title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.Series.factorize
`pandas.Series.factorize` Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method Series.factorize() and Index.factorize(). ``` >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) ```
Series.factorize(sort=False, na_sentinel=_NoDefault.no_default, use_na_sentinel=_NoDefault.no_default)[source]# Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method Series.factorize() and Index.factorize(). Parameters sortbool, default FalseSort uniques and shuffle codes to maintain the relationship. na_sentinelint or None, default -1Value to mark “not found”. If None, will not drop the NaN from the uniques of the values. Deprecated since version 1.5.0: The na_sentinel argument is deprecated and will be removed in a future version of pandas. Specify use_na_sentinel as either True or False. Changed in version 1.1.2. use_na_sentinelbool, default TrueIf True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values. New in version 1.5.0. Returns codesndarrayAn integer ndarray that’s an indexer into uniques. uniques.take(codes) will have the same values as values. uniquesndarray, Index, or CategoricalThe unique valid values. When values is Categorical, uniques is a Categorical. When values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is returned. Note Even if there’s a missing value in values, uniques will not contain an entry for it. See also cutDiscretize continuous-valued array. uniqueFind the unique value in an array. Notes Reference the user guide for more examples. Examples These examples all show factorize as a top-level method like pd.factorize(values). The results are identical for methods like Series.factorize(). >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) With sort=True, the uniques will be sorted, and codes will be shuffled so that the relationship is the maintained. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> codes array([1, 1, 0, 2, 1]...) >>> uniques array(['a', 'b', 'c'], dtype=object) When use_na_sentinel=True (the default), missing values are indicated in the codes with the sentinel value -1 and missing values are not included in uniques. >>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> codes array([ 0, -1, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) Thus far, we’ve only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of uniques will differ. For Categoricals, a Categorical is returned. >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques ['a', 'c'] Categories (3, object): ['a', 'b', 'c'] Notice that 'b' is in uniques.categories, despite not being present in cat.values. For all other pandas objects, an Index of the appropriate type is returned. >>> cat = pd.Series(['a', 'a', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques Index(['a', 'c'], dtype='object') If NaN is in the values, and we want to include NaN in the uniques of the values, it can be achieved by setting use_na_sentinel=False. >>> values = np.array([1, 2, 1, np.nan]) >>> codes, uniques = pd.factorize(values) # default: use_na_sentinel=True >>> codes array([ 0, 1, 0, -1]) >>> uniques array([1., 2.]) >>> codes, uniques = pd.factorize(values, use_na_sentinel=False) >>> codes array([0, 1, 0, 2]) >>> uniques array([ 1., 2., nan])
reference/api/pandas.Series.factorize.html
pandas.pivot
`pandas.pivot` Return reshaped DataFrame organized by given index / column values. ``` >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t ```
pandas.pivot(data, *, index=None, columns=None, values=None)[source]# Return reshaped DataFrame organized by given index / column values. Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the User Guide for more on reshaping. Parameters dataDataFrame indexstr or object or a list of str, optionalColumn to use to make new frame’s index. If None, uses existing index. Changed in version 1.1.0: Also accept list of index names. columnsstr or object or a list of strColumn to use to make new frame’s columns. Changed in version 1.1.0: Also accept list of columns names. valuesstr, object or a list of the previous, optionalColumn(s) to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. Returns DataFrameReturns reshaped DataFrame. Raises ValueError:When there are any index, columns combinations with multiple values. DataFrame.pivot_table when you need to aggregate. See also DataFrame.pivot_tableGeneralization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstackPivot based on the index values instead of a column. wide_to_longWide panel to long format. Less flexible but more user-friendly than melt. Notes For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Reference the user guide for more examples. Examples >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our index and columns arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape
reference/api/pandas.pivot.html
pandas.tseries.offsets.BYearBegin.name
`pandas.tseries.offsets.BYearBegin.name` Return a string representing the base frequency. Examples ``` >>> pd.offsets.Hour().name 'H' ```
BYearBegin.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.BYearBegin.name.html
pandas.Series.xs
`pandas.Series.xs` Return cross-section from the Series/DataFrame. This method takes a key argument to select data at a particular level of a MultiIndex. ``` >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = pd.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 ```
Series.xs(key, axis=0, level=None, drop_level=True)[source]# Return cross-section from the Series/DataFrame. This method takes a key argument to select data at a particular level of a MultiIndex. Parameters keylabel or tuple of labelLabel contained in the index, or partially in a MultiIndex. axis{0 or ‘index’, 1 or ‘columns’}, default 0Axis to retrieve cross-section on. levelobject, defaults to first n levels (n=1 or len(key))In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. drop_levelbool, default TrueIf False, returns object with same levels as self. Returns Series or DataFrameCross-section from the original Series or DataFrame corresponding to the selected index levels. See also DataFrame.locAccess a group of rows and columns by label(s) or a boolean array. DataFrame.ilocPurely integer-location based indexing for selection by position. Notes xs can not be used to set values. MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see MultiIndex Slicers. Examples >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = pd.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 Get values at specified index >>> df.xs('mammal') num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2 Get values at several indexes >>> df.xs(('mammal', 'dog')) num_legs num_wings locomotion walks 4 0 Get values at specified index and level >>> df.xs('cat', level=1) num_legs num_wings class locomotion mammal walks 4 0 Get values at several indexes and levels >>> df.xs(('bird', 'walks'), ... level=[0, 'locomotion']) num_legs num_wings animal penguin 2 2 Get values at specified column and axis >>> df.xs('num_wings', axis=1) class animal locomotion mammal cat walks 0 dog walks 0 bat flies 2 bird penguin walks 2 Name: num_wings, dtype: int64
reference/api/pandas.Series.xs.html
pandas.tseries.offsets.BusinessMonthBegin.kwds
`pandas.tseries.offsets.BusinessMonthBegin.kwds` Return a dict of extra parameters for the offset. Examples ``` >>> pd.DateOffset(5).kwds {} ```
BusinessMonthBegin.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.BusinessMonthBegin.kwds.html
pandas.tseries.offsets.BQuarterEnd.is_on_offset
`pandas.tseries.offsets.BQuarterEnd.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
BQuarterEnd.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.BQuarterEnd.is_on_offset.html
pandas.tseries.offsets.BQuarterBegin.rule_code
pandas.tseries.offsets.BQuarterBegin.rule_code
BQuarterBegin.rule_code#
reference/api/pandas.tseries.offsets.BQuarterBegin.rule_code.html
pandas.tseries.offsets.Easter.is_month_end
`pandas.tseries.offsets.Easter.is_month_end` Return boolean whether a timestamp occurs on the month end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
Easter.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.Easter.is_month_end.html
pandas.tseries.offsets.CustomBusinessMonthBegin.is_year_end
`pandas.tseries.offsets.CustomBusinessMonthBegin.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
CustomBusinessMonthBegin.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.is_year_end.html
pandas.tseries.offsets.WeekOfMonth.is_quarter_end
`pandas.tseries.offsets.WeekOfMonth.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
WeekOfMonth.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.WeekOfMonth.is_quarter_end.html
pandas.tseries.offsets.LastWeekOfMonth.apply_index
`pandas.tseries.offsets.LastWeekOfMonth.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
LastWeekOfMonth.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.LastWeekOfMonth.apply_index.html
pandas.io.formats.style.Styler.highlight_max
`pandas.io.formats.style.Styler.highlight_max` Highlight the maximum with a style.
Styler.highlight_max(subset=None, color='yellow', axis=0, props=None)[source]# Highlight the maximum with a style. Parameters subsetlabel, array-like, IndexSlice, optionalA valid 2d input to DataFrame.loc[<subset>], or, in the case of a 1d input or single key, to DataFrame.loc[:, <subset>] where the columns are prioritised, to limit data to before applying the function. colorstr, default ‘yellow’Background color to use for highlighting. axis{0 or ‘index’, 1 or ‘columns’, None}, default 0Apply to each column (axis=0 or 'index'), to each row (axis=1 or 'columns'), or to the entire DataFrame at once with axis=None. propsstr, default NoneCSS properties to use for highlighting. If props is given, color is not used. New in version 1.3.0. Returns selfStyler See also Styler.highlight_nullHighlight missing values with a style. Styler.highlight_minHighlight the minimum with a style. Styler.highlight_betweenHighlight a defined range with a style. Styler.highlight_quantileHighlight values defined by a quantile with a style.
reference/api/pandas.io.formats.style.Styler.highlight_max.html
pandas.tseries.offsets.Second.name
`pandas.tseries.offsets.Second.name` Return a string representing the base frequency. ``` >>> pd.offsets.Hour().name 'H' ```
Second.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.Second.name.html
pandas.Series.pipe
`pandas.Series.pipe` Apply chainable functions that expect Series or DataFrames. ``` >>> func(g(h(df), arg1=a), arg2=b, arg3=c) ```
Series.pipe(func, *args, **kwargs)[source]# Apply chainable functions that expect Series or DataFrames. Parameters funcfunctionFunction to apply to the Series/DataFrame. args, and kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the Series/DataFrame. argsiterable, optionalPositional arguments passed into func. kwargsmapping, optionalA dictionary of keyword arguments passed into func. Returns objectthe return type of func. See also DataFrame.applyApply a function along input axis of DataFrame. DataFrame.applymapApply a function elementwise on a whole DataFrame. Series.mapApply a mapping correspondence on a Series. Notes Use .pipe when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing >>> func(g(h(df), arg1=a), arg2=b, arg3=c) You can write >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(func, arg2=b, arg3=c) ... ) If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2: >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((func, 'arg2'), arg1=a, arg3=c) ... )
reference/api/pandas.Series.pipe.html
pandas.api.types.is_categorical
`pandas.api.types.is_categorical` Check whether an array-like is a Categorical instance. ``` >>> is_categorical([1, 2, 3]) False ```
pandas.api.types.is_categorical(arr)[source]# Check whether an array-like is a Categorical instance. Deprecated since version 1.1.0: Use is_categorical_dtype instead. Parameters arrarray-likeThe array-like to check. Returns booleanWhether or not the array-like is of a Categorical instance. Examples >>> is_categorical([1, 2, 3]) False Categoricals, Series Categoricals, and CategoricalIndex will return True. >>> cat = pd.Categorical([1, 2, 3]) >>> is_categorical(cat) True >>> is_categorical(pd.Series(cat)) True >>> is_categorical(pd.CategoricalIndex([1, 2, 3])) True
reference/api/pandas.api.types.is_categorical.html
pandas.tseries.offsets.WeekOfMonth.base
`pandas.tseries.offsets.WeekOfMonth.base` Returns a copy of the calling offset object with n=1 and all other attributes equal.
WeekOfMonth.base# Returns a copy of the calling offset object with n=1 and all other attributes equal.
reference/api/pandas.tseries.offsets.WeekOfMonth.base.html
pandas.tseries.offsets.Milli.is_month_start
`pandas.tseries.offsets.Milli.is_month_start` Return boolean whether a timestamp occurs on the month start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
Milli.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.Milli.is_month_start.html
pandas.tseries.offsets.QuarterBegin.startingMonth
pandas.tseries.offsets.QuarterBegin.startingMonth
QuarterBegin.startingMonth#
reference/api/pandas.tseries.offsets.QuarterBegin.startingMonth.html
pandas.IntervalIndex.length
pandas.IntervalIndex.length
property IntervalIndex.length[source]#
reference/api/pandas.IntervalIndex.length.html
pandas.io.formats.style.Styler.template_html
pandas.io.formats.style.Styler.template_html
Styler.template_html = <Template 'html.tpl'>#
reference/api/pandas.io.formats.style.Styler.template_html.html
pandas.Series.argmin
`pandas.Series.argmin` Return int position of the smallest value in the Series. ``` >>> s = pd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0, ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}) >>> s Corn Flakes 100.0 Almond Delight 110.0 Cinnamon Toast Crunch 120.0 Cocoa Puff 110.0 dtype: float64 ```
Series.argmin(axis=None, skipna=True, *args, **kwargs)[source]# Return int position of the smallest value in the Series. If the minimum is achieved in multiple locations, the first row position is returned. Parameters axis{None}Unused. Parameter needed for compatibility with DataFrame. skipnabool, default TrueExclude NA/null values when showing the result. *args, **kwargsAdditional arguments and keywords for compatibility with NumPy. Returns intRow position of the minimum value. See also Series.argminReturn position of the minimum value. Series.argmaxReturn position of the maximum value. numpy.ndarray.argminEquivalent method for numpy arrays. Series.idxmaxReturn index label of the maximum values. Series.idxminReturn index label of the minimum values. Examples Consider dataset containing cereal calories >>> s = pd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0, ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}) >>> s Corn Flakes 100.0 Almond Delight 110.0 Cinnamon Toast Crunch 120.0 Cocoa Puff 110.0 dtype: float64 >>> s.argmax() 2 >>> s.argmin() 0 The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.
reference/api/pandas.Series.argmin.html
pandas.tseries.offsets.DateOffset.freqstr
`pandas.tseries.offsets.DateOffset.freqstr` Return a string representing the frequency. Examples ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
DateOffset.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.DateOffset.freqstr.html
pandas.tseries.offsets.CustomBusinessDay.kwds
`pandas.tseries.offsets.CustomBusinessDay.kwds` Return a dict of extra parameters for the offset. ``` >>> pd.DateOffset(5).kwds {} ```
CustomBusinessDay.kwds# Return a dict of extra parameters for the offset. Examples >>> pd.DateOffset(5).kwds {} >>> pd.offsets.FY5253Quarter().kwds {'weekday': 0, 'startingMonth': 1, 'qtr_with_extra_week': 1, 'variation': 'nearest'}
reference/api/pandas.tseries.offsets.CustomBusinessDay.kwds.html
pandas.core.window.expanding.Expanding.cov
`pandas.core.window.expanding.Expanding.cov` Calculate the expanding sample covariance.
Expanding.cov(other=None, pairwise=None, ddof=1, numeric_only=False, **kwargs)[source]# Calculate the expanding sample covariance. Parameters otherSeries or DataFrame, optionalIf not supplied then will default to self and produce pairwise output. pairwisebool, default NoneIf False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddofint, default 1Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.covAggregating cov for Series. pandas.DataFrame.covAggregating cov for DataFrame.
reference/api/pandas.core.window.expanding.Expanding.cov.html
pandas.Period.minute
`pandas.Period.minute` Get minute of the hour component of the Period. ``` >>> p = pd.Period("2018-03-11 13:03:12.050000") >>> p.minute 3 ```
Period.minute# Get minute of the hour component of the Period. Returns intThe minute as an integer, between 0 and 59. See also Period.hourGet the hour component of the Period. Period.secondGet the second component of the Period. Examples >>> p = pd.Period("2018-03-11 13:03:12.050000") >>> p.minute 3
reference/api/pandas.Period.minute.html
pandas.tseries.offsets.BMonthBegin
`pandas.tseries.offsets.BMonthBegin` alias of pandas._libs.tslibs.offsets.BusinessMonthBegin
pandas.tseries.offsets.BMonthBegin# alias of pandas._libs.tslibs.offsets.BusinessMonthBegin
reference/api/pandas.tseries.offsets.BMonthBegin.html
pandas.tseries.offsets.BQuarterBegin.normalize
pandas.tseries.offsets.BQuarterBegin.normalize
BQuarterBegin.normalize#
reference/api/pandas.tseries.offsets.BQuarterBegin.normalize.html
pandas.tseries.offsets.BQuarterEnd.normalize
pandas.tseries.offsets.BQuarterEnd.normalize
BQuarterEnd.normalize#
reference/api/pandas.tseries.offsets.BQuarterEnd.normalize.html
pandas.tseries.offsets.QuarterBegin.__call__
`pandas.tseries.offsets.QuarterBegin.__call__` Call self as a function.
QuarterBegin.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.QuarterBegin.__call__.html
pandas.core.resample.Resampler.ohlc
`pandas.core.resample.Resampler.ohlc` Compute open, high, low and close values of a group, excluding missing values. For multiple groupings, the result index will be a MultiIndex
Resampler.ohlc(*args, **kwargs)[source]# Compute open, high, low and close values of a group, excluding missing values. For multiple groupings, the result index will be a MultiIndex Returns DataFrameOpen, high, low and close values within each group. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.resample.Resampler.ohlc.html
pandas.factorize
`pandas.factorize` Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method Series.factorize() and Index.factorize(). ``` >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) ```
pandas.factorize(values, sort=False, na_sentinel=_NoDefault.no_default, use_na_sentinel=_NoDefault.no_default, size_hint=None)[source]# Encode the object as an enumerated type or categorical variable. This method is useful for obtaining a numeric representation of an array when all that matters is identifying distinct values. factorize is available as both a top-level function pandas.factorize(), and as a method Series.factorize() and Index.factorize(). Parameters valuessequenceA 1-D sequence. Sequences that aren’t pandas objects are coerced to ndarrays before factorization. sortbool, default FalseSort uniques and shuffle codes to maintain the relationship. na_sentinelint or None, default -1Value to mark “not found”. If None, will not drop the NaN from the uniques of the values. Deprecated since version 1.5.0: The na_sentinel argument is deprecated and will be removed in a future version of pandas. Specify use_na_sentinel as either True or False. Changed in version 1.1.2. use_na_sentinelbool, default TrueIf True, the sentinel -1 will be used for NaN values. If False, NaN values will be encoded as non-negative integers and will not drop the NaN from the uniques of the values. New in version 1.5.0. size_hintint, optionalHint to the hashtable sizer. Returns codesndarrayAn integer ndarray that’s an indexer into uniques. uniques.take(codes) will have the same values as values. uniquesndarray, Index, or CategoricalThe unique valid values. When values is Categorical, uniques is a Categorical. When values is some other pandas object, an Index is returned. Otherwise, a 1-D ndarray is returned. Note Even if there’s a missing value in values, uniques will not contain an entry for it. See also cutDiscretize continuous-valued array. uniqueFind the unique value in an array. Notes Reference the user guide for more examples. Examples These examples all show factorize as a top-level method like pd.factorize(values). The results are identical for methods like Series.factorize(). >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b']) >>> codes array([0, 0, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) With sort=True, the uniques will be sorted, and codes will be shuffled so that the relationship is the maintained. >>> codes, uniques = pd.factorize(['b', 'b', 'a', 'c', 'b'], sort=True) >>> codes array([1, 1, 0, 2, 1]...) >>> uniques array(['a', 'b', 'c'], dtype=object) When use_na_sentinel=True (the default), missing values are indicated in the codes with the sentinel value -1 and missing values are not included in uniques. >>> codes, uniques = pd.factorize(['b', None, 'a', 'c', 'b']) >>> codes array([ 0, -1, 1, 2, 0]...) >>> uniques array(['b', 'a', 'c'], dtype=object) Thus far, we’ve only factorized lists (which are internally coerced to NumPy arrays). When factorizing pandas objects, the type of uniques will differ. For Categoricals, a Categorical is returned. >>> cat = pd.Categorical(['a', 'a', 'c'], categories=['a', 'b', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques ['a', 'c'] Categories (3, object): ['a', 'b', 'c'] Notice that 'b' is in uniques.categories, despite not being present in cat.values. For all other pandas objects, an Index of the appropriate type is returned. >>> cat = pd.Series(['a', 'a', 'c']) >>> codes, uniques = pd.factorize(cat) >>> codes array([0, 0, 1]...) >>> uniques Index(['a', 'c'], dtype='object') If NaN is in the values, and we want to include NaN in the uniques of the values, it can be achieved by setting use_na_sentinel=False. >>> values = np.array([1, 2, 1, np.nan]) >>> codes, uniques = pd.factorize(values) # default: use_na_sentinel=True >>> codes array([ 0, 1, 0, -1]) >>> uniques array([1., 2.]) >>> codes, uniques = pd.factorize(values, use_na_sentinel=False) >>> codes array([0, 1, 0, 2]) >>> uniques array([ 1., 2., nan])
reference/api/pandas.factorize.html
pandas.tseries.offsets.YearBegin.copy
`pandas.tseries.offsets.YearBegin.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
YearBegin.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.YearBegin.copy.html
pandas.tseries.offsets.FY5253.is_quarter_start
`pandas.tseries.offsets.FY5253.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
FY5253.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.FY5253.is_quarter_start.html
Options and settings
Options and settings
API for configuring global behavior. See the User Guide for more. Working with options# describe_option(pat[, _print_desc]) Prints the description for one or more registered options. reset_option(pat) Reset one or more options to their default value. get_option(pat) Retrieves the value of the specified option. set_option(pat, value) Sets the value of the specified option. option_context(*args) Context manager to temporarily set options in the with statement context.
reference/options.html
pandas.tseries.offsets.Week.apply
pandas.tseries.offsets.Week.apply
Week.apply()#
reference/api/pandas.tseries.offsets.Week.apply.html
pandas.tseries.offsets.YearBegin.base
`pandas.tseries.offsets.YearBegin.base` Returns a copy of the calling offset object with n=1 and all other attributes equal.
YearBegin.base# Returns a copy of the calling offset object with n=1 and all other attributes equal.
reference/api/pandas.tseries.offsets.YearBegin.base.html
pandas.tseries.offsets.BusinessMonthEnd.apply_index
`pandas.tseries.offsets.BusinessMonthEnd.apply_index` Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead.
