#
reference/api/pandas.tseries.offsets.MonthBegin.apply.html
pandas.tseries.offsets.CustomBusinessMonthBegin.offset
`pandas.tseries.offsets.CustomBusinessMonthBegin.offset` Alias for self._offset.
CustomBusinessMonthBegin.offset# Alias for self._offset.
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.offset.html
pandas.tseries.offsets.Hour.nanos
`pandas.tseries.offsets.Hour.nanos` Return an integer of the total number of nanoseconds. ``` >>> pd.offsets.Hour(5).nanos 18000000000000 ```
Hour.nanos# Return an integer of the total number of nanoseconds. Raises ValueErrorIf the frequency is non-fixed. Examples >>> pd.offsets.Hour(5).nanos 18000000000000
reference/api/pandas.tseries.offsets.Hour.nanos.html
pandas.tseries.offsets.CustomBusinessMonthEnd.n
pandas.tseries.offsets.CustomBusinessMonthEnd.n
CustomBusinessMonthEnd.n#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.n.html
pandas.tseries.offsets.QuarterEnd.copy
`pandas.tseries.offsets.QuarterEnd.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
QuarterEnd.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.QuarterEnd.copy.html
pandas.io.formats.style.Styler.template_html_style
pandas.io.formats.style.Styler.template_html_style
Styler.template_html_style = <Template 'html_style.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_html_style.html
pandas.Series.equals
`pandas.Series.equals` Test whether two objects contain the same elements. ``` >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 ```
Series.equals(other)[source]# Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The row/column index do not need to have the same type, as long as the values are considered equal. Corresponding columns must be of the same dtype. Parameters otherSeries or DataFrameThe other Series or DataFrame to be compared with the first. Returns boolTrue if all elements are the same in both objects, False otherwise. See also Series.eqCompare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eqCompare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. testing.assert_series_equalRaises an AssertionError if left and right are not equal. Provides an easy interface to ignore inequality in dtypes, indexes and precision among others. testing.assert_frame_equalLike assert_series_equal, but targets DataFrames. numpy.array_equalReturn True if two arrays have the same shape and elements, False otherwise. Examples >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False
reference/api/pandas.Series.equals.html