BusinessMonthEnd.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.BusinessMonthEnd.apply_index.html
pandas.DataFrame.add_suffix
`pandas.DataFrame.add_suffix` Suffix labels with string suffix. ``` >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 ```
DataFrame.add_suffix(suffix)[source]# Suffix labels with string suffix. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters suffixstrThe string to add after each label. Returns Series or DataFrameNew Series or DataFrame with updated labels. See also Series.add_prefixPrefix row labels with string prefix. DataFrame.add_prefixPrefix column labels with string prefix. Examples >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
reference/api/pandas.DataFrame.add_suffix.html
pandas.Series.notnull
`pandas.Series.notnull` Series.notnull is an alias for Series.notna. Detect existing (non-missing) values. ``` >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker ```
Series.notnull()[source]# Series.notnull is an alias for Series.notna. Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na = True). NA values, such as None or numpy.NaN, get mapped to False values. Returns SeriesMask of bool values for each element in Series that indicates whether an element is not an NA value. See also Series.notnullAlias of notna. Series.isnaBoolean inverse of notna. Series.dropnaOmit axes labels with missing values. notnaTop-level notna. Examples Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame(dict(age=[5, 6, np.NaN], ... born=[pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... name=['Alfred', 'Batman', ''], ... toy=[None, 'Batmobile', 'Joker'])) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool
reference/api/pandas.Series.notnull.html
pandas.Categorical.from_codes
`pandas.Categorical.from_codes` Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. ``` >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) ['a', 'b', 'a', 'b'] Categories (2, object): ['a' < 'b'] ```
classmethod Categorical.from_codes(codes, categories=None, ordered=None, dtype=None)[source]# Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters codesarray-like of intAn integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categoriesindex-like, optionalThe categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in dtype. orderedbool, optionalWhether or not this categorical is treated as an ordered categorical. If not given here or in dtype, the resulting categorical will be unordered. dtypeCategoricalDtype or “category”, optionalIf CategoricalDtype, cannot be used together with categories or ordered. Returns Categorical Examples >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) ['a', 'b', 'a', 'b'] Categories (2, object): ['a' < 'b']
reference/api/pandas.Categorical.from_codes.html
pandas.testing.assert_series_equal
`pandas.testing.assert_series_equal` Check that left and right Series are equal. ``` >>> from pandas import testing as tm >>> a = pd.Series([1, 2, 3, 4]) >>> b = pd.Series([1, 2, 3, 4]) >>> tm.assert_series_equal(a, b) ```
pandas.testing.assert_series_equal(left, right, check_dtype=True, check_index_type='equiv', check_series_type=True, check_less_precise=_NoDefault.no_default, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, check_freq=True, check_flags=True, rtol=1e-05, atol=1e-08, obj='Series', *, check_index=True, check_like=False)[source]# Check that left and right Series are equal. Parameters leftSeries rightSeries check_dtypebool, default TrueWhether to check the Series dtype is identical. check_index_typebool or {‘equiv’}, default ‘equiv’Whether to check the Index class, dtype and inferred_type are identical. check_series_typebool, default TrueWhether to check the Series class is identical. check_less_precisebool or int, default FalseSpecify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the ratio of the second number to the first number and check whether it is equivalent to 1 within the specified precision. Deprecated since version 1.1.0: Use rtol and atol instead to define relative/absolute tolerance, respectively. Similar to math.isclose(). check_namesbool, default TrueWhether to check the Series and Index names attribute. check_exactbool, default FalseWhether to compare number exactly. check_datetimelike_compatbool, default FalseCompare datetime-like which is comparable ignoring dtype. check_categoricalbool, default TrueWhether to compare internal Categorical exactly. check_category_orderbool, default TrueWhether to compare category order of internal Categoricals. New in version 1.0.2. check_freqbool, default TrueWhether to check the freq attribute on a DatetimeIndex or TimedeltaIndex. New in version 1.1.0. check_flagsbool, default TrueWhether to check the flags attribute. New in version 1.2.0. rtolfloat, default 1e-5Relative tolerance. Only used when check_exact is False. New in version 1.1.0. atolfloat, default 1e-8Absolute tolerance. Only used when check_exact is False. New in version 1.1.0. objstr, default ‘Series’Specify object name being compared, internally used to show appropriate assertion message. check_indexbool, default TrueWhether to check index equivalence. If False, then compare only values. New in version 1.3.0. check_likebool, default FalseIf True, ignore the order of the index. Must be False if check_index is False. Note: same labels must be with the same data. New in version 1.5.0. Examples >>> from pandas import testing as tm >>> a = pd.Series([1, 2, 3, 4]) >>> b = pd.Series([1, 2, 3, 4]) >>> tm.assert_series_equal(a, b)
reference/api/pandas.testing.assert_series_equal.html
pandas.tseries.offsets.YearEnd.is_quarter_end
`pandas.tseries.offsets.YearEnd.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
YearEnd.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.YearEnd.is_quarter_end.html
pandas.Series.size
`pandas.Series.size` Return the number of elements in the underlying data.
property Series.size[source]# Return the number of elements in the underlying data.
reference/api/pandas.Series.size.html
pandas.Timedelta
`pandas.Timedelta` Represents a duration, the difference between two dates or times. ``` >>> td = pd.Timedelta(1, "d") >>> td Timedelta('1 days 00:00:00') ```
class pandas.Timedelta(value=<object object>, unit=None, **kwargs)# Represents a duration, the difference between two dates or times. Timedelta is the pandas equivalent of python’s datetime.timedelta and is interchangeable with it in most cases. Parameters valueTimedelta, timedelta, np.timedelta64, str, or int unitstr, default ‘ns’Denote the unit of the input, if input is an integer. Possible values: ‘W’, ‘D’, ‘T’, ‘S’, ‘L’, ‘U’, or ‘N’ ‘days’ or ‘day’ ‘hours’, ‘hour’, ‘hr’, or ‘h’ ‘minutes’, ‘minute’, ‘min’, or ‘m’ ‘seconds’, ‘second’, or ‘sec’ ‘milliseconds’, ‘millisecond’, ‘millis’, or ‘milli’ ‘microseconds’, ‘microsecond’, ‘micros’, or ‘micro’ ‘nanoseconds’, ‘nanosecond’, ‘nanos’, ‘nano’, or ‘ns’. **kwargsAvailable kwargs: {days, seconds, microseconds, milliseconds, minutes, hours, weeks}. Values for construction in compat with datetime.timedelta. Numpy ints and floats will be coerced to python ints and floats. Notes The constructor may take in either both values of value and unit or kwargs as above. Either one of them must be used during initialization The .value attribute is always in ns. If the precision is higher than nanoseconds, the precision of the duration is truncated to nanoseconds. Examples Here we initialize Timedelta object with both value and unit >>> td = pd.Timedelta(1, "d") >>> td Timedelta('1 days 00:00:00') Here we initialize the Timedelta object with kwargs >>> td2 = pd.Timedelta(days=1) >>> td2 Timedelta('1 days 00:00:00') We see that either way we get the same result Attributes asm8 Return a numpy timedelta64 array scalar view. components Return a components namedtuple-like. days delta (DEPRECATED) Return the timedelta in nanoseconds (ns), for internal compatibility. freq (DEPRECATED) Freq property. is_populated (DEPRECATED) Is_populated property. microseconds nanoseconds Return the number of nanoseconds (n), where 0 <= n < 1 microsecond. resolution_string Return a string representing the lowest timedelta resolution. seconds value Methods ceil(freq) Return a new Timedelta ceiled to this resolution. floor(freq) Return a new Timedelta floored to this resolution. isoformat Format the Timedelta as ISO 8601 Duration. round(freq) Round the Timedelta to the specified resolution. to_numpy Convert the Timedelta to a NumPy timedelta64. to_pytimedelta Convert a pandas Timedelta object into a python datetime.timedelta object. to_timedelta64 Return a numpy.timedelta64 object with 'ns' precision. total_seconds Total seconds in the duration. view Array view compatibility.
reference/api/pandas.Timedelta.html
pandas.Index.get_indexer_for
`pandas.Index.get_indexer_for` Guaranteed return of an indexer even when non-unique. ``` >>> idx = pd.Index([np.nan, 'var1', np.nan]) >>> idx.get_indexer_for([np.nan]) array([0, 2]) ```
final Index.get_indexer_for(target)[source]# Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns np.ndarray[np.intp]List of indices. Examples >>> idx = pd.Index([np.nan, 'var1', np.nan]) >>> idx.get_indexer_for([np.nan]) array([0, 2])
reference/api/pandas.Index.get_indexer_for.html
pandas.Series.nbytes
`pandas.Series.nbytes` Return the number of bytes in the underlying data.
property Series.nbytes[source]# Return the number of bytes in the underlying data.
reference/api/pandas.Series.nbytes.html
pandas.IntervalIndex.get_indexer
`pandas.IntervalIndex.get_indexer` Compute indexer and mask for new index given the current index. ``` >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) ```
IntervalIndex.get_indexer(target, method=None, limit=None, tolerance=None)[source]# Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters targetIndex method{None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional default: exact matches only. pad / ffill: find the PREVIOUS index value if no exact match. backfill / bfill: use NEXT index value if no exact match nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limitint, optionalMaximum number of consecutive labels in target to match for inexact matches. toleranceoptionalMaximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. Returns indexernp.ndarray[np.intp]Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Notes Returns -1 for unmatched values, for further explanation see the example below. Examples >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in index and x is marked by -1, as it is not in index.
reference/api/pandas.IntervalIndex.get_indexer.html
pandas.tseries.offsets.SemiMonthBegin.isAnchored
pandas.tseries.offsets.SemiMonthBegin.isAnchored
SemiMonthBegin.isAnchored()#
reference/api/pandas.tseries.offsets.SemiMonthBegin.isAnchored.html
pandas.Series.dt.microsecond
`pandas.Series.dt.microsecond` The microseconds of the datetime. ``` >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="us") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int64 ```
Series.dt.microsecond[source]# The microseconds of the datetime. Examples >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="us") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int64
reference/api/pandas.Series.dt.microsecond.html
pandas.tseries.offsets.WeekOfMonth.is_month_end
`pandas.tseries.offsets.WeekOfMonth.is_month_end` Return boolean whether a timestamp occurs on the month end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
WeekOfMonth.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.WeekOfMonth.is_month_end.html
pandas.Index.get_level_values
`pandas.Index.get_level_values` Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. ``` >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') ```
Index.get_level_values(level)[source]# Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters levelint or strIt is either the integer position or the name of the level. Returns IndexCalling object, as there is only one level in the Index. See also MultiIndex.get_level_valuesGet values for a level of a MultiIndex. Notes For Index, level should be 0, since there are no multiple levels. Examples >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying level as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object')
reference/api/pandas.Index.get_level_values.html
pandas.tseries.offsets.MonthEnd.is_year_end
`pandas.tseries.offsets.MonthEnd.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
MonthEnd.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.MonthEnd.is_year_end.html
pandas.Series.dt.month
`pandas.Series.dt.month` The month as January=1, December=12. ``` >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64 ```
Series.dt.month[source]# The month as January=1, December=12. Examples >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64
reference/api/pandas.Series.dt.month.html
pandas.core.window.rolling.Rolling.rank
`pandas.core.window.rolling.Rolling.rank` Calculate the rolling rank. New in version 1.4.0. ``` >>> s = pd.Series([1, 4, 2, 3, 5, 3]) >>> s.rolling(3).rank() 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 1.5 dtype: float64 ```
Rolling.rank(method='average', ascending=True, pct=False, numeric_only=False, **kwargs)[source]# Calculate the rolling rank. New in version 1.4.0. Parameters method{‘average’, ‘min’, ‘max’}, default ‘average’How to rank the group of records that have the same value (i.e. ties): average: average rank of the group min: lowest rank in the group max: highest rank in the group ascendingbool, default TrueWhether or not the elements should be ranked in ascending order. pctbool, default FalseWhether or not to display the returned rankings in percentile form. numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.rankAggregating rank for Series. pandas.DataFrame.rankAggregating rank for DataFrame. Examples >>> s = pd.Series([1, 4, 2, 3, 5, 3]) >>> s.rolling(3).rank() 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 1.5 dtype: float64 >>> s.rolling(3).rank(method="max") 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 2.0 dtype: float64 >>> s.rolling(3).rank(method="min") 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 1.0 dtype: float64
reference/api/pandas.core.window.rolling.Rolling.rank.html
pandas.tseries.offsets.CustomBusinessMonthEnd.is_on_offset
`pandas.tseries.offsets.CustomBusinessMonthEnd.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
CustomBusinessMonthEnd.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.is_on_offset.html
pandas.tseries.offsets.BusinessMonthBegin
`pandas.tseries.offsets.BusinessMonthBegin` DateOffset of one month at the first business day. ``` >>> from pandas.tseries.offsets import BMonthBegin >>> ts=pd.Timestamp('2020-05-24 05:01:15') >>> ts + BMonthBegin() Timestamp('2020-06-01 05:01:15') >>> ts + BMonthBegin(2) Timestamp('2020-07-01 05:01:15') >>> ts + BMonthBegin(-3) Timestamp('2020-03-02 05:01:15') ```
class pandas.tseries.offsets.BusinessMonthBegin# DateOffset of one month at the first business day. Examples >>> from pandas.tseries.offsets import BMonthBegin >>> ts=pd.Timestamp('2020-05-24 05:01:15') >>> ts + BMonthBegin() Timestamp('2020-06-01 05:01:15') >>> ts + BMonthBegin(2) Timestamp('2020-07-01 05:01:15') >>> ts + BMonthBegin(-3) Timestamp('2020-03-02 05:01:15') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. n nanos normalize rule_code Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.BusinessMonthBegin.html
pandas.Series.plot
`pandas.Series.plot` Make plots of Series or DataFrame.
Series.plot(*args, **kwargs)[source]# Make plots of Series or DataFrame. Uses the backend specified by the option plotting.backend. By default, matplotlib is used. Parameters dataSeries or DataFrameThe object for which the method is called. xlabel or position, default NoneOnly used if data is a DataFrame. ylabel, position or list of label, positions, default NoneAllows plotting of one column versus another. Only used if data is a DataFrame. kindstrThe kind of plot to produce: ‘line’ : line plot (default) ‘bar’ : vertical bar plot ‘barh’ : horizontal bar plot ‘hist’ : histogram ‘box’ : boxplot ‘kde’ : Kernel Density Estimation plot ‘density’ : same as ‘kde’ ‘area’ : area plot ‘pie’ : pie plot ‘scatter’ : scatter plot (DataFrame only) ‘hexbin’ : hexbin plot (DataFrame only) axmatplotlib axes object, default NoneAn axes of the current figure. subplotsbool or sequence of iterables, default FalseWhether to group columns into subplots: False : No subplots will be used True : Make separate subplots for each column. sequence of iterables of column labels: Create a subplot for each group of columns. For example [(‘a’, ‘c’), (‘b’, ‘d’)] will create 2 subplots: one with columns ‘a’ and ‘c’, and one with columns ‘b’ and ‘d’. Remaining columns that aren’t specified will be plotted in additional subplots (one per column). .. versionadded:: 1.5.0 sharexbool, default True if ax is None else FalseIn case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure. shareybool, default FalseIn case subplots=True, share y axis and set some y axis labels to invisible. layouttuple, optional(rows, columns) for the layout of subplots. figsizea tuple (width, height) in inchesSize of a figure object. use_indexbool, default TrueUse index as ticks for x axis. titlestr or listTitle to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and subplots is True, print each item in the list above the corresponding subplot. gridbool, default None (matlab style default)Axis grid lines. legendbool or {‘reverse’}Place legend on axis subplots. stylelist or dictThe matplotlib line style per column. logxbool or ‘sym’, default FalseUse log scaling or symlog scaling on x axis. .. versionchanged:: 0.25.0 logybool or ‘sym’ default FalseUse log scaling or symlog scaling on y axis. .. versionchanged:: 0.25.0 loglogbool or ‘sym’, default FalseUse log scaling or symlog scaling on both x and y axes. .. versionchanged:: 0.25.0 xtickssequenceValues to use for the xticks. ytickssequenceValues to use for the yticks. xlim2-tuple/listSet the x limits of the current axes. ylim2-tuple/listSet the y limits of the current axes. xlabellabel, optionalName to use for the xlabel on x-axis. Default uses index name as xlabel, or the x-column name for planar plots. New in version 1.1.0. Changed in version 1.2.0: Now applicable to planar plots (scatter, hexbin). ylabellabel, optionalName to use for the ylabel on y-axis. Default will show no ylabel, or the y-column name for planar plots. New in version 1.1.0. Changed in version 1.2.0: Now applicable to planar plots (scatter, hexbin). rotint, default NoneRotation for ticks (xticks for vertical, yticks for horizontal plots). fontsizeint, default NoneFont size for xticks and yticks. colormapstr or matplotlib colormap object, default NoneColormap to select colors from. If string, load colormap with that name from matplotlib. colorbarbool, optionalIf True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots). positionfloatSpecify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center). tablebool, Series or DataFrame, default FalseIf True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerrDataFrame, Series, array-like, dict and strSee Plotting with Error Bars for detail. xerrDataFrame, Series, array-like, dict and strEquivalent to yerr. stackedbool, default False in line and bar plots, and True in area plotIf True, create stacked plot. sort_columnsbool, default FalseSort column names to determine plot ordering. Deprecated since version 1.5.0: The sort_columns arguments is deprecated and will be removed in a future version. secondary_ybool or sequence, default FalseWhether to plot on the secondary y-axis if a list/tuple, which columns to plot on secondary y-axis. mark_rightbool, default TrueWhen using a secondary_y axis, automatically mark the column labels with “(right)” in the legend. include_boolbool, default is FalseIf True, boolean values can be plotted. backendstr, default NoneBackend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend. New in version 1.0.0. **kwargsOptions to pass to matplotlib plotting method. Returns matplotlib.axes.Axes or numpy.ndarray of themIf the backend is not the default matplotlib one, the return value will be the object returned by the backend. Notes See matplotlib documentation online for more on this subject If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
reference/api/pandas.Series.plot.html
Comparison with spreadsheets
Comparison with spreadsheets Since many potential pandas users have some familiarity with spreadsheet programs like Excel, this page is meant to provide some examples of how various spreadsheet operations would be performed using pandas. This page will use terminology and link to documentation for Excel, but much will be the same/similar in Google Sheets, LibreOffice Calc, Apple Numbers, and other Excel-compatible spreadsheet software. If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library. As is customary, we import pandas and NumPy as follows: pandas Excel
Since many potential pandas users have some familiarity with spreadsheet programs like Excel, this page is meant to provide some examples of how various spreadsheet operations would be performed using pandas. This page will use terminology and link to documentation for Excel, but much will be the same/similar in Google Sheets, LibreOffice Calc, Apple Numbers, and other Excel-compatible spreadsheet software. If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library. As is customary, we import pandas and NumPy as follows: In [1]: import pandas as pd In [2]: import numpy as np Data structures# General terminology translation# pandas Excel DataFrame worksheet Series column Index row headings row row NaN empty cell DataFrame# A DataFrame in pandas is analogous to an Excel worksheet. While an Excel workbook can contain multiple worksheets, pandas DataFrames exist independently. Series# A Series is the data structure that represents one column of a DataFrame. Working with a Series is analogous to referencing a column of a spreadsheet. Index# Every DataFrame and Series has an Index, which are labels on the rows of the data. In pandas, if no index is specified, a RangeIndex is used by default (first row = 0, second row = 1, and so on), analogous to row headings/numbers in spreadsheets. In pandas, indexes can be set to one (or multiple) unique values, which is like having a column that is used as the row identifier in a worksheet. Unlike most spreadsheets, these Index values can actually be used to reference the rows. (Note that this can be done in Excel with structured references.) For example, in spreadsheets, you would reference the first row as A1:Z1, while in pandas you could use populations.loc['Chicago']. Index values are also persistent, so if you re-order the rows in a DataFrame, the label for a particular row don’t change. See the indexing documentation for much more on how to use an Index effectively. Copies vs. in place operations# Most pandas operations return copies of the Series/DataFrame. To make the changes “stick”, you’ll need to either assign to a new variable: sorted_df = df.sort_values("col1") or overwrite the original one: df = df.sort_values("col1") Note You will see an inplace=True keyword argument available for some methods: df.sort_values("col1", inplace=True) Its use is discouraged. More information. Data input / output# Constructing a DataFrame from values# In a spreadsheet, values can be typed directly into cells. A pandas DataFrame can be constructed in many different ways, but for a small number of values, it is often convenient to specify it as a Python dictionary, where the keys are the column names and the values are the data. In [3]: df = pd.DataFrame({"x": [1, 3, 5], "y": [2, 4, 6]}) In [4]: df Out[4]: x y 0 1 2 1 3 4 2 5 6 Reading external data# Both Excel and pandas can import data from various sources in various formats. CSV# Let’s load and display the tips dataset from the pandas tests, which is a CSV file. In Excel, you would download and then open the CSV. In pandas, you pass the URL or local path of the CSV file to read_csv(): In [5]: url = ( ...: "https://raw.githubusercontent.com/pandas-dev" ...: "/pandas/main/pandas/tests/io/data/csv/tips.csv" ...: ) ...: In [6]: tips = pd.read_csv(url) In [7]: tips Out[7]: total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4 .. ... ... ... ... ... ... ... 239 29.03 5.92 Male No Sat Dinner 3 240 27.18 2.00 Female Yes Sat Dinner 2 241 22.67 2.00 Male Yes Sat Dinner 2 242 17.82 1.75 Male No Sat Dinner 2 243 18.78 3.00 Female No Thur Dinner 2 [244 rows x 7 columns] Like Excel’s Text Import Wizard, read_csv can take a number of parameters to specify how the data should be parsed. For example, if the data was instead tab delimited, and did not have column names, the pandas command would be: tips = pd.read_csv("tips.csv", sep="\t", header=None) # alternatively, read_table is an alias to read_csv with tab delimiter tips = pd.read_table("tips.csv", header=None) Excel files# Excel opens various Excel file formats by double-clicking them, or using the Open menu. In pandas, you use special methods for reading and writing from/to Excel files. Let’s first create a new Excel file based on the tips dataframe in the above example: tips.to_excel("./tips.xlsx") Should you wish to subsequently access the data in the tips.xlsx file, you can read it into your module using tips_df = pd.read_excel("./tips.xlsx", index_col=0) You have just read in an Excel file using pandas! Limiting output# Spreadsheet programs will only show one screenful of data at a time and then allow you to scroll, so there isn’t really a need to limit output. In pandas, you’ll need to put a little more thought into controlling how your DataFrames are displayed. By default, pandas will truncate output of large DataFrames to show the first and last rows. This can be overridden by changing the pandas options, or using DataFrame.head() or DataFrame.tail(). In [8]: tips.head(5) Out[8]: total_bill tip sex smoker day time size 0 16.99 1.01 Female No Sun Dinner 2 1 10.34 1.66 Male No Sun Dinner 3 2 21.01 3.50 Male No Sun Dinner 3 3 23.68 3.31 Male No Sun Dinner 2 4 24.59 3.61 Female No Sun Dinner 4 Exporting data# By default, desktop spreadsheet software will save to its respective file format (.xlsx, .ods, etc). You can, however, save to other file formats. pandas can create Excel files, CSV, or a number of other formats. Data operations# Operations on columns# In spreadsheets, formulas are often created in individual cells and then dragged into other cells to compute them for other columns. In pandas, you’re able to do operations on whole columns directly. pandas provides vectorized operations by specifying the individual Series in the DataFrame. New columns can be assigned in the same way. The DataFrame.drop() method drops a column from the DataFrame. In [9]: tips["total_bill"] = tips["total_bill"] - 2 In [10]: tips["new_bill"] = tips["total_bill"] / 2 In [11]: tips Out[11]: total_bill tip sex smoker day time size new_bill 0 14.99 1.01 Female No Sun Dinner 2 7.495 1 8.34 1.66 Male No Sun Dinner 3 4.170 2 19.01 3.50 Male No Sun Dinner 3 9.505 3 21.68 3.31 Male No Sun Dinner 2 10.840 4 22.59 3.61 Female No Sun Dinner 4 11.295 .. ... ... ... ... ... ... ... ... 239 27.03 5.92 Male No Sat Dinner 3 13.515 240 25.18 2.00 Female Yes Sat Dinner 2 12.590 241 20.67 2.00 Male Yes Sat Dinner 2 10.335 242 15.82 1.75 Male No Sat Dinner 2 7.910 243 16.78 3.00 Female No Thur Dinner 2 8.390 [244 rows x 8 columns] In [12]: tips = tips.drop("new_bill", axis=1) Note that we aren’t having to tell it to do that subtraction cell-by-cell — pandas handles that for us. See how to create new columns derived from existing columns. Filtering# In Excel, filtering is done through a graphical menu. DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing. In [13]: tips[tips["total_bill"] > 10] Out[13]: total_bill tip sex smoker day time size 0 14.99 1.01 Female No Sun Dinner 2 2 19.01 3.50 Male No Sun Dinner 3 3 21.68 3.31 Male No Sun Dinner 2 4 22.59 3.61 Female No Sun Dinner 4 5 23.29 4.71 Male No Sun Dinner 4 .. ... ... ... ... ... ... ... 239 27.03 5.92 Male No Sat Dinner 3 240 25.18 2.00 Female Yes Sat Dinner 2 241 20.67 2.00 Male Yes Sat Dinner 2 242 15.82 1.75 Male No Sat Dinner 2 243 16.78 3.00 Female No Thur Dinner 2 [204 rows x 7 columns] The above statement is simply passing a Series of True/False objects to the DataFrame, returning all rows with True. In [14]: is_dinner = tips["time"] == "Dinner" In [15]: is_dinner Out[15]: 0 True 1 True 2 True 3 True 4 True ... 239 True 240 True 241 True 242 True 243 True Name: time, Length: 244, dtype: bool In [16]: is_dinner.value_counts() Out[16]: True 176 False 68 Name: time, dtype: int64 In [17]: tips[is_dinner] Out[17]: total_bill tip sex smoker day time size 0 14.99 1.01 Female No Sun Dinner 2 1 8.34 1.66 Male No Sun Dinner 3 2 19.01 3.50 Male No Sun Dinner 3 3 21.68 3.31 Male No Sun Dinner 2 4 22.59 3.61 Female No Sun Dinner 4 .. ... ... ... ... ... ... ... 239 27.03 5.92 Male No Sat Dinner 3 240 25.18 2.00 Female Yes Sat Dinner 2 241 20.67 2.00 Male Yes Sat Dinner 2 242 15.82 1.75 Male No Sat Dinner 2 243 16.78 3.00 Female No Thur Dinner 2 [176 rows x 7 columns] If/then logic# Let’s say we want to make a bucket column with values of low and high, based on whether the total_bill is less or more than $10. In spreadsheets, logical comparison can be done with conditional formulas. We’d use a formula of =IF(A2 < 10, "low", "high"), dragged to all cells in a new bucket column. The same operation in pandas can be accomplished using the where method from numpy. In [18]: tips["bucket"] = np.where(tips["total_bill"] < 10, "low", "high") In [19]: tips Out[19]: total_bill tip sex smoker day time size bucket 0 14.99 1.01 Female No Sun Dinner 2 high 1 8.34 1.66 Male No Sun Dinner 3 low 2 19.01 3.50 Male No Sun Dinner 3 high 3 21.68 3.31 Male No Sun Dinner 2 high 4 22.59 3.61 Female No Sun Dinner 4 high .. ... ... ... ... ... ... ... ... 239 27.03 5.92 Male No Sat Dinner 3 high 240 25.18 2.00 Female Yes Sat Dinner 2 high 241 20.67 2.00 Male Yes Sat Dinner 2 high 242 15.82 1.75 Male No Sat Dinner 2 high 243 16.78 3.00 Female No Thur Dinner 2 high [244 rows x 8 columns] Date functionality# This section will refer to “dates”, but timestamps are handled similarly. We can think of date functionality in two parts: parsing, and output. In spreadsheets, date values are generally parsed automatically, though there is a DATEVALUE function if you need it. In pandas, you need to explicitly convert plain text to datetime objects, either while reading from a CSV or once in a DataFrame. Once parsed, spreadsheets display the dates in a default format, though the format can be changed. In pandas, you’ll generally want to keep dates as datetime objects while you’re doing calculations with them. Outputting parts of dates (such as the year) is done through date functions in spreadsheets, and datetime properties in pandas. Given date1 and date2 in columns A and B of a spreadsheet, you might have these formulas: column formula date1_year =YEAR(A2) date2_month =MONTH(B2) date1_next =DATE(YEAR(A2),MONTH(A2)+1,1) months_between =DATEDIF(A2,B2,"M") The equivalent pandas operations are shown below. In [20]: tips["date1"] = pd.Timestamp("2013-01-15") In [21]: tips["date2"] = pd.Timestamp("2015-02-15") In [22]: tips["date1_year"] = tips["date1"].dt.year In [23]: tips["date2_month"] = tips["date2"].dt.month In [24]: tips["date1_next"] = tips["date1"] + pd.offsets.MonthBegin() In [25]: tips["months_between"] = tips["date2"].dt.to_period("M") - tips[ ....: "date1" ....: ].dt.to_period("M") ....: In [26]: tips[ ....: ["date1", "date2", "date1_year", "date2_month", "date1_next", "months_between"] ....: ] ....: Out[26]: date1 date2 date1_year date2_month date1_next months_between 0 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 1 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 2 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 3 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 4 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> .. ... ... ... ... ... ... 239 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 240 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 241 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 242 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> 243 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds> [244 rows x 6 columns] See Time series / date functionality for more details. Selection of columns# In spreadsheets, you can select columns you want by: Hiding columns Deleting columns Referencing a range from one worksheet into another Since spreadsheet columns are typically named in a header row, renaming a column is simply a matter of changing the text in that first cell. The same operations are expressed in pandas below. Keep certain columns# In [27]: tips[["sex", "total_bill", "tip"]] Out[27]: sex total_bill tip 0 Female 14.99 1.01 1 Male 8.34 1.66 2 Male 19.01 3.50 3 Male 21.68 3.31 4 Female 22.59 3.61 .. ... ... ... 239 Male 27.03 5.92 240 Female 25.18 2.00 241 Male 20.67 2.00 242 Male 15.82 1.75 243 Female 16.78 3.00 [244 rows x 3 columns] Drop a column# In [28]: tips.drop("sex", axis=1) Out[28]: total_bill tip smoker day time size 0 14.99 1.01 No Sun Dinner 2 1 8.34 1.66 No Sun Dinner 3 2 19.01 3.50 No Sun Dinner 3 3 21.68 3.31 No Sun Dinner 2 4 22.59 3.61 No Sun Dinner 4 .. ... ... ... ... ... ... 239 27.03 5.92 No Sat Dinner 3 240 25.18 2.00 Yes Sat Dinner 2 241 20.67 2.00 Yes Sat Dinner 2 242 15.82 1.75 No Sat Dinner 2 243 16.78 3.00 No Thur Dinner 2 [244 rows x 6 columns] Rename a column# In [29]: tips.rename(columns={"total_bill": "total_bill_2"}) Out[29]: total_bill_2 tip sex smoker day time size 0 14.99 1.01 Female No Sun Dinner 2 1 8.34 1.66 Male No Sun Dinner 3 2 19.01 3.50 Male No Sun Dinner 3 3 21.68 3.31 Male No Sun Dinner 2 4 22.59 3.61 Female No Sun Dinner 4 .. ... ... ... ... ... ... ... 239 27.03 5.92 Male No Sat Dinner 3 240 25.18 2.00 Female Yes Sat Dinner 2 241 20.67 2.00 Male Yes Sat Dinner 2 242 15.82 1.75 Male No Sat Dinner 2 243 16.78 3.00 Female No Thur Dinner 2 [244 rows x 7 columns] Sorting by values# Sorting in spreadsheets is accomplished via the sort dialog. pandas has a DataFrame.sort_values() method, which takes a list of columns to sort by. In [30]: tips = tips.sort_values(["sex", "total_bill"]) In [31]: tips Out[31]: total_bill tip sex smoker day time size 67 1.07 1.00 Female Yes Sat Dinner 1 92 3.75 1.00 Female Yes Fri Dinner 2 111 5.25 1.00 Female No Sat Dinner 1 145 6.35 1.50 Female No Thur Lunch 2 135 6.51 1.25 Female No Thur Lunch 2 .. ... ... ... ... ... ... ... 182 43.35 3.50 Male Yes Sun Dinner 3 156 46.17 5.00 Male No Sun Dinner 6 59 46.27 6.73 Male No Sat Dinner 4 212 46.33 9.00 Male No Sat Dinner 4 170 48.81 10.00 Male Yes Sat Dinner 3 [244 rows x 7 columns] String processing# Finding length of string# In spreadsheets, the number of characters in text can be found with the LEN function. This can be used with the TRIM function to remove extra whitespace. =LEN(TRIM(A2)) You can find the length of a character string with Series.str.len(). In Python 3, all strings are Unicode strings. len includes trailing blanks. Use len and rstrip to exclude trailing blanks. In [32]: tips["time"].str.len() Out[32]: 67 6 92 6 111 6 145 5 135 5 .. 182 6 156 6 59 6 212 6 170 6 Name: time, Length: 244, dtype: int64 In [33]: tips["time"].str.rstrip().str.len() Out[33]: 67 6 92 6 111 6 145 5 135 5 .. 182 6 156 6 59 6 212 6 170 6 Name: time, Length: 244, dtype: int64 Note this will still include multiple spaces within the string, so isn’t 100% equivalent. Finding position of substring# The FIND spreadsheet function returns the position of a substring, with the first character being 1. You can find the position of a character in a column of strings with the Series.str.find() method. find searches for the first position of the substring. If the substring is found, the method returns its position. If not found, it returns -1. Keep in mind that Python indexes are zero-based. In [34]: tips["sex"].str.find("ale") Out[34]: 67 3 92 3 111 3 145 3 135 3 .. 182 1 156 1 59 1 212 1 170 1 Name: sex, Length: 244, dtype: int64 Extracting substring by position# Spreadsheets have a MID formula for extracting a substring from a given position. To get the first character: =MID(A2,1,1) With pandas you can use [] notation to extract a substring from a string by position locations. Keep in mind that Python indexes are zero-based. In [35]: tips["sex"].str[0:1] Out[35]: 67 F 92 F 111 F 145 F 135 F .. 182 M 156 M 59 M 212 M 170 M Name: sex, Length: 244, dtype: object Extracting nth word# In Excel, you might use the Text to Columns Wizard for splitting text and retrieving a specific column. (Note it’s possible to do so through a formula as well.) The simplest way to extract words in pandas is to split the strings by spaces, then reference the word by index. Note there are more powerful approaches should you need them. In [36]: firstlast = pd.DataFrame({"String": ["John Smith", "Jane Cook"]}) In [37]: firstlast["First_Name"] = firstlast["String"].str.split(" ", expand=True)[0] In [38]: firstlast["Last_Name"] = firstlast["String"].str.rsplit(" ", expand=True)[1] In [39]: firstlast Out[39]: String First_Name Last_Name 0 John Smith John Smith 1 Jane Cook Jane Cook Changing case# Spreadsheets provide UPPER, LOWER, and PROPER functions for converting text to upper, lower, and title case, respectively. The equivalent pandas methods are Series.str.upper(), Series.str.lower(), and Series.str.title(). In [40]: firstlast = pd.DataFrame({"string": ["John Smith", "Jane Cook"]}) In [41]: firstlast["upper"] = firstlast["string"].str.upper() In [42]: firstlast["lower"] = firstlast["string"].str.lower() In [43]: firstlast["title"] = firstlast["string"].str.title() In [44]: firstlast Out[44]: string upper lower title 0 John Smith JOHN SMITH john smith John Smith 1 Jane Cook JANE COOK jane cook Jane Cook Merging# The following tables will be used in the merge examples: In [45]: df1 = pd.DataFrame({"key": ["A", "B", "C", "D"], "value": np.random.randn(4)}) In [46]: df1 Out[46]: key value 0 A 0.469112 1 B -0.282863 2 C -1.509059 3 D -1.135632 In [47]: df2 = pd.DataFrame({"key": ["B", "D", "D", "E"], "value": np.random.randn(4)}) In [48]: df2 Out[48]: key value 0 B 1.212112 1 D -0.173215 2 D 0.119209 3 E -1.044236 In Excel, there are merging of tables can be done through a VLOOKUP. pandas DataFrames have a merge() method, which provides similar functionality. The data does not have to be sorted ahead of time, and different join types are accomplished via the how keyword. In [49]: inner_join = df1.merge(df2, on=["key"], how="inner") In [50]: inner_join Out[50]: key value_x value_y 0 B -0.282863 1.212112 1 D -1.135632 -0.173215 2 D -1.135632 0.119209 In [51]: left_join = df1.merge(df2, on=["key"], how="left") In [52]: left_join Out[52]: key value_x value_y 0 A 0.469112 NaN 1 B -0.282863 1.212112 2 C -1.509059 NaN 3 D -1.135632 -0.173215 4 D -1.135632 0.119209 In [53]: right_join = df1.merge(df2, on=["key"], how="right") In [54]: right_join Out[54]: key value_x value_y 0 B -0.282863 1.212112 1 D -1.135632 -0.173215 2 D -1.135632 0.119209 3 E NaN -1.044236 In [55]: outer_join = df1.merge(df2, on=["key"], how="outer") In [56]: outer_join Out[56]: key value_x value_y 0 A 0.469112 NaN 1 B -0.282863 1.212112 2 C -1.509059 NaN 3 D -1.135632 -0.173215 4 D -1.135632 0.119209 5 E NaN -1.044236 merge has a number of advantages over VLOOKUP: The lookup value doesn’t need to be the first column of the lookup table If multiple rows are matched, there will be one row for each match, instead of just the first It will include all columns from the lookup table, instead of just a single specified column It supports more complex join operations Other considerations# Fill Handle# Create a series of numbers following a set pattern in a certain set of cells. In a spreadsheet, this would be done by shift+drag after entering the first number or by entering the first two or three values and then dragging. This can be achieved by creating a series and assigning it to the desired cells. In [57]: df = pd.DataFrame({"AAA": [1] * 8, "BBB": list(range(0, 8))}) In [58]: df Out[58]: AAA BBB 0 1 0 1 1 1 2 1 2 3 1 3 4 1 4 5 1 5 6 1 6 7 1 7 In [59]: series = list(range(1, 5)) In [60]: series Out[60]: [1, 2, 3, 4] In [61]: df.loc[2:5, "AAA"] = series In [62]: df Out[62]: AAA BBB 0 1 0 1 1 1 2 1 2 3 2 3 4 3 4 5 4 5 6 1 6 7 1 7 Drop Duplicates# Excel has built-in functionality for removing duplicate values. This is supported in pandas via drop_duplicates(). In [63]: df = pd.DataFrame( ....: { ....: "class": ["A", "A", "A", "B", "C", "D"], ....: "student_count": [42, 35, 42, 50, 47, 45], ....: "all_pass": ["Yes", "Yes", "Yes", "No", "No", "Yes"], ....: } ....: ) ....: In [64]: df.drop_duplicates() Out[64]: class student_count all_pass 0 A 42 Yes 1 A 35 Yes 3 B 50 No 4 C 47 No 5 D 45 Yes In [65]: df.drop_duplicates(["class", "student_count"]) Out[65]: class student_count all_pass 0 A 42 Yes 1 A 35 Yes 3 B 50 No 4 C 47 No 5 D 45 Yes Pivot Tables# PivotTables from spreadsheets can be replicated in pandas through Reshaping and pivot tables. Using the tips dataset again, let’s find the average gratuity by size of the party and sex of the server. In Excel, we use the following configuration for the PivotTable: The equivalent in pandas: In [66]: pd.pivot_table( ....: tips, values="tip", index=["size"], columns=["sex"], aggfunc=np.average ....: ) ....: Out[66]: sex Female Male size 1 1.276667 1.920000 2 2.528448 2.614184 3 3.250000 3.476667 4 4.021111 4.172143 5 5.140000 3.750000 6 4.600000 5.850000 Adding a row# Assuming we are using a RangeIndex (numbered 0, 1, etc.), we can use concat() to add a row to the bottom of a DataFrame. In [67]: df Out[67]: class student_count all_pass 0 A 42 Yes 1 A 35 Yes 2 A 42 Yes 3 B 50 No 4 C 47 No 5 D 45 Yes In [68]: new_row = pd.DataFrame([["E", 51, True]], ....: columns=["class", "student_count", "all_pass"]) ....: In [69]: pd.concat([df, new_row]) Out[69]: class student_count all_pass 0 A 42 Yes 1 A 35 Yes 2 A 42 Yes 3 B 50 No 4 C 47 No 5 D 45 Yes 0 E 51 True Find and Replace# Excel’s Find dialog takes you to cells that match, one by one. In pandas, this operation is generally done for an entire column or DataFrame at once through conditional expressions. In [70]: tips Out[70]: total_bill tip sex smoker day time size 67 1.07 1.00 Female Yes Sat Dinner 1 92 3.75 1.00 Female Yes Fri Dinner 2 111 5.25 1.00 Female No Sat Dinner 1 145 6.35 1.50 Female No Thur Lunch 2 135 6.51 1.25 Female No Thur Lunch 2 .. ... ... ... ... ... ... ... 182 43.35 3.50 Male Yes Sun Dinner 3 156 46.17 5.00 Male No Sun Dinner 6 59 46.27 6.73 Male No Sat Dinner 4 212 46.33 9.00 Male No Sat Dinner 4 170 48.81 10.00 Male Yes Sat Dinner 3 [244 rows x 7 columns] In [71]: tips == "Sun" Out[71]: total_bill tip sex smoker day time size 67 False False False False False False False 92 False False False False False False False 111 False False False False False False False 145 False False False False False False False 135 False False False False False False False .. ... ... ... ... ... ... ... 182 False False False False True False False 156 False False False False True False False 59 False False False False False False False 212 False False False False False False False 170 False False False False False False False [244 rows x 7 columns] In [72]: tips["day"].str.contains("S") Out[72]: 67 True 92 False 111 True 145 False 135 False ... 182 True 156 True 59 True 212 True 170 True Name: day, Length: 244, dtype: bool pandas’ replace() is comparable to Excel’s Replace All. In [73]: tips.replace("Thu", "Thursday") Out[73]: total_bill tip sex smoker day time size 67 1.07 1.00 Female Yes Sat Dinner 1 92 3.75 1.00 Female Yes Fri Dinner 2 111 5.25 1.00 Female No Sat Dinner 1 145 6.35 1.50 Female No Thur Lunch 2 135 6.51 1.25 Female No Thur Lunch 2 .. ... ... ... ... ... ... ... 182 43.35 3.50 Male Yes Sun Dinner 3 156 46.17 5.00 Male No Sun Dinner 6 59 46.27 6.73 Male No Sat Dinner 4 212 46.33 9.00 Male No Sat Dinner 4 170 48.81 10.00 Male Yes Sat Dinner 3 [244 rows x 7 columns]
getting_started/comparison/comparison_with_spreadsheets.html
pandas.tseries.offsets.MonthBegin
`pandas.tseries.offsets.MonthBegin` DateOffset of one month at beginning. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.MonthBegin() Timestamp('2022-02-01 00:00:00') ```
class pandas.tseries.offsets.MonthBegin# DateOffset of one month at beginning. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.MonthBegin() Timestamp('2022-02-01 00:00:00') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. n nanos normalize rule_code Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.MonthBegin.html
pandas.Index.nunique
`pandas.Index.nunique` Return number of unique elements in the object. Excludes NA values by default. ``` >>> s = pd.Series([1, 3, 5, 7, 7]) >>> s 0 1 1 3 2 5 3 7 4 7 dtype: int64 ```
Index.nunique(dropna=True)[source]# Return number of unique elements in the object. Excludes NA values by default. Parameters dropnabool, default TrueDon’t include NaN in the count. Returns int See also DataFrame.nuniqueMethod nunique for DataFrame. Series.countCount non-NA/null observations in the Series. Examples >>> s = pd.Series([1, 3, 5, 7, 7]) >>> s 0 1 1 3 2 5 3 7 4 7 dtype: int64 >>> s.nunique() 4
reference/api/pandas.Index.nunique.html
pandas.tseries.offsets.Week.name
`pandas.tseries.offsets.Week.name` Return a string representing the base frequency. ``` >>> pd.offsets.Hour().name 'H' ```
Week.name# Return a string representing the base frequency. Examples >>> pd.offsets.Hour().name 'H' >>> pd.offsets.Hour(5).name 'H'
reference/api/pandas.tseries.offsets.Week.name.html
pandas.core.resample.Resampler.nearest
`pandas.core.resample.Resampler.nearest` Resample by using the nearest value. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). The nearest method will replace NaN values that appeared in the resampled data with the value from the nearest member of the sequence, based on the index value. Missing values that existed in the original data will not be modified. If limit is given, fill only this many values in each direction for each of the original values. ``` >>> s = pd.Series([1, 2], ... index=pd.date_range('20180101', ... periods=2, ... freq='1h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 Freq: H, dtype: int64 ```
Resampler.nearest(limit=None)[source]# Resample by using the nearest value. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). The nearest method will replace NaN values that appeared in the resampled data with the value from the nearest member of the sequence, based on the index value. Missing values that existed in the original data will not be modified. If limit is given, fill only this many values in each direction for each of the original values. Parameters limitint, optionalLimit of how many values to fill. Returns Series or DataFrameAn upsampled Series or DataFrame with NaN values filled with their nearest value. See also backfillBackward fill the new missing values in the resampled data. padForward fill NaN values. Examples >>> s = pd.Series([1, 2], ... index=pd.date_range('20180101', ... periods=2, ... freq='1h')) >>> s 2018-01-01 00:00:00 1 2018-01-01 01:00:00 2 Freq: H, dtype: int64 >>> s.resample('15min').nearest() 2018-01-01 00:00:00 1 2018-01-01 00:15:00 1 2018-01-01 00:30:00 2 2018-01-01 00:45:00 2 2018-01-01 01:00:00 2 Freq: 15T, dtype: int64 Limit the number of upsampled values imputed by the nearest: >>> s.resample('15min').nearest(limit=1) 2018-01-01 00:00:00 1.0 2018-01-01 00:15:00 1.0 2018-01-01 00:30:00 NaN 2018-01-01 00:45:00 2.0 2018-01-01 01:00:00 2.0 Freq: 15T, dtype: float64
reference/api/pandas.core.resample.Resampler.nearest.html
pandas.tseries.offsets.Day.is_anchored
`pandas.tseries.offsets.Day.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). Examples ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
Day.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.Day.is_anchored.html
Extensions
Extensions These are primarily intended for library authors looking to extend pandas objects. api.extensions.register_extension_dtype(cls) Register an ExtensionType with pandas as class decorator. api.extensions.register_dataframe_accessor(name) Register a custom accessor on DataFrame objects.
These are primarily intended for library authors looking to extend pandas objects. api.extensions.register_extension_dtype(cls) Register an ExtensionType with pandas as class decorator. api.extensions.register_dataframe_accessor(name) Register a custom accessor on DataFrame objects. api.extensions.register_series_accessor(name) Register a custom accessor on Series objects. api.extensions.register_index_accessor(name) Register a custom accessor on Index objects. api.extensions.ExtensionDtype() A custom data type, to be paired with an ExtensionArray. api.extensions.ExtensionArray() Abstract base class for custom 1-D array types. arrays.PandasArray(values[, copy]) A pandas ExtensionArray for NumPy data. Additionally, we have some utility methods for ensuring your object behaves correctly. api.indexers.check_array_indexer(array, indexer) Check if indexer is a valid array indexer for array. The sentinel pandas.api.extensions.no_default is used as the default value in some methods. Use an is comparison to check if the user provides a non-default value.
reference/extensions.html
pandas.tseries.offsets.Week.apply_index
`pandas.tseries.offsets.Week.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
Week.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.Week.apply_index.html
pandas.DataFrame.ewm
`pandas.DataFrame.ewm` Provide exponentially weighted (EW) calculations. ``` >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 ```
DataFrame.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, times=None, method='single')[source]# Provide exponentially weighted (EW) calculations. Exactly one of com, span, halflife, or alpha must be provided if times is not provided. If times is provided, halflife and one of com, span or alpha may be provided. Parameters comfloat, optionalSpecify decay in terms of center of mass \(\alpha = 1 / (1 + com)\), for \(com \geq 0\). spanfloat, optionalSpecify decay in terms of span \(\alpha = 2 / (span + 1)\), for \(span \geq 1\). halflifefloat, str, timedelta, optionalSpecify decay in terms of half-life \(\alpha = 1 - \exp\left(-\ln(2) / halflife\right)\), for \(halflife > 0\). If times is specified, a timedelta convertible unit over which an observation decays to half its value. Only applicable to mean(), and halflife value will not apply to the other functions. New in version 1.1.0. alphafloat, optionalSpecify smoothing factor \(\alpha\) directly \(0 < \alpha \leq 1\). min_periodsint, default 0Minimum number of observations in window required to have a value; otherwise, result is np.nan. adjustbool, default TrueDivide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). When adjust=True (default), the EW function is calculated using weights \(w_i = (1 - \alpha)^i\). For example, the EW moving average of the series [\(x_0, x_1, ..., x_t\)] would be: \[y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}\] When adjust=False, the exponentially weighted function is calculated recursively: \[\begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split}\] ignore_nabool, default FalseIgnore missing values when calculating weights. When ignore_na=False (default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) if adjust=True, and \((1-\alpha)^2\) and \(\alpha\) if adjust=False. When ignore_na=True, weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) if adjust=True, and \(1-\alpha\) and \(\alpha\) if adjust=False. axis{0, 1}, default 0If 0 or 'index', calculate across the rows. If 1 or 'columns', calculate across the columns. For Series this parameter is unused and defaults to 0. timesstr, np.ndarray, Series, default None New in version 1.1.0. Only applicable to mean(). Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype. If 1-D array like, a sequence with the same shape as the observations. Deprecated since version 1.4.0: If str, the name of the column in the DataFrame representing the times. methodstr {‘single’, ‘table’}, default ‘single’ New in version 1.4.0. Execute the rolling operation per single column or row ('single') or over the entire object ('table'). This argument is only implemented when specifying engine='numba' in the method call. Only applicable to mean() Returns ExponentialMovingWindow subclass See also rollingProvides rolling window calculations. expandingProvides expanding transformations. Notes See Windowing Operations for further usage details and examples. Examples >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 >>> df.ewm(alpha=2 / 3).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 adjust >>> df.ewm(com=0.5, adjust=True).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 >>> df.ewm(com=0.5, adjust=False).mean() B 0 0.000000 1 0.666667 2 1.555556 3 1.555556 4 3.650794 ignore_na >>> df.ewm(com=0.5, ignore_na=True).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.225000 >>> df.ewm(com=0.5, ignore_na=False).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 times Exponentially weighted mean with weights calculated with a timedelta halflife relative to times. >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17'] >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean() B 0 0.000000 1 0.585786 2 1.523889 3 1.523889 4 3.233686
reference/api/pandas.DataFrame.ewm.html
pandas.Series.dt.month
`pandas.Series.dt.month` The month as January=1, December=12. ``` >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64 ```
Series.dt.month[source]# The month as January=1, December=12. Examples >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="M") ... ) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int64
reference/api/pandas.Series.dt.month.html
pandas.tseries.offsets.SemiMonthEnd.freqstr
`pandas.tseries.offsets.SemiMonthEnd.freqstr` Return a string representing the frequency. ``` >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' ```
SemiMonthEnd.freqstr# Return a string representing the frequency. Examples >>> pd.DateOffset(5).freqstr '<5 * DateOffsets>' >>> pd.offsets.BusinessHour(2).freqstr '2BH' >>> pd.offsets.Nano().freqstr 'N' >>> pd.offsets.Nano(-3).freqstr '-3N'
reference/api/pandas.tseries.offsets.SemiMonthEnd.freqstr.html
pandas.tseries.offsets.BYearBegin.is_year_start
`pandas.tseries.offsets.BYearBegin.is_year_start` Return boolean whether a timestamp occurs on the year start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
BYearBegin.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.BYearBegin.is_year_start.html
pandas.core.resample.Resampler.size
`pandas.core.resample.Resampler.size` Compute group sizes.
Resampler.size()[source]# Compute group sizes. Returns DataFrame or SeriesNumber of rows in each group as a Series if as_index is True or a DataFrame if as_index is False. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.resample.Resampler.size.html
pandas.tseries.offsets.LastWeekOfMonth.is_quarter_end
`pandas.tseries.offsets.LastWeekOfMonth.is_quarter_end` Return boolean whether a timestamp occurs on the quarter end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False ```
LastWeekOfMonth.is_quarter_end()# Return boolean whether a timestamp occurs on the quarter end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_end(ts) False
reference/api/pandas.tseries.offsets.LastWeekOfMonth.is_quarter_end.html
pandas.tseries.offsets.CustomBusinessMonthEnd.nanos
pandas.tseries.offsets.CustomBusinessMonthEnd.nanos
CustomBusinessMonthEnd.nanos#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.nanos.html
Index
Index
_ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z _ __array__() (pandas.Categorical method) (pandas.Series method) __call__() (pandas.option_context method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) __dataframe__() (pandas.DataFrame method) __iter__() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) _concat_same_type() (pandas.api.extensions.ExtensionArray class method) _formatter() (pandas.api.extensions.ExtensionArray method) _from_factorized() (pandas.api.extensions.ExtensionArray class method) _from_sequence() (pandas.api.extensions.ExtensionArray class method) _from_sequence_of_strings() (pandas.api.extensions.ExtensionArray class method) _reduce() (pandas.api.extensions.ExtensionArray method) _values_for_argsort() (pandas.api.extensions.ExtensionArray method) _values_for_factorize() (pandas.api.extensions.ExtensionArray method) A abs() (pandas.DataFrame method) (pandas.Series method) AbstractMethodError AccessorRegistrationWarning add() (pandas.DataFrame method) (pandas.Series method) add_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) add_prefix() (pandas.DataFrame method) (pandas.Series method) add_suffix() (pandas.DataFrame method) (pandas.Series method) agg() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) aggregate() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) align() (pandas.DataFrame method) (pandas.Series method) all() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) allows_duplicate_labels (pandas.Flags property) andrews_curves() (in module pandas.plotting) any() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) append() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Index method) (pandas.Series method) apply() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) apply_index() (pandas.io.formats.style.Styler method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) applymap() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) applymap_index() (pandas.io.formats.style.Styler method) area() (pandas.DataFrame.plot method) (pandas.Series.plot method) argmax() (pandas.Index method) (pandas.Series method) argmin() (pandas.Index method) (pandas.Series method) argsort() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) array (pandas.Index attribute) (pandas.Series property) array() (in module pandas) ArrowDtype (class in pandas) ArrowExtensionArray (class in pandas.arrays) ArrowStringArray (class in pandas.arrays) as_ordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) as_unordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) asfreq() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) asi8 (pandas.Index property) asm8 (pandas.Timedelta attribute) (pandas.Timestamp attribute) asof() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) asof_locs() (pandas.Index method) assert_extension_array_equal() (in module pandas.testing) assert_frame_equal() (in module pandas.testing) assert_index_equal() (in module pandas.testing) assert_series_equal() (in module pandas.testing) assign() (pandas.DataFrame method) astimezone() (pandas.Timestamp method) astype() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) at (pandas.DataFrame property) (pandas.Series property) at_time() (pandas.DataFrame method) (pandas.Series method) AttributeConflictWarning attrs (pandas.DataFrame property) (pandas.Series property) autocorr() (pandas.Series method) autocorrelation_plot() (in module pandas.plotting) axes (pandas.DataFrame property) (pandas.Series property) B backfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) background_gradient() (pandas.io.formats.style.Styler method) bar() (pandas.DataFrame.plot method) (pandas.io.formats.style.Styler method) (pandas.Series.plot method) barh() (pandas.DataFrame.plot method) (pandas.Series.plot method) base (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) BaseIndexer (class in pandas.api.indexers) bdate_range() (in module pandas) BDay (in module pandas.tseries.offsets) between() (pandas.Series method) between_time() (pandas.DataFrame method) (pandas.Series method) bfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) BMonthBegin (in module pandas.tseries.offsets) BMonthEnd (in module pandas.tseries.offsets) book (pandas.ExcelWriter property) bool() (pandas.DataFrame method) (pandas.Series method) BooleanArray (class in pandas.arrays) BooleanDtype (class in pandas) bootstrap_plot() (in module pandas.plotting) box() (pandas.DataFrame.plot method) (pandas.Series.plot method) boxplot() (in module pandas.plotting) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) BQuarterBegin (class in pandas.tseries.offsets) BQuarterEnd (class in pandas.tseries.offsets) build_table_schema() (in module pandas.io.json) BusinessDay (class in pandas.tseries.offsets) BusinessHour (class in pandas.tseries.offsets) BusinessMonthBegin (class in pandas.tseries.offsets) BusinessMonthEnd (class in pandas.tseries.offsets) BYearBegin (class in pandas.tseries.offsets) BYearEnd (class in pandas.tseries.offsets) C calendar (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) capitalize() (pandas.Series.str method) casefold() (pandas.Series.str method) cat() (pandas.Series method) (pandas.Series.str method) Categorical (class in pandas) CategoricalConversionWarning CategoricalDtype (class in pandas) CategoricalIndex (class in pandas) categories (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) cbday_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) CBMonthBegin (in module pandas.tseries.offsets) CBMonthEnd (in module pandas.tseries.offsets) CDay (in module pandas.tseries.offsets) ceil() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) center() (pandas.Series.str method) check_array_indexer() (in module pandas.api.indexers) check_extension() (pandas.ExcelWriter class method) clear() (pandas.io.formats.style.Styler method) clip() (pandas.DataFrame method) (pandas.Series method) close() (pandas.ExcelWriter method) closed (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) closed_left (pandas.Interval attribute) closed_right (pandas.Interval attribute) ClosedFileError codes (pandas.Categorical property) (pandas.CategoricalIndex property) (pandas.MultiIndex property) (pandas.Series.cat attribute) columns (pandas.DataFrame attribute) combine() (pandas.DataFrame method) (pandas.Series method) (pandas.Timestamp class method) combine_first() (pandas.DataFrame method) (pandas.Series method) compare() (pandas.DataFrame method) (pandas.Series method) components (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) concat() (in module pandas) (pandas.io.formats.style.Styler method) construct_array_type() (pandas.api.extensions.ExtensionDtype class method) construct_from_string() (pandas.api.extensions.ExtensionDtype class method) contains() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) (pandas.Series.str method) convert_dtypes() (pandas.DataFrame method) (pandas.Series method) copy() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) corr (pandas.core.groupby.DataFrameGroupBy property) corr() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) corrwith (pandas.core.groupby.DataFrameGroupBy property) corrwith() (pandas.DataFrame method) count() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) cov (pandas.core.groupby.DataFrameGroupBy property) cov() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) crosstab() (in module pandas) CSSWarning ctime() (pandas.Timestamp method) cumcount() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) cummax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cummin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumprod() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumsum() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cur_sheet (pandas.ExcelWriter property) CustomBusinessDay (class in pandas.tseries.offsets) CustomBusinessHour (class in pandas.tseries.offsets) CustomBusinessMonthBegin (class in pandas.tseries.offsets) CustomBusinessMonthEnd (class in pandas.tseries.offsets) cut() (in module pandas) D data_label (pandas.io.stata.StataReader property) DatabaseError DataError DataFrame (class in pandas) date (pandas.DatetimeIndex property) (pandas.Series.dt attribute) date() (pandas.Timestamp method) date_format (pandas.ExcelWriter property) date_range() (in module pandas) DateOffset (class in pandas.tseries.offsets) datetime_format (pandas.ExcelWriter property) DatetimeArray (class in pandas.arrays) DatetimeIndex (class in pandas) DatetimeTZDtype (class in pandas) Day (class in pandas.tseries.offsets) day (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) day_of_month (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) day_of_week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_of_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofweek (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) days (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) days_in_month (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) daysinmonth (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) decode() (pandas.Series.str method) delete() (pandas.Index method) delta (pandas.Timedelta attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.Tick attribute) density (pandas.DataFrame.sparse attribute) (pandas.Series.sparse attribute) density() (pandas.DataFrame.plot method) (pandas.Series.plot method) deregister_matplotlib_converters() (in module pandas.plotting) describe() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) describe_option (in module pandas) diff() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) difference() (pandas.Index method) div() (pandas.DataFrame method) (pandas.Series method) divide() (pandas.DataFrame method) (pandas.Series method) divmod() (pandas.Series method) dot() (pandas.DataFrame method) (pandas.Series method) drop() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) drop_duplicates() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) droplevel() (pandas.DataFrame method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) dropna() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) dst() (pandas.Timestamp method) dt() (pandas.Series method) dtype (pandas.api.extensions.ExtensionArray property) (pandas.Categorical property) (pandas.Index attribute) (pandas.Series property) dtypes (pandas.DataFrame property) (pandas.MultiIndex attribute) (pandas.Series property) DtypeWarning duplicated() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) DuplicateLabelError E Easter (class in pandas.tseries.offsets) empty (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) empty() (pandas.api.extensions.ExtensionDtype method) EmptyDataError encode() (pandas.Series.str method) end (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) end_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) endswith() (pandas.Series.str method) engine (pandas.ExcelWriter property) env (pandas.io.formats.style.Styler attribute) eq() (pandas.DataFrame method) (pandas.Series method) equals() (pandas.api.extensions.ExtensionArray method) (pandas.CategoricalIndex method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) eval() (in module pandas) (pandas.DataFrame method) ewm() (pandas.DataFrame method) (pandas.Series method) ExcelWriter (class in pandas) expanding() (pandas.DataFrame method) (pandas.Series method) explode() (pandas.DataFrame method) (pandas.Series method) export() (pandas.io.formats.style.Styler method) ExtensionArray (class in pandas.api.extensions) ExtensionDtype (class in pandas.api.extensions) extract() (pandas.Series.str method) extractall() (pandas.Series.str method) F factorize() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) ffill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) fill_value (pandas.Series.sparse attribute) fillna (pandas.core.groupby.DataFrameGroupBy property) fillna() (pandas.api.extensions.ExtensionArray method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) filter() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) find() (pandas.Series.str method) findall() (pandas.Series.str method) first() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) first_valid_index() (pandas.DataFrame method) (pandas.Series method) FixedForwardWindowIndexer (class in pandas.api.indexers) Flags (class in pandas) flags (pandas.DataFrame property) (pandas.Series property) Float64Index (class in pandas) floor() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) floordiv() (pandas.DataFrame method) (pandas.Series method) fold (pandas.Timestamp attribute) format() (pandas.Index method) (pandas.io.formats.style.Styler method) format_index() (pandas.io.formats.style.Styler method) freq (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodDtype property) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.Timestamp attribute) freqstr (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Timestamp property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) from_arrays() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) from_breaks() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) from_codes() (pandas.Categorical class method) from_coo() (pandas.Series.sparse class method) from_custom_template() (pandas.io.formats.style.Styler class method) from_dataframe() (in module pandas.api.interchange) from_dict() (pandas.DataFrame class method) from_dummies() (in module pandas) from_frame() (pandas.MultiIndex class method) from_product() (pandas.MultiIndex class method) from_range() (pandas.RangeIndex class method) from_records() (pandas.DataFrame class method) from_spmatrix() (pandas.DataFrame.sparse class method) from_tuples() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) fromisocalendar() (pandas.Timestamp method) fromisoformat() (pandas.Timestamp method) fromordinal() (pandas.Timestamp class method) fromtimestamp() (pandas.Timestamp class method) fullmatch() (pandas.Series.str method) FY5253 (class in pandas.tseries.offsets) FY5253Quarter (class in pandas.tseries.offsets) G ge() (pandas.DataFrame method) (pandas.Series method) get() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) (pandas.Series.str method) get_dummies() (in module pandas) (pandas.Series.str method) get_group() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) get_indexer() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_indexer_for() (pandas.Index method) get_indexer_non_unique() (pandas.Index method) get_level_values() (pandas.Index method) (pandas.MultiIndex method) get_loc() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_loc_level() (pandas.MultiIndex method) get_locs() (pandas.MultiIndex method) get_option (in module pandas) get_rule_code_suffix() (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) get_slice_bound() (pandas.Index method) get_value() (pandas.Index method) get_weeks() (pandas.tseries.offsets.FY5253Quarter method) get_window_bounds() (pandas.api.indexers.BaseIndexer method) (pandas.api.indexers.FixedForwardWindowIndexer method) (pandas.api.indexers.VariableOffsetWindowIndexer method) get_year_end() (pandas.tseries.offsets.FY5253 method) groupby() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Grouper (class in pandas) groups (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) groups() (pandas.HDFStore method) gt() (pandas.DataFrame method) (pandas.Series method) H handles (pandas.ExcelWriter property) has_duplicates (pandas.Index property) hash_array() (in module pandas.util) hash_pandas_object() (in module pandas.util) hasnans (pandas.Index attribute) (pandas.Series property) head() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) hexbin() (pandas.DataFrame.plot method) hide() (pandas.io.formats.style.Styler method) hide_columns() (pandas.io.formats.style.Styler method) hide_index() (pandas.io.formats.style.Styler method) highlight_between() (pandas.io.formats.style.Styler method) highlight_max() (pandas.io.formats.style.Styler method) highlight_min() (pandas.io.formats.style.Styler method) highlight_null() (pandas.io.formats.style.Styler method) highlight_quantile() (pandas.io.formats.style.Styler method) hist (pandas.core.groupby.DataFrameGroupBy property) (pandas.core.groupby.SeriesGroupBy property) hist() (pandas.DataFrame method) (pandas.DataFrame.plot method) (pandas.Series method) (pandas.Series.plot method) holds_integer() (pandas.Index method) holidays (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) Hour (class in pandas.tseries.offsets) hour (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) I iat (pandas.DataFrame property) (pandas.Series property) identical() (pandas.Index method) idxmax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) idxmin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) if_sheet_exists (pandas.ExcelWriter property) iloc (pandas.DataFrame property) (pandas.Series property) IncompatibilityWarning Index (class in pandas) index (pandas.DataFrame attribute) (pandas.Series attribute) index() (pandas.Series.str method) indexer_at_time() (pandas.DatetimeIndex method) indexer_between_time() (pandas.DatetimeIndex method) IndexingError IndexSlice (in module pandas) indices (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) infer_dtype() (in module pandas.api.types) infer_freq() (in module pandas) infer_objects() (pandas.DataFrame method) (pandas.Series method) inferred_freq (pandas.DatetimeIndex attribute) (pandas.TimedeltaIndex attribute) inferred_type (pandas.Index attribute) info() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) insert() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) Int16Dtype (class in pandas) Int32Dtype (class in pandas) Int64Dtype (class in pandas) Int64Index (class in pandas) Int8Dtype (class in pandas) IntCastingNaNError IntegerArray (class in pandas.arrays) interpolate() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) intersection() (pandas.Index method) Interval (class in pandas) interval_range() (in module pandas) IntervalArray (class in pandas.arrays) IntervalDtype (class in pandas) IntervalIndex (class in pandas) InvalidColumnName InvalidIndexError is_() (pandas.Index method) is_all_dates (pandas.Index attribute) is_anchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_bool() (in module pandas.api.types) is_bool_dtype() (in module pandas.api.types) is_boolean() (pandas.Index method) is_categorical() (in module pandas.api.types) (pandas.Index method) is_categorical_dtype() (in module pandas.api.types) is_complex() (in module pandas.api.types) is_complex_dtype() (in module pandas.api.types) is_datetime64_any_dtype() (in module pandas.api.types) is_datetime64_dtype() (in module pandas.api.types) is_datetime64_ns_dtype() (in module pandas.api.types) is_datetime64tz_dtype() (in module pandas.api.types) is_dict_like() (in module pandas.api.types) is_dtype() (pandas.api.extensions.ExtensionDtype class method) is_empty (pandas.arrays.IntervalArray attribute) (pandas.Interval attribute) (pandas.IntervalIndex property) is_extension_array_dtype() (in module pandas.api.types) is_extension_type() (in module pandas.api.types) is_file_like() (in module pandas.api.types) is_float() (in module pandas.api.types) is_float_dtype() (in module pandas.api.types) is_floating() (pandas.Index method) is_hashable() (in module pandas.api.types) is_int64_dtype() (in module pandas.api.types) is_integer() (in module pandas.api.types) (pandas.Index method) is_integer_dtype() (in module pandas.api.types) is_interval() (in module pandas.api.types) (pandas.Index method) is_interval_dtype() (in module pandas.api.types) is_iterator() (in module pandas.api.types) is_leap_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_list_like() (in module pandas.api.types) is_mixed() (pandas.Index method) is_monotonic (pandas.Index property) (pandas.Series property) is_monotonic_decreasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_monotonic_increasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_month_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_month_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_named_tuple() (in module pandas.api.types) is_non_overlapping_monotonic (pandas.arrays.IntervalArray property) (pandas.IntervalIndex attribute) is_number() (in module pandas.api.types) is_numeric() (pandas.Index method) is_numeric_dtype() (in module pandas.api.types) is_object() (pandas.Index method) is_object_dtype() (in module pandas.api.types) is_on_offset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_overlapping (pandas.IntervalIndex property) is_period_dtype() (in module pandas.api.types) is_populated (pandas.Timedelta attribute) is_quarter_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_quarter_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_re() (in module pandas.api.types) is_re_compilable() (in module pandas.api.types) is_scalar() (in module pandas.api.types) is_signed_integer_dtype() (in module pandas.api.types) is_sparse() (in module pandas.api.types) is_string_dtype() (in module pandas.api.types) is_timedelta64_dtype() (in module pandas.api.types) is_timedelta64_ns_dtype() (in module pandas.api.types) is_type_compatible() (pandas.Index method) is_unique (pandas.Index attribute) (pandas.Series property) is_unsigned_integer_dtype() (in module pandas.api.types) is_year_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_year_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isalnum() (pandas.Series.str method) isalpha() (pandas.Series.str method) isAnchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isdecimal() (pandas.Series.str method) isdigit() (pandas.Series.str method) isetitem() (pandas.DataFrame method) isin() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) islower() (pandas.Series.str method) isna() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnumeric() (pandas.Series.str method) isocalendar() (pandas.Series.dt method) (pandas.Timestamp method) isoformat() (pandas.Timedelta method) (pandas.Timestamp method) isoweekday() (pandas.Timestamp method) isspace() (pandas.Series.str method) istitle() (pandas.Series.str method) isupper() (pandas.Series.str method) item() (pandas.Index method) (pandas.Series method) items() (pandas.DataFrame method) (pandas.Series method) iteritems() (pandas.DataFrame method) (pandas.Series method) iterrows() (pandas.DataFrame method) itertuples() (pandas.DataFrame method) J join() (pandas.DataFrame method) (pandas.Index method) (pandas.Series.str method) json_normalize() (in module pandas) K kde() (pandas.DataFrame.plot method) (pandas.Series.plot method) keys() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) kind (pandas.api.extensions.ExtensionDtype property) kurt() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) kurtosis() (pandas.DataFrame method) (pandas.Series method) kwds (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) L lag_plot() (in module pandas.plotting) last() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) last_valid_index() (pandas.DataFrame method) (pandas.Series method) LastWeekOfMonth (class in pandas.tseries.offsets) le() (pandas.DataFrame method) (pandas.Series method) left (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) len() (pandas.Series.str method) length (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex property) levels (pandas.MultiIndex attribute) levshape (pandas.MultiIndex property) line() (pandas.DataFrame.plot method) (pandas.Series.plot method) ljust() (pandas.Series.str method) loader (pandas.io.formats.style.Styler attribute) loc (pandas.DataFrame property) (pandas.Series property) lookup() (pandas.DataFrame method) lower() (pandas.Series.str method) lstrip() (pandas.Series.str method) lt() (pandas.DataFrame method) (pandas.Series method) M m_offset (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) mad (pandas.core.groupby.DataFrameGroupBy property) mad() (pandas.DataFrame method) (pandas.Series method) map() (pandas.CategoricalIndex method) (pandas.Index method) (pandas.Series method) mask() (pandas.DataFrame method) (pandas.Series method) match() (pandas.Series.str method) max (pandas.Timedelta attribute) (pandas.Timestamp attribute) max() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) mean() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) median() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) melt() (in module pandas) (pandas.DataFrame method) memory_usage() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) merge() (in module pandas) (pandas.DataFrame method) merge_asof() (in module pandas) merge_ordered() (in module pandas) MergeError Micro (class in pandas.tseries.offsets) microsecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) microseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) mid (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) Milli (class in pandas.tseries.offsets) min (pandas.Timedelta attribute) (pandas.Timestamp attribute) min() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Minute (class in pandas.tseries.offsets) minute (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) mod() (pandas.DataFrame method) (pandas.Series method) mode() (pandas.DataFrame method) (pandas.Series method) module pandas month (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) month_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) month_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) MonthBegin (class in pandas.tseries.offsets) MonthEnd (class in pandas.tseries.offsets) mul() (pandas.DataFrame method) (pandas.Series method) MultiIndex (class in pandas) multiply() (pandas.DataFrame method) (pandas.Series method) N n (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) na_value (pandas.api.extensions.ExtensionDtype property) name (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.Series property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) names (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.MultiIndex property) Nano (class in pandas.tseries.offsets) nanos (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) nanosecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) nanoseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) nbytes (pandas.api.extensions.ExtensionArray property) (pandas.Index property) (pandas.Series property) ndim (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) ne() (pandas.DataFrame method) (pandas.Series method) nearest() (pandas.core.resample.Resampler method) next_bday (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) ngroup() (pandas.core.groupby.GroupBy method) nlargest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nlevels (pandas.Index property) (pandas.MultiIndex property) normalize (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) normalize() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Series.str method) (pandas.Timestamp method) notna() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) notnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) now() (pandas.Period method) (pandas.Timestamp class method) npoints (pandas.Series.sparse attribute) nsmallest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nth (pandas.core.groupby.GroupBy property) NullFrequencyError NumbaUtilError NumExprClobberingError nunique() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) O offset (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) ohlc() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) onOffset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) open_left (pandas.Interval attribute) open_right (pandas.Interval attribute) option_context (class in pandas) OptionError ordered (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) ordinal (pandas.Period attribute) OutOfBoundsDatetime OutOfBoundsTimedelta overlaps() (pandas.arrays.IntervalArray method) (pandas.Interval method) (pandas.IntervalIndex method) P pad() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) pandas module pandas_dtype() (in module pandas.api.types) PandasArray (class in pandas.arrays) parallel_coordinates() (in module pandas.plotting) parse() (pandas.ExcelFile method) ParserError ParserWarning partition() (pandas.Series.str method) path (pandas.ExcelWriter property) pct_change() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) PerformanceWarning Period (class in pandas) period_range() (in module pandas) PeriodArray (class in pandas.arrays) PeriodDtype (class in pandas) PeriodIndex (class in pandas) pie() (pandas.DataFrame.plot method) (pandas.Series.plot method) pipe() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) pivot() (in module pandas) (pandas.DataFrame method) pivot_table() (in module pandas) (pandas.DataFrame method) plot (pandas.core.groupby.DataFrameGroupBy property) plot() (pandas.DataFrame method) (pandas.Series method) plot_params (in module pandas.plotting) pop() (pandas.DataFrame method) (pandas.Series method) PossibleDataLossError PossiblePrecisionLoss pow() (pandas.DataFrame method) (pandas.Series method) prod() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) product() (pandas.DataFrame method) (pandas.Series method) put() (pandas.HDFStore method) putmask() (pandas.Index method) PyperclipException PyperclipWindowsException Python Enhancement Proposals PEP 484 PEP 561 PEP 585 PEP 8#imports Q qcut() (in module pandas) qtr_with_extra_week (pandas.tseries.offsets.FY5253Quarter attribute) quantile() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) quarter (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) QuarterBegin (class in pandas.tseries.offsets) QuarterEnd (class in pandas.tseries.offsets) query() (pandas.DataFrame method) qyear (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) R radd() (pandas.DataFrame method) (pandas.Series method) radviz() (in module pandas.plotting) RangeIndex (class in pandas) rank() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) ravel() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) rdiv() (pandas.DataFrame method) (pandas.Series method) rdivmod() (pandas.Series method) read_clipboard() (in module pandas) read_csv() (in module pandas) read_excel() (in module pandas) read_feather() (in module pandas) read_fwf() (in module pandas) read_gbq() (in module pandas) read_hdf() (in module pandas) read_html() (in module pandas) read_json() (in module pandas) read_orc() (in module pandas) read_parquet() (in module pandas) read_pickle() (in module pandas) read_sas() (in module pandas) read_spss() (in module pandas) read_sql() (in module pandas) read_sql_query() (in module pandas) read_sql_table() (in module pandas) read_stata() (in module pandas) read_table() (in module pandas) read_xml() (in module pandas) register_dataframe_accessor() (in module pandas.api.extensions) register_extension_dtype() (in module pandas.api.extensions) register_index_accessor() (in module pandas.api.extensions) register_matplotlib_converters() (in module pandas.plotting) register_series_accessor() (in module pandas.api.extensions) reindex() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) reindex_like() (pandas.DataFrame method) (pandas.Series method) relabel_index() (pandas.io.formats.style.Styler method) remove_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_levels() (pandas.MultiIndex method) removeprefix() (pandas.Series.str method) removesuffix() (pandas.Series.str method) rename() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) rename_axis() (pandas.DataFrame method) (pandas.Series method) rename_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) render() (pandas.io.formats.style.Styler method) reorder_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) reorder_levels() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) repeat() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Series.str method) replace() (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) (pandas.Timestamp method) resample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) reset_index() (pandas.DataFrame method) (pandas.Series method) reset_option (in module pandas) resolution (pandas.Timedelta attribute) (pandas.Timestamp attribute) resolution_string (pandas.Timedelta attribute) rfind() (pandas.Series.str method) rfloordiv() (pandas.DataFrame method) (pandas.Series method) right (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) rindex() (pandas.Series.str method) rjust() (pandas.Series.str method) rmod() (pandas.DataFrame method) (pandas.Series method) rmul() (pandas.DataFrame method) (pandas.Series method) rollback() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rollforward() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rolling() (pandas.DataFrame method) (pandas.Series method) round() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) rpartition() (pandas.Series.str method) rpow() (pandas.DataFrame method) (pandas.Series method) rsplit() (pandas.Series.str method) rstrip() (pandas.Series.str method) rsub() (pandas.DataFrame method) (pandas.Series method) rtruediv() (pandas.DataFrame method) (pandas.Series method) rule_code (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) S sample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) save() (pandas.ExcelWriter method) scatter() (pandas.DataFrame.plot method) scatter_matrix() (in module pandas.plotting) searchsorted() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) Second (class in pandas.tseries.offsets) second (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) seconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) select() (pandas.HDFStore method) select_dtypes() (pandas.DataFrame method) sem() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) SemiMonthBegin (class in pandas.tseries.offsets) SemiMonthEnd (class in pandas.tseries.offsets) Series (class in pandas) set_axis() (pandas.DataFrame method) (pandas.Series method) set_caption() (pandas.io.formats.style.Styler method) set_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) set_closed() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) set_codes() (pandas.MultiIndex method) set_flags() (pandas.DataFrame method) (pandas.Series method) set_index() (pandas.DataFrame method) set_levels() (pandas.MultiIndex method) set_na_rep() (pandas.io.formats.style.Styler method) set_names() (pandas.Index method) set_option (in module pandas) set_precision() (pandas.io.formats.style.Styler method) set_properties() (pandas.io.formats.style.Styler method) set_sticky() (pandas.io.formats.style.Styler method) set_table_attributes() (pandas.io.formats.style.Styler method) set_table_styles() (pandas.io.formats.style.Styler method) set_td_classes() (pandas.io.formats.style.Styler method) set_tooltips() (pandas.io.formats.style.Styler method) set_uuid() (pandas.io.formats.style.Styler method) set_value() (pandas.Index method) SettingWithCopyError SettingWithCopyWarning shape (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) sheets (pandas.ExcelWriter property) shift() (pandas.api.extensions.ExtensionArray method) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) show_versions() (in module pandas) size (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) size() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) skew (pandas.core.groupby.DataFrameGroupBy property) skew() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) slice() (pandas.Series.str method) slice_indexer() (pandas.Index method) slice_locs() (pandas.Index method) slice_replace() (pandas.Series.str method) slice_shift() (pandas.DataFrame method) (pandas.Series method) snap() (pandas.DatetimeIndex method) sort() (pandas.Index method) sort_index() (pandas.DataFrame method) (pandas.Series method) sort_values() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) sortlevel() (pandas.Index method) (pandas.MultiIndex method) sp_values (pandas.Series.sparse attribute) sparse() (pandas.DataFrame method) (pandas.Series method) SparseArray (class in pandas.arrays) SparseDtype (class in pandas) SpecificationError split() (pandas.Series.str method) squeeze() (pandas.DataFrame method) (pandas.Series method) stack() (pandas.DataFrame method) start (pandas.RangeIndex property) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) start_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) startingMonth (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) startswith() (pandas.Series.str method) std() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) step (pandas.RangeIndex property) stop (pandas.RangeIndex property) str() (pandas.Index method) (pandas.Series method) strftime() (pandas.DatetimeIndex method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series.dt method) (pandas.Timestamp method) StringArray (class in pandas.arrays) StringDtype (class in pandas) strip() (pandas.Series.str method) strptime() (pandas.Timestamp class method) style (pandas.DataFrame property) Styler (class in pandas.io.formats.style) sub() (pandas.DataFrame method) (pandas.Series method) subtract() (pandas.DataFrame method) (pandas.Series method) subtype (pandas.IntervalDtype property) sum() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) supported_extensions (pandas.ExcelWriter property) swapaxes() (pandas.DataFrame method) (pandas.Series method) swapcase() (pandas.Series.str method) swaplevel() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) symmetric_difference() (pandas.Index method) T T (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) table() (in module pandas.plotting) tail() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) take (pandas.core.groupby.DataFrameGroupBy property) take() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) template_html (pandas.io.formats.style.Styler attribute) template_html_style (pandas.io.formats.style.Styler attribute) template_html_table (pandas.io.formats.style.Styler attribute) template_latex (pandas.io.formats.style.Styler attribute) template_string (pandas.io.formats.style.Styler attribute) test() (in module pandas) text_gradient() (pandas.io.formats.style.Styler method) Tick (class in pandas.tseries.offsets) time (pandas.DatetimeIndex property) (pandas.Series.dt attribute) time() (pandas.Timestamp method) Timedelta (class in pandas) timedelta_range() (in module pandas) TimedeltaArray (class in pandas.arrays) TimedeltaIndex (class in pandas) Timestamp (class in pandas) timestamp() (pandas.Timestamp method) timetuple() (pandas.Timestamp method) timetz (pandas.DatetimeIndex property) (pandas.Series.dt attribute) timetz() (pandas.Timestamp method) title() (pandas.Series.str method) to_clipboard() (pandas.DataFrame method) (pandas.Series method) to_coo() (pandas.DataFrame.sparse method) (pandas.Series.sparse method) to_csv() (pandas.DataFrame method) (pandas.Series method) to_datetime() (in module pandas) to_datetime64() (pandas.Timestamp method) to_dense() (pandas.DataFrame.sparse method) to_dict() (pandas.DataFrame method) (pandas.Series method) to_excel() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_feather() (pandas.DataFrame method) to_flat_index() (pandas.Index method) (pandas.MultiIndex method) to_frame() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) to_gbq() (pandas.DataFrame method) to_hdf() (pandas.DataFrame method) (pandas.Series method) to_html() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) to_json() (pandas.DataFrame method) (pandas.Series method) to_julian_date() (pandas.Timestamp method) to_latex() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_list() (pandas.Index method) (pandas.Series method) to_markdown() (pandas.DataFrame method) (pandas.Series method) to_native_types() (pandas.Index method) to_numeric() (in module pandas) to_numpy() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) (pandas.Timestamp method) to_offset() (in module pandas.tseries.frequencies) to_orc() (pandas.DataFrame method) to_parquet() (pandas.DataFrame method) to_period() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) to_perioddelta() (pandas.DatetimeIndex method) to_pickle() (pandas.DataFrame method) (pandas.Series method) to_pydatetime() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) to_pytimedelta() (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) to_records() (pandas.DataFrame method) to_series() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.TimedeltaIndex method) to_sql() (pandas.DataFrame method) (pandas.Series method) to_stata() (pandas.DataFrame method) to_string() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_timedelta() (in module pandas) to_timedelta64() (pandas.Timedelta method) to_timestamp() (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) to_tuples() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) to_xarray() (pandas.DataFrame method) (pandas.Series method) to_xml() (pandas.DataFrame method) today() (pandas.Timestamp class method) tolist() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) toordinal() (pandas.Timestamp method) total_seconds() (pandas.Series.dt method) (pandas.Timedelta method) transform() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) translate() (pandas.Series.str method) transpose() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) truediv() (pandas.DataFrame method) (pandas.Series method) truncate() (pandas.DataFrame method) (pandas.Series method) tshift (pandas.core.groupby.DataFrameGroupBy property) tshift() (pandas.DataFrame method) (pandas.Series method) type (pandas.api.extensions.ExtensionDtype property) tz (pandas.DatetimeIndex property) (pandas.DatetimeTZDtype property) (pandas.Series.dt attribute) (pandas.Timestamp property) tz_convert() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tz_localize() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tzinfo (pandas.Timestamp attribute) tzname() (pandas.Timestamp method) U UInt16Dtype (class in pandas) UInt32Dtype (class in pandas) UInt64Dtype (class in pandas) UInt64Index (class in pandas) UInt8Dtype (class in pandas) UndefinedVariableError union() (pandas.Index method) union_categoricals() (in module pandas.api.types) unique (pandas.core.groupby.SeriesGroupBy property) unique() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) unit (pandas.DatetimeTZDtype property) UnsortedIndexError unstack() (pandas.DataFrame method) (pandas.Series method) UnsupportedFunctionCall update() (pandas.DataFrame method) (pandas.Series method) upper() (pandas.Series.str method) use() (pandas.io.formats.style.Styler method) utcfromtimestamp() (pandas.Timestamp class method) utcnow() (pandas.Timestamp class method) utcoffset() (pandas.Timestamp method) utctimetuple() (pandas.Timestamp method) V value (pandas.Timedelta attribute) (pandas.Timestamp attribute) value_counts() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) value_labels() (pandas.io.stata.StataReader method) ValueLabelTypeMismatch values (pandas.DataFrame property) (pandas.Index property) (pandas.IntervalIndex property) (pandas.Series property) var() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) variable_labels() (pandas.io.stata.StataReader method) VariableOffsetWindowIndexer (class in pandas.api.indexers) variation (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) view() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) W walk() (pandas.HDFStore method) Week (class in pandas.tseries.offsets) week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday() (pandas.Timestamp method) weekmask (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) WeekOfMonth (class in pandas.tseries.offsets) weekofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) where() (pandas.DataFrame method) (pandas.Index method) (pandas.io.formats.style.Styler method) (pandas.Series method) wide_to_long() (in module pandas) wrap() (pandas.Series.str method) write_cells() (pandas.ExcelWriter method) write_file() (pandas.io.stata.StataWriter method) X xs() (pandas.DataFrame method) (pandas.Series method) Y year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) year_has_extra_week() (pandas.tseries.offsets.FY5253Quarter method) YearBegin (class in pandas.tseries.offsets) YearEnd (class in pandas.tseries.offsets) Z zfill() (pandas.Series.str method)
genindex.html
pandas.tseries.offsets.BYearBegin.nanos
pandas.tseries.offsets.BYearBegin.nanos
BYearBegin.nanos#
reference/api/pandas.tseries.offsets.BYearBegin.nanos.html
pandas.core.window.rolling.Rolling.quantile
`pandas.core.window.rolling.Rolling.quantile` Calculate the rolling quantile. ``` >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 ```
Rolling.quantile(quantile, interpolation='linear', numeric_only=False, **kwargs)[source]# Calculate the rolling quantile. Parameters quantilefloatQuantile to compute. 0 <= quantile <= 1. interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. lower: i. higher: j. nearest: i or j whichever is nearest. midpoint: (i + j) / 2. numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.quantileAggregating quantile for Series. pandas.DataFrame.quantileAggregating quantile for DataFrame. Examples >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 >>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64
reference/api/pandas.core.window.rolling.Rolling.quantile.html
Window
Window
Rolling objects are returned by .rolling calls: pandas.DataFrame.rolling(), pandas.Series.rolling(), etc. Expanding objects are returned by .expanding calls: pandas.DataFrame.expanding(), pandas.Series.expanding(), etc. ExponentialMovingWindow objects are returned by .ewm calls: pandas.DataFrame.ewm(), pandas.Series.ewm(), etc. Rolling window functions# Rolling.count([numeric_only]) Calculate the rolling count of non NaN observations. Rolling.sum([numeric_only, engine, ...]) Calculate the rolling sum. Rolling.mean([numeric_only, engine, ...]) Calculate the rolling mean. Rolling.median([numeric_only, engine, ...]) Calculate the rolling median. Rolling.var([ddof, numeric_only, engine, ...]) Calculate the rolling variance. Rolling.std([ddof, numeric_only, engine, ...]) Calculate the rolling standard deviation. Rolling.min([numeric_only, engine, ...]) Calculate the rolling minimum. Rolling.max([numeric_only, engine, ...]) Calculate the rolling maximum. Rolling.corr([other, pairwise, ddof, ...]) Calculate the rolling correlation. Rolling.cov([other, pairwise, ddof, ...]) Calculate the rolling sample covariance. Rolling.skew([numeric_only]) Calculate the rolling unbiased skewness. Rolling.kurt([numeric_only]) Calculate the rolling Fisher's definition of kurtosis without bias. Rolling.apply(func[, raw, engine, ...]) Calculate the rolling custom aggregation function. Rolling.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Rolling.quantile(quantile[, interpolation, ...]) Calculate the rolling quantile. Rolling.sem([ddof, numeric_only]) Calculate the rolling standard error of mean. Rolling.rank([method, ascending, pct, ...]) Calculate the rolling rank. Weighted window functions# Window.mean([numeric_only]) Calculate the rolling weighted window mean. Window.sum([numeric_only]) Calculate the rolling weighted window sum. Window.var([ddof, numeric_only]) Calculate the rolling weighted window variance. Window.std([ddof, numeric_only]) Calculate the rolling weighted window standard deviation. Expanding window functions# Expanding.count([numeric_only]) Calculate the expanding count of non NaN observations. Expanding.sum([numeric_only, engine, ...]) Calculate the expanding sum. Expanding.mean([numeric_only, engine, ...]) Calculate the expanding mean. Expanding.median([numeric_only, engine, ...]) Calculate the expanding median. Expanding.var([ddof, numeric_only, engine, ...]) Calculate the expanding variance. Expanding.std([ddof, numeric_only, engine, ...]) Calculate the expanding standard deviation. Expanding.min([numeric_only, engine, ...]) Calculate the expanding minimum. Expanding.max([numeric_only, engine, ...]) Calculate the expanding maximum. Expanding.corr([other, pairwise, ddof, ...]) Calculate the expanding correlation. Expanding.cov([other, pairwise, ddof, ...]) Calculate the expanding sample covariance. Expanding.skew([numeric_only]) Calculate the expanding unbiased skewness. Expanding.kurt([numeric_only]) Calculate the expanding Fisher's definition of kurtosis without bias. Expanding.apply(func[, raw, engine, ...]) Calculate the expanding custom aggregation function. Expanding.aggregate(func, *args, **kwargs) Aggregate using one or more operations over the specified axis. Expanding.quantile(quantile[, ...]) Calculate the expanding quantile. Expanding.sem([ddof, numeric_only]) Calculate the expanding standard error of mean. Expanding.rank([method, ascending, pct, ...]) Calculate the expanding rank. Exponentially-weighted window functions# ExponentialMovingWindow.mean([numeric_only, ...]) Calculate the ewm (exponential weighted moment) mean. ExponentialMovingWindow.sum([numeric_only, ...]) Calculate the ewm (exponential weighted moment) sum. ExponentialMovingWindow.std([bias, numeric_only]) Calculate the ewm (exponential weighted moment) standard deviation. ExponentialMovingWindow.var([bias, numeric_only]) Calculate the ewm (exponential weighted moment) variance. ExponentialMovingWindow.corr([other, ...]) Calculate the ewm (exponential weighted moment) sample correlation. ExponentialMovingWindow.cov([other, ...]) Calculate the ewm (exponential weighted moment) sample covariance. Window indexer# Base class for defining custom window boundaries. api.indexers.BaseIndexer([index_array, ...]) Base class for window bounds calculations. api.indexers.FixedForwardWindowIndexer([...]) Creates window boundaries for fixed-length windows that include the current row. api.indexers.VariableOffsetWindowIndexer([...]) Calculate window boundaries based on a non-fixed offset such as a BusinessDay.
reference/window.html
pandas.Series.transpose
`pandas.Series.transpose` Return the transpose, which is by definition self.
Series.transpose(*args, **kwargs)[source]# Return the transpose, which is by definition self. Returns %(klass)s
reference/api/pandas.Series.transpose.html
pandas.Series.cat
`pandas.Series.cat` Accessor object for categorical properties of the Series values. Be aware that assigning to categories is a inplace operation, while all methods return new categorical data per default (but can be called with inplace=True). ``` >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] ```
Series.cat()[source]# Accessor object for categorical properties of the Series values. Be aware that assigning to categories is a inplace operation, while all methods return new categorical data per default (but can be called with inplace=True). Parameters dataSeries or CategoricalIndex Examples >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): ['c', 'b', 'a'] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['c', 'b', 'a'] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): ['a', 'b', 'c', 'd', 'e'] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): ['b'] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): ['a', 'b', 'c', 'd', 'e'] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a' < 'b' < 'c'] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): ['a', 'b', 'c']
reference/api/pandas.Series.cat.html
pandas.tseries.offsets.BusinessDay.is_year_start
`pandas.tseries.offsets.BusinessDay.is_year_start` Return boolean whether a timestamp occurs on the year start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
BusinessDay.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.BusinessDay.is_year_start.html
pandas.PeriodIndex.strftime
`pandas.PeriodIndex.strftime` Convert to Index using specified date_format. ``` >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%B %d, %Y, %r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') ```
PeriodIndex.strftime(*args, **kwargs)[source]# Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in python string format doc. Formats supported by the C strftime API but not by the python string format doc (such as “%R”, “%r”) are not officially supported and should be preferably replaced with their supported equivalents (such as “%H:%M”, “%I:%M:%S %p”). Note that PeriodIndex support additional directives, detailed in Period.strftime. Parameters date_formatstrDate format string (e.g. “%Y-%m-%d”). Returns ndarray[object]NumPy ndarray of formatted strings. See also to_datetimeConvert the given argument to datetime. DatetimeIndex.normalizeReturn DatetimeIndex with times to midnight. DatetimeIndex.roundRound the DatetimeIndex to the specified freq. DatetimeIndex.floorFloor the DatetimeIndex to the specified freq. Timestamp.strftimeFormat a single Timestamp. Period.strftimeFormat a single Period. Examples >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%B %d, %Y, %r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object')
reference/api/pandas.PeriodIndex.strftime.html
General functions
Data manipulations# melt(frame[, id_vars, value_vars, var_name, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pivot(data, *[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. pivot_table(data[, values, index, columns, ...]) Create a spreadsheet-style pivot table as a DataFrame. crosstab(index, columns[, values, rownames, ...]) Compute a simple cross tabulation of two (or more) factors. cut(x, bins[, right, labels, retbins, ...]) Bin values into discrete intervals. qcut(x, q[, labels, retbins, precision, ...]) Quantile-based discretization function. merge(left, right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. merge_ordered(left, right[, on, left_on, ...]) Perform a merge for ordered data with optional filling/interpolation. merge_asof(left, right[, on, left_on, ...]) Perform a merge by key distance. concat(objs, *[, axis, join, ignore_index, ...]) Concatenate pandas objects along a particular axis. get_dummies(data[, prefix, prefix_sep, ...]) Convert categorical variable into dummy/indicator variables. from_dummies(data[, sep, default_category]) Create a categorical DataFrame from a DataFrame of dummy variables. factorize(values[, sort, na_sentinel, ...]) Encode the object as an enumerated type or categorical variable. unique(values) Return unique values based on a hash table. wide_to_long(df, stubnames, i, j[, sep, suffix]) Unpivot a DataFrame from wide to long format. Top-level missing data# isna(obj) Detect missing values for an array-like object. isnull(obj) Detect missing values for an array-like object. notna(obj) Detect non-missing values for an array-like object. notnull(obj) Detect non-missing values for an array-like object. Top-level dealing with numeric data# to_numeric(arg[, errors, downcast]) Convert argument to a numeric type. Top-level dealing with datetimelike data# to_datetime(arg[, errors, dayfirst, ...]) Convert argument to datetime. to_timedelta(arg[, unit, errors]) Convert argument to timedelta. date_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex. bdate_range([start, end, periods, freq, tz, ...]) Return a fixed frequency DatetimeIndex with business day as the default. period_range([start, end, periods, freq, name]) Return a fixed frequency PeriodIndex. timedelta_range([start, end, periods, freq, ...]) Return a fixed frequency TimedeltaIndex with day as the default. infer_freq(index[, warn]) Infer the most likely frequency given the input index. Top-level dealing with Interval data# interval_range([start, end, periods, freq, ...]) Return a fixed frequency IntervalIndex. Top-level evaluation# eval(expr[, parser, engine, truediv, ...]) Evaluate a Python expression as a string using various backends. Hashing# util.hash_array(vals[, encoding, hash_key, ...]) Given a 1d array, return an array of deterministic integers. util.hash_pandas_object(obj[, index, ...]) Return a data hash of the Index/Series/DataFrame. Importing from other DataFrame libraries# api.interchange.from_dataframe(df[, allow_copy]) Build a pd.DataFrame from any DataFrame supporting the interchange protocol.
reference/general_functions.html
null
pandas.Series.align
`pandas.Series.align` Align two objects on their axes with the specified join method. ``` >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 ```
Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)[source]# Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters otherDataFrame or Series join{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axisallowed axis of the other object, default NoneAlign on index (0), columns (1), or both (None). levelint or level name, default NoneBroadcast across a level, matching Index values on the passed MultiIndex level. copybool, default TrueAlways returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_valuescalar, default np.NaNValue to use for missing values. Defaults to NaN, but can be any “compatible” value. method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default NoneMethod to use for filling holes in reindexed Series: pad / ffill: propagate last valid observation forward to next valid. backfill / bfill: use NEXT valid observation to fill gap. limitint, default NoneIf method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis{0 or ‘index’}, default 0Filling axis, method and limit. broadcast_axis{0 or ‘index’}, default NoneBroadcast values along this axis, if aligning two objects of different dimensions. Returns (left, right)(Series, type of other)Aligned objects. Examples >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 Align on columns: >>> left, right = df.align(other, join="outer", axis=1) >>> left A B C D E 1 4 2 NaN 1 3 2 9 7 NaN 6 8 >>> right A B C D E 2 10 20 30 40 NaN 3 60 70 80 90 NaN 4 600 700 800 900 NaN We can also align on the index: >>> left, right = df.align(other, join="outer", axis=0) >>> left D B E A 1 1.0 2.0 3.0 4.0 2 6.0 7.0 8.0 9.0 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN >>> right A B C D 1 NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 3 60.0 70.0 80.0 90.0 4 600.0 700.0 800.0 900.0 Finally, the default axis=None will align on both index and columns: >>> left, right = df.align(other, join="outer", axis=None) >>> left A B C D E 1 4.0 2.0 NaN 1.0 3.0 2 9.0 7.0 NaN 6.0 8.0 3 NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN >>> right A B C D E 1 NaN NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 NaN 3 60.0 70.0 80.0 90.0 NaN 4 600.0 700.0 800.0 900.0 NaN
reference/api/pandas.Series.align.html
pandas.tseries.offsets.BYearEnd.is_year_end
`pandas.tseries.offsets.BYearEnd.is_year_end` Return boolean whether a timestamp occurs on the year end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False ```
BYearEnd.is_year_end()# Return boolean whether a timestamp occurs on the year end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_end(ts) False
reference/api/pandas.tseries.offsets.BYearEnd.is_year_end.html
pandas.io.formats.style.Styler
`pandas.io.formats.style.Styler` Helps style a DataFrame or Series according to the data with HTML and CSS.
class pandas.io.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, caption=None, table_attributes=None, cell_ids=True, na_rep=None, uuid_len=5, decimal=None, thousands=None, escape=None, formatter=None)[source]# Helps style a DataFrame or Series according to the data with HTML and CSS. Parameters dataSeries or DataFrameData to be styled - either a Series or DataFrame. precisionint, optionalPrecision to round floats to. If not given defaults to pandas.options.styler.format.precision. Changed in version 1.4.0. table_styleslist-like, default NoneList of {selector: (attr, value)} dicts; see Notes. uuidstr, default NoneA unique identifier to avoid CSS collisions; generated automatically. captionstr, tuple, default NoneString caption to attach to the table. Tuple only used for LaTeX dual captions. table_attributesstr, default NoneItems that show up in the opening <table> tag in addition to automatic (by default) id. cell_idsbool, default TrueIf True, each cell will have an id attribute in their HTML tag. The id takes the form T_<uuid>_row<num_row>_col<num_col> where <uuid> is the unique identifier, <num_row> is the row number and <num_col> is the column number. na_repstr, optionalRepresentation for missing values. If na_rep is None, no special formatting is applied, and falls back to pandas.options.styler.format.na_rep. New in version 1.0.0. uuid_lenint, default 5If uuid is not specified, the length of the uuid to randomly generate expressed in hex characters, in range [0, 32]. New in version 1.2.0. decimalstr, optionalCharacter used as decimal separator for floats, complex and integers. If not given uses pandas.options.styler.format.decimal. New in version 1.3.0. thousandsstr, optional, default NoneCharacter used as thousands separator for floats, complex and integers. If not given uses pandas.options.styler.format.thousands. New in version 1.3.0. escapestr, optionalUse ‘html’ to replace the characters &, <, >, ', and " in cell display string with HTML-safe sequences. Use ‘latex’ to replace the characters &, %, $, #, _, {, }, ~, ^, and \ in the cell display string with LaTeX-safe sequences. If not given uses pandas.options.styler.format.escape. New in version 1.3.0. formatterstr, callable, dict, optionalObject to define how values are displayed. See Styler.format. If not given uses pandas.options.styler.format.formatter. New in version 1.4.0. See also DataFrame.styleReturn a Styler object containing methods for building a styled HTML representation for the DataFrame. Notes Most styling will be done by passing style functions into Styler.apply or Styler.applymap. Style functions should return values with strings containing CSS 'attr: value' that will be applied to the indicated cells. If using in the Jupyter notebook, Styler has defined a _repr_html_ to automatically render itself. Otherwise call Styler.to_html to get the generated HTML. CSS classes are attached to the generated HTML Index and Column names include index_name and level<k> where k is its level in a MultiIndex Index label cells include row_heading row<n> where n is the numeric position of the row level<k> where k is the level in a MultiIndex Column label cells include * col_heading * col<n> where n is the numeric position of the column * level<k> where k is the level in a MultiIndex Blank cells include blank Data cells include data Trimmed cells include col_trim or row_trim. Any, or all, or these classes can be renamed by using the css_class_names argument in Styler.set_table_classes, giving a value such as {“row”: “MY_ROW_CLASS”, “col_trim”: “”, “row_trim”: “”}. Attributes env (Jinja2 jinja2.Environment) template_html (Jinja2 Template) template_html_table (Jinja2 Template) template_html_style (Jinja2 Template) template_latex (Jinja2 Template) loader (Jinja2 Loader) Methods apply(func[, axis, subset]) Apply a CSS-styling function column-wise, row-wise, or table-wise. apply_index(func[, axis, level]) Apply a CSS-styling function to the index or column headers, level-wise. applymap(func[, subset]) Apply a CSS-styling function elementwise. applymap_index(func[, axis, level]) Apply a CSS-styling function to the index or column headers, elementwise. background_gradient([cmap, low, high, axis, ...]) Color the background in a gradient style. bar([subset, axis, color, cmap, width, ...]) Draw bar chart in the cell backgrounds. clear() Reset the Styler, removing any previously applied styles. concat(other) Append another Styler to combine the output into a single table. export() Export the styles applied to the current Styler. format([formatter, subset, na_rep, ...]) Format the text display value of cells. format_index([formatter, axis, level, ...]) Format the text display value of index labels or column headers. from_custom_template(searchpath[, ...]) Factory function for creating a subclass of Styler. hide([subset, axis, level, names]) Hide the entire index / column headers, or specific rows / columns from display. hide_columns([subset, level, names]) Hide the column headers or specific keys in the columns from rendering. hide_index([subset, level, names]) (DEPRECATED) Hide the entire index, or specific keys in the index from rendering. highlight_between([subset, color, axis, ...]) Highlight a defined range with a style. highlight_max([subset, color, axis, props]) Highlight the maximum with a style. highlight_min([subset, color, axis, props]) Highlight the minimum with a style. highlight_null([color, subset, props, ...]) Highlight missing values with a style. highlight_quantile([subset, color, axis, ...]) Highlight values defined by a quantile with a style. pipe(func, *args, **kwargs) Apply func(self, *args, **kwargs), and return the result. relabel_index(labels[, axis, level]) Relabel the index, or column header, keys to display a set of specified values. render([sparse_index, sparse_columns]) (DEPRECATED) Render the Styler including all applied styles to HTML. set_caption(caption) Set the text added to a <caption> HTML element. set_na_rep(na_rep) (DEPRECATED) Set the missing data representation on a Styler. set_precision(precision) (DEPRECATED) Set the precision used to display values. set_properties([subset]) Set defined CSS-properties to each <td> HTML element for the given subset. set_sticky([axis, pixel_size, levels]) Add CSS to permanently display the index or column headers in a scrolling frame. set_table_attributes(attributes) Set the table attributes added to the <table> HTML element. set_table_styles([table_styles, axis, ...]) Set the table styles included within the <style> HTML element. set_td_classes(classes) Set the class attribute of <td> HTML elements. set_tooltips(ttips[, props, css_class]) Set the DataFrame of strings on Styler generating :hover tooltips. set_uuid(uuid) Set the uuid applied to id attributes of HTML elements. text_gradient([cmap, low, high, axis, ...]) Color the text in a gradient style. to_excel(excel_writer[, sheet_name, na_rep, ...]) Write Styler to an Excel sheet. to_html([buf, table_uuid, table_attributes, ...]) Write Styler to a file, buffer or string in HTML-CSS format. to_latex([buf, column_format, position, ...]) Write Styler to a file, buffer or string in LaTeX format. to_string([buf, encoding, sparse_index, ...]) Write Styler to a file, buffer or string in text format. use(styles) Set the styles on the current Styler. where(cond, value[, other, subset]) (DEPRECATED) Apply CSS-styles based on a conditional function elementwise.
reference/api/pandas.io.formats.style.Styler.html
Indexing and selecting data
Indexing and selecting data
The axis labeling information in pandas objects serves many purposes: Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display. Enables automatic and explicit data alignment. Allows intuitive getting and setting of subsets of the data set. In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area. Note The Python and NumPy indexing operators [] and attribute operator . provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter. Warning Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy. See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation. See the cookbook for some advanced strategies. Different choices for indexing# Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing. .loc is primarily label based, but may also be used with a boolean array. .loc will raise KeyError when the items are not found. Allowed inputs are: A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer position along the index.). A list or array of labels ['a', 'b', 'c']. A slice object with labels 'a':'f' (Note that contrary to usual Python slices, both the start and the stop are included, when present in the index! See Slicing with labels and Endpoints are inclusive.) A boolean array (any NA values will be treated as False). A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). See more at Selection by Label. .iloc is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. .iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with Python/NumPy slice semantics). Allowed inputs are: An integer e.g. 5. A list or array of integers [4, 3, 0]. A slice object with ints 1:7. A boolean array (any NA values will be treated as False). A callable function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). See more at Selection by Position, Advanced Indexing and Advanced Hierarchical. .loc, .iloc, and also [] indexing can accept a callable as indexer. See more at Selection By Callable. Getting values from an object with multi-axes selection uses the following notation (using .loc as an example, but the following applies to .iloc as well). Any of the axes accessors may be the null slice :. Axes left out of the specification are assumed to be :, e.g. p.loc['a'] is equivalent to p.loc['a', :]. Object Type Indexers Series s.loc[indexer] DataFrame df.loc[row_indexer,column_indexer] Basics# As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a. __getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. The following table shows return type values when indexing pandas objects with []: Object Type Selection Return Value Type Series series[label] scalar value DataFrame frame[colname] Series corresponding to colname Here we construct a simple time series data set to use for illustrating the indexing functionality: In [1]: dates = pd.date_range('1/1/2000', periods=8) In [2]: df = pd.DataFrame(np.random.randn(8, 4), ...: index=dates, columns=['A', 'B', 'C', 'D']) ...: In [3]: df Out[3]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 Note None of the indexing functionality is time series specific unless specifically stated. Thus, as per above, we have the most basic indexing using []: In [4]: s = df['A'] In [5]: s[dates[5]] Out[5]: -0.6736897080883706 You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner: In [6]: df Out[6]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 In [7]: df[['B', 'A']] = df[['A', 'B']] In [8]: df Out[8]: A B C D 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632 2000-01-02 -0.173215 1.212112 0.119209 -1.044236 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804 2000-01-04 -0.706771 0.721555 -1.039575 0.271860 2000-01-05 0.567020 -0.424972 0.276232 -1.087401 2000-01-06 0.113648 -0.673690 -1.478427 0.524988 2000-01-07 0.577046 0.404705 -1.715002 -1.039268 2000-01-08 -1.157892 -0.370647 -1.344312 0.844885 You may find this useful for applying a transform (in-place) to a subset of the columns. Warning pandas aligns all AXES when setting Series and DataFrame from .loc, and .iloc. This will not modify df because the column alignment is before value assignment. In [9]: df[['A', 'B']] Out[9]: A B 2000-01-01 -0.282863 0.469112 2000-01-02 -0.173215 1.212112 2000-01-03 -2.104569 -0.861849 2000-01-04 -0.706771 0.721555 2000-01-05 0.567020 -0.424972 2000-01-06 0.113648 -0.673690 2000-01-07 0.577046 0.404705 2000-01-08 -1.157892 -0.370647 In [10]: df.loc[:, ['B', 'A']] = df[['A', 'B']] In [11]: df[['A', 'B']] Out[11]: A B 2000-01-01 -0.282863 0.469112 2000-01-02 -0.173215 1.212112 2000-01-03 -2.104569 -0.861849 2000-01-04 -0.706771 0.721555 2000-01-05 0.567020 -0.424972 2000-01-06 0.113648 -0.673690 2000-01-07 0.577046 0.404705 2000-01-08 -1.157892 -0.370647 The correct way to swap column values is by using raw values: In [12]: df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy() In [13]: df[['A', 'B']] Out[13]: A B 2000-01-01 0.469112 -0.282863 2000-01-02 1.212112 -0.173215 2000-01-03 -0.861849 -2.104569 2000-01-04 0.721555 -0.706771 2000-01-05 -0.424972 0.567020 2000-01-06 -0.673690 0.113648 2000-01-07 0.404705 0.577046 2000-01-08 -0.370647 -1.157892 Attribute access# You may access an index on a Series or column on a DataFrame directly as an attribute: In [14]: sa = pd.Series([1, 2, 3], index=list('abc')) In [15]: dfa = df.copy() In [16]: sa.b Out[16]: 2 In [17]: dfa.A Out[17]: 2000-01-01 0.469112 2000-01-02 1.212112 2000-01-03 -0.861849 2000-01-04 0.721555 2000-01-05 -0.424972 2000-01-06 -0.673690 2000-01-07 0.404705 2000-01-08 -0.370647 Freq: D, Name: A, dtype: float64 In [18]: sa.a = 5 In [19]: sa Out[19]: a 5 b 2 c 3 dtype: int64 In [20]: dfa.A = list(range(len(dfa.index))) # ok if A already exists In [21]: dfa Out[21]: A B C D 2000-01-01 0 -0.282863 -1.509059 -1.135632 2000-01-02 1 -0.173215 0.119209 -1.044236 2000-01-03 2 -2.104569 -0.494929 1.071804 2000-01-04 3 -0.706771 -1.039575 0.271860 2000-01-05 4 0.567020 0.276232 -1.087401 2000-01-06 5 0.113648 -1.478427 0.524988 2000-01-07 6 0.577046 -1.715002 -1.039268 2000-01-08 7 -1.157892 -1.344312 0.844885 In [22]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column In [23]: dfa Out[23]: A B C D 2000-01-01 0 -0.282863 -1.509059 -1.135632 2000-01-02 1 -0.173215 0.119209 -1.044236 2000-01-03 2 -2.104569 -0.494929 1.071804 2000-01-04 3 -0.706771 -1.039575 0.271860 2000-01-05 4 0.567020 0.276232 -1.087401 2000-01-06 5 0.113648 -1.478427 0.524988 2000-01-07 6 0.577046 -1.715002 -1.039268 2000-01-08 7 -1.157892 -1.344312 0.844885 Warning You can use this access only if the index element is a valid Python identifier, e.g. s.1 is not allowed. See here for an explanation of valid identifiers. The attribute will not be available if it conflicts with an existing method name, e.g. s.min is not allowed, but s['min'] is possible. Similarly, the attribute will not be available if it conflicts with any of the following list: index, major_axis, minor_axis, items. In any of these cases, standard indexing will still work, e.g. s['1'], s['min'], and s['index'] will access the corresponding element or column. If you are using the IPython environment, you may also use tab-completion to see these accessible attributes. You can also assign a dict to a row of a DataFrame: In [24]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]}) In [25]: x.iloc[1] = {'x': 9, 'y': 99} In [26]: x Out[26]: x y 0 1 3 1 9 99 2 3 5 You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it creates a new attribute rather than a new column. In 0.21.0 and later, this will raise a UserWarning: In [1]: df = pd.DataFrame({'one': [1., 2., 3.]}) In [2]: df.two = [4, 5, 6] UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access In [3]: df Out[3]: one 0 1.0 1 2.0 2 3.0 Slicing ranges# The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position section detailing the .iloc method. For now, we explain the semantics of slicing using the [] operator. With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels: In [27]: s[:5] Out[27]: 2000-01-01 0.469112 2000-01-02 1.212112 2000-01-03 -0.861849 2000-01-04 0.721555 2000-01-05 -0.424972 Freq: D, Name: A, dtype: float64 In [28]: s[::2] Out[28]: 2000-01-01 0.469112 2000-01-03 -0.861849 2000-01-05 -0.424972 2000-01-07 0.404705 Freq: 2D, Name: A, dtype: float64 In [29]: s[::-1] Out[29]: 2000-01-08 -0.370647 2000-01-07 0.404705 2000-01-06 -0.673690 2000-01-05 -0.424972 2000-01-04 0.721555 2000-01-03 -0.861849 2000-01-02 1.212112 2000-01-01 0.469112 Freq: -1D, Name: A, dtype: float64 Note that setting works as well: In [30]: s2 = s.copy() In [31]: s2[:5] = 0 In [32]: s2 Out[32]: 2000-01-01 0.000000 2000-01-02 0.000000 2000-01-03 0.000000 2000-01-04 0.000000 2000-01-05 0.000000 2000-01-06 -0.673690 2000-01-07 0.404705 2000-01-08 -0.370647 Freq: D, Name: A, dtype: float64 With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a common operation. In [33]: df[:3] Out[33]: A B C D 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [34]: df[::-1] Out[34]: A B C D 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 2000-01-04 0.721555 -0.706771 -1.039575 0.271860 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 Selection by label# Warning Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy. Warning .loc is strict when you present slicers that are not compatible (or convertible) with the index type. For example using integers in a DatetimeIndex. These will raise a TypeError. In [35]: dfl = pd.DataFrame(np.random.randn(5, 4), ....: columns=list('ABCD'), ....: index=pd.date_range('20130101', periods=5)) ....: In [36]: dfl Out[36]: A B C D 2013-01-01 1.075770 -0.109050 1.643563 -1.469388 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914 2013-01-03 -1.294524 0.413738 0.276662 -0.472035 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061 2013-01-05 0.895717 0.805244 -1.206412 2.565646 In [4]: dfl.loc[2:3] TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'> String likes in slicing can be convertible to the type of the index and lead to natural slicing. In [37]: dfl.loc['20130102':'20130104'] Out[37]: A B C D 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914 2013-01-03 -1.294524 0.413738 0.276662 -0.472035 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061 Warning Changed in version 1.0.0. pandas will raise a KeyError if indexing with a list with missing labels. See list-like Using loc with missing keys in a list is Deprecated. pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. Every label asked for must be in the index, or a KeyError will be raised. When slicing, both the start bound AND the stop bound are included, if present in the index. Integers are valid labels, but they refer to the label and not the position. The .loc attribute is the primary access method. The following are valid inputs: A single label, e.g. 5 or 'a' (Note that 5 is interpreted as a label of the index. This use is not an integer position along the index.). A list or array of labels ['a', 'b', 'c']. A slice object with labels 'a':'f' (Note that contrary to usual Python slices, both the start and the stop are included, when present in the index! See Slicing with labels. A boolean array. A callable, see Selection By Callable. In [38]: s1 = pd.Series(np.random.randn(6), index=list('abcdef')) In [39]: s1 Out[39]: a 1.431256 b 1.340309 c -1.170299 d -0.226169 e 0.410835 f 0.813850 dtype: float64 In [40]: s1.loc['c':] Out[40]: c -1.170299 d -0.226169 e 0.410835 f 0.813850 dtype: float64 In [41]: s1.loc['b'] Out[41]: 1.3403088497993827 Note that setting works as well: In [42]: s1.loc['c':] = 0 In [43]: s1 Out[43]: a 1.431256 b 1.340309 c 0.000000 d 0.000000 e 0.000000 f 0.000000 dtype: float64 With a DataFrame: In [44]: df1 = pd.DataFrame(np.random.randn(6, 4), ....: index=list('abcdef'), ....: columns=list('ABCD')) ....: In [45]: df1 Out[45]: A B C D a 0.132003 -0.827317 -0.076467 -1.187678 b 1.130127 -1.436737 -1.413681 1.607920 c 1.024180 0.569605 0.875906 -2.211372 d 0.974466 -2.006747 -0.410001 -0.078638 e 0.545952 -1.219217 -1.226825 0.769804 f -1.281247 -0.727707 -0.121306 -0.097883 In [46]: df1.loc[['a', 'b', 'd'], :] Out[46]: A B C D a 0.132003 -0.827317 -0.076467 -1.187678 b 1.130127 -1.436737 -1.413681 1.607920 d 0.974466 -2.006747 -0.410001 -0.078638 Accessing via label slices: In [47]: df1.loc['d':, 'A':'C'] Out[47]: A B C d 0.974466 -2.006747 -0.410001 e 0.545952 -1.219217 -1.226825 f -1.281247 -0.727707 -0.121306 For getting a cross section using a label (equivalent to df.xs('a')): In [48]: df1.loc['a'] Out[48]: A 0.132003 B -0.827317 C -0.076467 D -1.187678 Name: a, dtype: float64 For getting values with a boolean array: In [49]: df1.loc['a'] > 0 Out[49]: A True B False C False D False Name: a, dtype: bool In [50]: df1.loc[:, df1.loc['a'] > 0] Out[50]: A a 0.132003 b 1.130127 c 1.024180 d 0.974466 e 0.545952 f -1.281247 NA values in a boolean array propagate as False: Changed in version 1.0.2. In [51]: mask = pd.array([True, False, True, False, pd.NA, False], dtype="boolean") In [52]: mask Out[52]: <BooleanArray> [True, False, True, False, <NA>, False] Length: 6, dtype: boolean In [53]: df1[mask] Out[53]: A B C D a 0.132003 -0.827317 -0.076467 -1.187678 c 1.024180 0.569605 0.875906 -2.211372 For getting a value explicitly: # this is also equivalent to ``df1.at['a','A']`` In [54]: df1.loc['a', 'A'] Out[54]: 0.13200317033032932 Slicing with labels# When using .loc with slices, if both the start and the stop labels are present in the index, then elements located between the two (including them) are returned: In [55]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4]) In [56]: s.loc[3:5] Out[56]: 3 b 2 c 5 d dtype: object If at least one of the two is absent, but the index is sorted, and can be compared against start and stop labels, then slicing will still work as expected, by selecting labels which rank between the two: In [57]: s.sort_index() Out[57]: 0 a 2 c 3 b 4 e 5 d dtype: object In [58]: s.sort_index().loc[1:6] Out[58]: 2 c 3 b 4 e 5 d dtype: object However, if at least one of the two is absent and the index is not sorted, an error will be raised (since doing otherwise would be computationally expensive, as well as potentially ambiguous for mixed type indexes). For instance, in the above example, s.loc[1:6] would raise KeyError. For the rationale behind this behavior, see Endpoints are inclusive. In [59]: s = pd.Series(list('abcdef'), index=[0, 3, 2, 5, 4, 2]) In [60]: s.loc[3:5] Out[60]: 3 b 2 c 5 d dtype: object Also, if the index has duplicate labels and either the start or the stop label is duplicated, an error will be raised. For instance, in the above example, s.loc[2:5] would raise a KeyError. For more information about duplicate labels, see Duplicate Labels. Selection by position# Warning Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy. pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely Python and NumPy slicing. These are 0-based indexing. When slicing, the start bound is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError. The .iloc attribute is the primary access method. The following are valid inputs: An integer e.g. 5. A list or array of integers [4, 3, 0]. A slice object with ints 1:7. A boolean array. A callable, see Selection By Callable. In [61]: s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2))) In [62]: s1 Out[62]: 0 0.695775 2 0.341734 4 0.959726 6 -1.110336 8 -0.619976 dtype: float64 In [63]: s1.iloc[:3] Out[63]: 0 0.695775 2 0.341734 4 0.959726 dtype: float64 In [64]: s1.iloc[3] Out[64]: -1.110336102891167 Note that setting works as well: In [65]: s1.iloc[:3] = 0 In [66]: s1 Out[66]: 0 0.000000 2 0.000000 4 0.000000 6 -1.110336 8 -0.619976 dtype: float64 With a DataFrame: In [67]: df1 = pd.DataFrame(np.random.randn(6, 4), ....: index=list(range(0, 12, 2)), ....: columns=list(range(0, 8, 2))) ....: In [68]: df1 Out[68]: 0 2 4 6 0 0.149748 -0.732339 0.687738 0.176444 2 0.403310 -0.154951 0.301624 -2.179861 4 -1.369849 -0.954208 1.462696 -1.743161 6 -0.826591 -0.345352 1.314232 0.690579 8 0.995761 2.396780 0.014871 3.357427 10 -0.317441 -1.236269 0.896171 -0.487602 Select via integer slicing: In [69]: df1.iloc[:3] Out[69]: 0 2 4 6 0 0.149748 -0.732339 0.687738 0.176444 2 0.403310 -0.154951 0.301624 -2.179861 4 -1.369849 -0.954208 1.462696 -1.743161 In [70]: df1.iloc[1:5, 2:4] Out[70]: 4 6 2 0.301624 -2.179861 4 1.462696 -1.743161 6 1.314232 0.690579 8 0.014871 3.357427 Select via integer list: In [71]: df1.iloc[[1, 3, 5], [1, 3]] Out[71]: 2 6 2 -0.154951 -2.179861 6 -0.345352 0.690579 10 -1.236269 -0.487602 In [72]: df1.iloc[1:3, :] Out[72]: 0 2 4 6 2 0.403310 -0.154951 0.301624 -2.179861 4 -1.369849 -0.954208 1.462696 -1.743161 In [73]: df1.iloc[:, 1:3] Out[73]: 2 4 0 -0.732339 0.687738 2 -0.154951 0.301624 4 -0.954208 1.462696 6 -0.345352 1.314232 8 2.396780 0.014871 10 -1.236269 0.896171 # this is also equivalent to ``df1.iat[1,1]`` In [74]: df1.iloc[1, 1] Out[74]: -0.1549507744249032 For getting a cross section using an integer position (equiv to df.xs(1)): In [75]: df1.iloc[1] Out[75]: 0 0.403310 2 -0.154951 4 0.301624 6 -2.179861 Name: 2, dtype: float64 Out of range slice indexes are handled gracefully just as in Python/NumPy. # these are allowed in Python/NumPy. In [76]: x = list('abcdef') In [77]: x Out[77]: ['a', 'b', 'c', 'd', 'e', 'f'] In [78]: x[4:10] Out[78]: ['e', 'f'] In [79]: x[8:10] Out[79]: [] In [80]: s = pd.Series(x) In [81]: s Out[81]: 0 a 1 b 2 c 3 d 4 e 5 f dtype: object In [82]: s.iloc[4:10] Out[82]: 4 e 5 f dtype: object In [83]: s.iloc[8:10] Out[83]: Series([], dtype: object) Note that using slices that go out of bounds can result in an empty axis (e.g. an empty DataFrame being returned). In [84]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB')) In [85]: dfl Out[85]: A B 0 -0.082240 -2.182937 1 0.380396 0.084844 2 0.432390 1.519970 3 -0.493662 0.600178 4 0.274230 0.132885 In [86]: dfl.iloc[:, 2:3] Out[86]: Empty DataFrame Columns: [] Index: [0, 1, 2, 3, 4] In [87]: dfl.iloc[:, 1:3] Out[87]: B 0 -2.182937 1 0.084844 2 1.519970 3 0.600178 4 0.132885 In [88]: dfl.iloc[4:6] Out[88]: A B 4 0.27423 0.132885 A single indexer that is out of bounds will raise an IndexError. A list of indexers where any element is out of bounds will raise an IndexError. >>> dfl.iloc[[4, 5, 6]] IndexError: positional indexers are out-of-bounds >>> dfl.iloc[:, 4] IndexError: single positional indexer is out-of-bounds Selection by callable# .loc, .iloc, and also [] indexing can accept a callable as indexer. The callable must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing. In [89]: df1 = pd.DataFrame(np.random.randn(6, 4), ....: index=list('abcdef'), ....: columns=list('ABCD')) ....: In [90]: df1 Out[90]: A B C D a -0.023688 2.410179 1.450520 0.206053 b -0.251905 -2.213588 1.063327 1.266143 c 0.299368 -0.863838 0.408204 -1.048089 d -0.025747 -0.988387 0.094055 1.262731 e 1.289997 0.082423 -0.055758 0.536580 f -0.489682 0.369374 -0.034571 -2.484478 In [91]: df1.loc[lambda df: df['A'] > 0, :] Out[91]: A B C D c 0.299368 -0.863838 0.408204 -1.048089 e 1.289997 0.082423 -0.055758 0.536580 In [92]: df1.loc[:, lambda df: ['A', 'B']] Out[92]: A B a -0.023688 2.410179 b -0.251905 -2.213588 c 0.299368 -0.863838 d -0.025747 -0.988387 e 1.289997 0.082423 f -0.489682 0.369374 In [93]: df1.iloc[:, lambda df: [0, 1]] Out[93]: A B a -0.023688 2.410179 b -0.251905 -2.213588 c 0.299368 -0.863838 d -0.025747 -0.988387 e 1.289997 0.082423 f -0.489682 0.369374 In [94]: df1[lambda df: df.columns[0]] Out[94]: a -0.023688 b -0.251905 c 0.299368 d -0.025747 e 1.289997 f -0.489682 Name: A, dtype: float64 You can use callable indexing in Series. In [95]: df1['A'].loc[lambda s: s > 0] Out[95]: c 0.299368 e 1.289997 Name: A, dtype: float64 Using these methods / indexers, you can chain data selection operations without using a temporary variable. In [96]: bb = pd.read_csv('data/baseball.csv', index_col='id') In [97]: (bb.groupby(['year', 'team']).sum(numeric_only=True) ....: .loc[lambda df: df['r'] > 100]) ....: Out[97]: stint g ab r h X2b ... so ibb hbp sh sf gidp year team ... 2007 CIN 6 379 745 101 203 35 ... 127.0 14.0 1.0 1.0 15.0 18.0 DET 5 301 1062 162 283 54 ... 176.0 3.0 10.0 4.0 8.0 28.0 HOU 4 311 926 109 218 47 ... 212.0 3.0 9.0 16.0 6.0 17.0 LAN 11 413 1021 153 293 61 ... 141.0 8.0 9.0 3.0 8.0 29.0 NYN 13 622 1854 240 509 101 ... 310.0 24.0 23.0 18.0 15.0 48.0 SFN 5 482 1305 198 337 67 ... 188.0 51.0 8.0 16.0 6.0 41.0 TEX 2 198 729 115 200 40 ... 140.0 4.0 5.0 2.0 8.0 16.0 TOR 4 459 1408 187 378 96 ... 265.0 16.0 12.0 4.0 16.0 38.0 [8 rows x 18 columns] Combining positional and label-based indexing# If you wish to get the 0th and the 2nd elements from the index in the ‘A’ column, you can do: In [98]: dfd = pd.DataFrame({'A': [1, 2, 3], ....: 'B': [4, 5, 6]}, ....: index=list('abc')) ....: In [99]: dfd Out[99]: A B a 1 4 b 2 5 c 3 6 In [100]: dfd.loc[dfd.index[[0, 2]], 'A'] Out[100]: a 1 c 3 Name: A, dtype: int64 This can also be expressed using .iloc, by explicitly getting locations on the indexers, and using positional indexing to select things. In [101]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')] Out[101]: a 1 c 3 Name: A, dtype: int64 For getting multiple indexers, using .get_indexer: In [102]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])] Out[102]: A B a 1 4 c 3 6 Indexing with list with missing labels is deprecated# Warning Changed in version 1.0.0. Using .loc or [] with a list with one or more missing labels will no longer reindex, in favor of .reindex. In prior versions, using .loc[list-of-labels] would work as long as at least 1 of the keys was found (otherwise it would raise a KeyError). This behavior was changed and will now raise a KeyError if at least one label is missing. The recommended alternative is to use .reindex(). For example. In [103]: s = pd.Series([1, 2, 3]) In [104]: s Out[104]: 0 1 1 2 2 3 dtype: int64 Selection with all keys found is unchanged. In [105]: s.loc[[1, 2]] Out[105]: 1 2 2 3 dtype: int64 Previous behavior In [4]: s.loc[[1, 2, 3]] Out[4]: 1 2.0 2 3.0 3 NaN dtype: float64 Current behavior In [4]: s.loc[[1, 2, 3]] Passing list-likes to .loc with any non-matching elements will raise KeyError in the future, you can use .reindex() as an alternative. See the documentation here: https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike Out[4]: 1 2.0 2 3.0 3 NaN dtype: float64 Reindexing# The idiomatic way to achieve selecting potentially not-found elements is via .reindex(). See also the section on reindexing. In [106]: s.reindex([1, 2, 3]) Out[106]: 1 2.0 2 3.0 3 NaN dtype: float64 Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection. In [107]: labels = [1, 2, 3] In [108]: s.loc[s.index.intersection(labels)] Out[108]: 1 2 2 3 dtype: int64 Having a duplicated index will raise for a .reindex(): In [109]: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c']) In [110]: labels = ['c', 'd'] In [17]: s.reindex(labels) ValueError: cannot reindex on an axis with duplicate labels Generally, you can intersect the desired labels with the current axis, and then reindex. In [111]: s.loc[s.index.intersection(labels)].reindex(labels) Out[111]: c 3.0 d NaN dtype: float64 However, this would still raise if your resulting index is duplicated. In [41]: labels = ['a', 'd'] In [42]: s.loc[s.index.intersection(labels)].reindex(labels) ValueError: cannot reindex on an axis with duplicate labels Selecting random samples# A random selection of rows or columns from a Series or DataFrame with the sample() method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows. In [112]: s = pd.Series([0, 1, 2, 3, 4, 5]) # When no arguments are passed, returns 1 row. In [113]: s.sample() Out[113]: 4 4 dtype: int64 # One may specify either a number of rows: In [114]: s.sample(n=3) Out[114]: 0 0 4 4 1 1 dtype: int64 # Or a fraction of the rows: In [115]: s.sample(frac=0.5) Out[115]: 5 5 3 3 1 1 dtype: int64 By default, sample will return each row at most once, but one can also sample with replacement using the replace option: In [116]: s = pd.Series([0, 1, 2, 3, 4, 5]) # Without replacement (default): In [117]: s.sample(n=6, replace=False) Out[117]: 0 0 1 1 5 5 3 3 2 2 4 4 dtype: int64 # With replacement: In [118]: s.sample(n=6, replace=True) Out[118]: 0 0 4 4 3 3 2 2 4 4 4 4 dtype: int64 By default, each row has an equal probability of being selected, but if you want rows to have different probabilities, you can pass the sample function sampling weights as weights. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example: In [119]: s = pd.Series([0, 1, 2, 3, 4, 5]) In [120]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4] In [121]: s.sample(n=3, weights=example_weights) Out[121]: 5 5 4 4 3 3 dtype: int64 # Weights will be re-normalized automatically In [122]: example_weights2 = [0.5, 0, 0, 0, 0, 0] In [123]: s.sample(n=1, weights=example_weights2) Out[123]: 0 0 dtype: int64 When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string. In [124]: df2 = pd.DataFrame({'col1': [9, 8, 7, 6], .....: 'weight_column': [0.5, 0.4, 0.1, 0]}) .....: In [125]: df2.sample(n=3, weights='weight_column') Out[125]: col1 weight_column 1 8 0.4 0 9 0.5 2 7 0.1 sample also allows users to sample columns instead of rows using the axis argument. In [126]: df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]}) In [127]: df3.sample(n=1, axis=1) Out[127]: col1 0 1 1 2 2 3 Finally, one can also set a seed for sample’s random number generator using the random_state argument, which will accept either an integer (as a seed) or a NumPy RandomState object. In [128]: df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]}) # With a given seed, the sample will always draw the same rows. In [129]: df4.sample(n=2, random_state=2) Out[129]: col1 col2 2 3 4 1 2 3 In [130]: df4.sample(n=2, random_state=2) Out[130]: col1 col2 2 3 4 1 2 3 Setting with enlargement# The .loc/[] operations can perform enlargement when setting a non-existent key for that axis. In the Series case this is effectively an appending operation. In [131]: se = pd.Series([1, 2, 3]) In [132]: se Out[132]: 0 1 1 2 2 3 dtype: int64 In [133]: se[5] = 5. In [134]: se Out[134]: 0 1.0 1 2.0 2 3.0 5 5.0 dtype: float64 A DataFrame can be enlarged on either axis via .loc. In [135]: dfi = pd.DataFrame(np.arange(6).reshape(3, 2), .....: columns=['A', 'B']) .....: In [136]: dfi Out[136]: A B 0 0 1 1 2 3 2 4 5 In [137]: dfi.loc[:, 'C'] = dfi.loc[:, 'A'] In [138]: dfi Out[138]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 This is like an append operation on the DataFrame. In [139]: dfi.loc[3] = 5 In [140]: dfi Out[140]: A B C 0 0 1 0 1 2 3 2 2 4 5 4 3 5 5 5 Fast scalar value getting and setting# Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at and iat methods, which are implemented on all of the data structures. Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to iloc In [141]: s.iat[5] Out[141]: 5 In [142]: df.at[dates[5], 'A'] Out[142]: -0.6736897080883706 In [143]: df.iat[3, 0] Out[143]: 0.7215551622443669 You can also set using these same indexers. In [144]: df.at[dates[5], 'E'] = 7 In [145]: df.iat[3, 0] = 7 at may enlarge the object in-place as above if the indexer is missing. In [146]: df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7 In [147]: df Out[147]: A B C D E 0 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN NaN 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN NaN 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7.0 NaN 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN NaN 2000-01-09 NaN NaN NaN NaN NaN 7.0 Boolean indexing# Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and ~ for not. These must be grouped by using parentheses, since by default Python will evaluate an expression such as df['A'] > 2 & df['B'] < 3 as df['A'] > (2 & df['B']) < 3, while the desired evaluation order is (df['A'] > 2) & (df['B'] < 3). Using a boolean vector to index a Series works exactly as in a NumPy ndarray: In [148]: s = pd.Series(range(-3, 4)) In [149]: s Out[149]: 0 -3 1 -2 2 -1 3 0 4 1 5 2 6 3 dtype: int64 In [150]: s[s > 0] Out[150]: 4 1 5 2 6 3 dtype: int64 In [151]: s[(s < -1) | (s > 0.5)] Out[151]: 0 -3 1 -2 4 1 5 2 6 3 dtype: int64 In [152]: s[~(s < 0)] Out[152]: 3 0 4 1 5 2 6 3 dtype: int64 You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame): In [153]: df[df['A'] > 0] Out[153]: A B C D E 0 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN List comprehensions and the map method of Series can also be used to produce more complex criteria: In [154]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'], .....: 'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'], .....: 'c': np.random.randn(7)}) .....: # only want 'two' or 'three' In [155]: criterion = df2['a'].map(lambda x: x.startswith('t')) In [156]: df2[criterion] Out[156]: a b c 2 two y 0.041290 3 three x 0.361719 4 two y -0.238075 # equivalent but slower In [157]: df2[[x.startswith('t') for x in df2['a']]] Out[157]: a b c 2 two y 0.041290 3 three x 0.361719 4 two y -0.238075 # Multiple criteria In [158]: df2[criterion & (df2['b'] == 'x')] Out[158]: a b c 3 three x 0.361719 With the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions. In [159]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c'] Out[159]: b c 3 x 0.361719 Warning iloc supports two kinds of boolean indexing. If the indexer is a boolean Series, an error will be raised. For instance, in the following example, df.iloc[s.values, 1] is ok. The boolean indexer is an array. But df.iloc[s, 1] would raise ValueError. In [160]: df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], .....: index=list('abc'), .....: columns=['A', 'B']) .....: In [161]: s = (df['A'] > 2) In [162]: s Out[162]: a False b True c True Name: A, dtype: bool In [163]: df.loc[s, 'B'] Out[163]: b 4 c 6 Name: B, dtype: int64 In [164]: df.iloc[s.values, 1] Out[164]: b 4 c 6 Name: B, dtype: int64 Indexing with isin# Consider the isin() method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want: In [165]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64') In [166]: s Out[166]: 4 0 3 1 2 2 1 3 0 4 dtype: int64 In [167]: s.isin([2, 4, 6]) Out[167]: 4 False 3 False 2 True 1 False 0 True dtype: bool In [168]: s[s.isin([2, 4, 6])] Out[168]: 2 2 0 4 dtype: int64 The same method is available for Index objects and is useful for the cases when you don’t know which of the sought labels are in fact present: In [169]: s[s.index.isin([2, 4, 6])] Out[169]: 4 0 2 2 dtype: int64 # compare it to the following In [170]: s.reindex([2, 4, 6]) Out[170]: 2 2.0 4 0.0 6 NaN dtype: float64 In addition to that, MultiIndex allows selecting a separate level to use in the membership check: In [171]: s_mi = pd.Series(np.arange(6), .....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])) .....: In [172]: s_mi Out[172]: 0 a 0 b 1 c 2 1 a 3 b 4 c 5 dtype: int64 In [173]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])] Out[173]: 0 c 2 1 a 3 dtype: int64 In [174]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)] Out[174]: 0 a 0 c 2 1 a 3 c 5 dtype: int64 DataFrame also has an isin() method. When calling isin, pass a set of values as either an array or dict. If values is an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values. In [175]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'], .....: 'ids2': ['a', 'n', 'c', 'n']}) .....: In [176]: values = ['a', 'b', 1, 3] In [177]: df.isin(values) Out[177]: vals ids ids2 0 True True True 1 False True False 2 True False False 3 False False False Oftentimes you’ll want to match certain values with certain columns. Just make values a dict where the key is the column, and the value is a list of items you want to check for. In [178]: values = {'ids': ['a', 'b'], 'vals': [1, 3]} In [179]: df.isin(values) Out[179]: vals ids ids2 0 True True False 1 False True False 2 True False False 3 False False False To return the DataFrame of booleans where the values are not in the original DataFrame, use the ~ operator: In [180]: values = {'ids': ['a', 'b'], 'vals': [1, 3]} In [181]: ~df.isin(values) Out[181]: vals ids ids2 0 False False True 1 True False True 2 False True True 3 True True True Combine DataFrame’s isin with the any() and all() methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion: In [182]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]} In [183]: row_mask = df.isin(values).all(1) In [184]: df[row_mask] Out[184]: vals ids ids2 0 1 a a The where() Method and Masking# Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the where method in Series and DataFrame. To return only the selected rows: In [185]: s[s > 0] Out[185]: 3 1 2 2 1 3 0 4 dtype: int64 To return a Series of the same shape as the original: In [186]: s.where(s > 0) Out[186]: 4 NaN 3 1.0 2 2.0 1 3.0 0 4.0 dtype: float64 Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. where is used under the hood as the implementation. The code below is equivalent to df.where(df < 0). In [187]: df[df < 0] Out[187]: A B C D 2000-01-01 -2.104139 -1.309525 NaN NaN 2000-01-02 -0.352480 NaN -1.192319 NaN 2000-01-03 -0.864883 NaN -0.227870 NaN 2000-01-04 NaN -1.222082 NaN -1.233203 2000-01-05 NaN -0.605656 -1.169184 NaN 2000-01-06 NaN -0.948458 NaN -0.684718 2000-01-07 -2.670153 -0.114722 NaN -0.048048 2000-01-08 NaN NaN -0.048788 -0.808838 In addition, where takes an optional other argument for replacement of values where the condition is False, in the returned copy. In [188]: df.where(df < 0, -df) Out[188]: A B C D 2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166 2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824 2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059 2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203 2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416 2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718 2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048 2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838 You may wish to set values based on some boolean criteria. This can be done intuitively like so: In [189]: s2 = s.copy() In [190]: s2[s2 < 0] = 0 In [191]: s2 Out[191]: 4 0 3 1 2 2 1 3 0 4 dtype: int64 In [192]: df2 = df.copy() In [193]: df2[df2 < 0] = 0 In [194]: df2 Out[194]: A B C D 2000-01-01 0.000000 0.000000 0.485855 0.245166 2000-01-02 0.000000 0.390389 0.000000 1.655824 2000-01-03 0.000000 0.299674 0.000000 0.281059 2000-01-04 0.846958 0.000000 0.600705 0.000000 2000-01-05 0.669692 0.000000 0.000000 0.342416 2000-01-06 0.868584 0.000000 2.297780 0.000000 2000-01-07 0.000000 0.000000 0.168904 0.000000 2000-01-08 0.801196 1.392071 0.000000 0.000000 By default, where returns a modified copy of the data. There is an optional parameter inplace so that the original data can be modified without creating a copy: In [195]: df_orig = df.copy() In [196]: df_orig.where(df > 0, -df, inplace=True) In [197]: df_orig Out[197]: A B C D 2000-01-01 2.104139 1.309525 0.485855 0.245166 2000-01-02 0.352480 0.390389 1.192319 1.655824 2000-01-03 0.864883 0.299674 0.227870 0.281059 2000-01-04 0.846958 1.222082 0.600705 1.233203 2000-01-05 0.669692 0.605656 1.169184 0.342416 2000-01-06 0.868584 0.948458 2.297780 0.684718 2000-01-07 2.670153 0.114722 0.168904 0.048048 2000-01-08 0.801196 1.392071 0.048788 0.808838 Note The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2). In [198]: df.where(df < 0, -df) == np.where(df < 0, df, -df) Out[198]: A B C D 2000-01-01 True True True True 2000-01-02 True True True True 2000-01-03 True True True True 2000-01-04 True True True True 2000-01-05 True True True True 2000-01-06 True True True True 2000-01-07 True True True True 2000-01-08 True True True True Alignment Furthermore, where aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via .loc (but on the contents rather than the axis labels). In [199]: df2 = df.copy() In [200]: df2[df2[1:4] > 0] = 3 In [201]: df2 Out[201]: A B C D 2000-01-01 -2.104139 -1.309525 0.485855 0.245166 2000-01-02 -0.352480 3.000000 -1.192319 3.000000 2000-01-03 -0.864883 3.000000 -0.227870 3.000000 2000-01-04 3.000000 -1.222082 3.000000 -1.233203 2000-01-05 0.669692 -0.605656 -1.169184 0.342416 2000-01-06 0.868584 -0.948458 2.297780 -0.684718 2000-01-07 -2.670153 -0.114722 0.168904 -0.048048 2000-01-08 0.801196 1.392071 -0.048788 -0.808838 Where can also accept axis and level parameters to align the input when performing the where. In [202]: df2 = df.copy() In [203]: df2.where(df2 > 0, df2['A'], axis='index') Out[203]: A B C D 2000-01-01 -2.104139 -2.104139 0.485855 0.245166 2000-01-02 -0.352480 0.390389 -0.352480 1.655824 2000-01-03 -0.864883 0.299674 -0.864883 0.281059 2000-01-04 0.846958 0.846958 0.600705 0.846958 2000-01-05 0.669692 0.669692 0.669692 0.342416 2000-01-06 0.868584 0.868584 2.297780 0.868584 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153 2000-01-08 0.801196 1.392071 0.801196 0.801196 This is equivalent to (but faster than) the following. In [204]: df2 = df.copy() In [205]: df.apply(lambda x, y: x.where(x > 0, y), y=df['A']) Out[205]: A B C D 2000-01-01 -2.104139 -2.104139 0.485855 0.245166 2000-01-02 -0.352480 0.390389 -0.352480 1.655824 2000-01-03 -0.864883 0.299674 -0.864883 0.281059 2000-01-04 0.846958 0.846958 0.600705 0.846958 2000-01-05 0.669692 0.669692 0.669692 0.342416 2000-01-06 0.868584 0.868584 2.297780 0.868584 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153 2000-01-08 0.801196 1.392071 0.801196 0.801196 where can accept a callable as condition and other arguments. The function must be with one argument (the calling Series or DataFrame) and that returns valid output as condition and other argument. In [206]: df3 = pd.DataFrame({'A': [1, 2, 3], .....: 'B': [4, 5, 6], .....: 'C': [7, 8, 9]}) .....: In [207]: df3.where(lambda x: x > 4, lambda x: x + 10) Out[207]: A B C 0 11 14 7 1 12 5 8 2 13 6 9 Mask# mask() is the inverse boolean operation of where. In [208]: s.mask(s >= 0) Out[208]: 4 NaN 3 NaN 2 NaN 1 NaN 0 NaN dtype: float64 In [209]: df.mask(df >= 0) Out[209]: A B C D 2000-01-01 -2.104139 -1.309525 NaN NaN 2000-01-02 -0.352480 NaN -1.192319 NaN 2000-01-03 -0.864883 NaN -0.227870 NaN 2000-01-04 NaN -1.222082 NaN -1.233203 2000-01-05 NaN -0.605656 -1.169184 NaN 2000-01-06 NaN -0.948458 NaN -0.684718 2000-01-07 -2.670153 -0.114722 NaN -0.048048 2000-01-08 NaN NaN -0.048788 -0.808838 Setting with enlargement conditionally using numpy()# An alternative to where() is to use numpy.where(). Combined with setting a new column, you can use it to enlarge a DataFrame where the values are determined conditionally. Consider you have two choices to choose from in the following DataFrame. And you want to set a new column color to ‘green’ when the second column has ‘Z’. You can do the following: In [210]: df = pd.DataFrame({'col1': list('ABBC'), 'col2': list('ZZXY')}) In [211]: df['color'] = np.where(df['col2'] == 'Z', 'green', 'red') In [212]: df Out[212]: col1 col2 color 0 A Z green 1 B Z green 2 B X red 3 C Y red If you have multiple conditions, you can use numpy.select() to achieve that. Say corresponding to three conditions there are three choice of colors, with a fourth color as a fallback, you can do the following. In [213]: conditions = [ .....: (df['col2'] == 'Z') & (df['col1'] == 'A'), .....: (df['col2'] == 'Z') & (df['col1'] == 'B'), .....: (df['col1'] == 'B') .....: ] .....: In [214]: choices = ['yellow', 'blue', 'purple'] In [215]: df['color'] = np.select(conditions, choices, default='black') In [216]: df Out[216]: col1 col2 color 0 A Z yellow 1 B Z blue 2 B X purple 3 C Y black The query() Method# DataFrame objects have a query() method that allows selection using an expression. You can get the value of the frame where column b has values between the values of columns a and c. For example: In [217]: n = 10 In [218]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) In [219]: df Out[219]: a b c 0 0.438921 0.118680 0.863670 1 0.138138 0.577363 0.686602 2 0.595307 0.564592 0.520630 3 0.913052 0.926075 0.616184 4 0.078718 0.854477 0.898725 5 0.076404 0.523211 0.591538 6 0.792342 0.216974 0.564056 7 0.397890 0.454131 0.915716 8 0.074315 0.437913 0.019794 9 0.559209 0.502065 0.026437 # pure python In [220]: df[(df['a'] < df['b']) & (df['b'] < df['c'])] Out[220]: a b c 1 0.138138 0.577363 0.686602 4 0.078718 0.854477 0.898725 5 0.076404 0.523211 0.591538 7 0.397890 0.454131 0.915716 # query In [221]: df.query('(a < b) & (b < c)') Out[221]: a b c 1 0.138138 0.577363 0.686602 4 0.078718 0.854477 0.898725 5 0.076404 0.523211 0.591538 7 0.397890 0.454131 0.915716 Do the same thing but fall back on a named index if there is no column with the name a. In [222]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc')) In [223]: df.index.name = 'a' In [224]: df Out[224]: b c a 0 0 4 1 0 1 2 3 4 3 4 3 4 1 4 5 0 3 6 0 1 7 3 4 8 2 3 9 1 1 In [225]: df.query('a < b and b < c') Out[225]: b c a 2 3 4 If instead you don’t want to or cannot name your index, you can use the name index in your query expression: In [226]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc')) In [227]: df Out[227]: b c 0 3 1 1 3 0 2 5 6 3 5 2 4 7 4 5 0 1 6 2 5 7 0 1 8 6 0 9 7 9 In [228]: df.query('index < b < c') Out[228]: b c 2 5 6 Note If the name of your index overlaps with a column name, the column name is given precedence. For example, In [229]: df = pd.DataFrame({'a': np.random.randint(5, size=5)}) In [230]: df.index.name = 'a' In [231]: df.query('a > 2') # uses the column 'a', not the index Out[231]: a a 1 3 3 3 You can still use the index in a query expression by using the special identifier ‘index’: In [232]: df.query('index > 2') Out[232]: a a 3 3 4 2 If for some reason you have a column named index, then you can refer to the index as ilevel_0 as well, but at this point you should consider renaming your columns to something less ambiguous. MultiIndex query() Syntax# You can also use the levels of a DataFrame with a MultiIndex as if they were columns in the frame: In [233]: n = 10 In [234]: colors = np.random.choice(['red', 'green'], size=n) In [235]: foods = np.random.choice(['eggs', 'ham'], size=n) In [236]: colors Out[236]: array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green', 'green', 'green'], dtype='<U5') In [237]: foods Out[237]: array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs', 'eggs'], dtype='<U4') In [238]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food']) In [239]: df = pd.DataFrame(np.random.randn(n, 2), index=index) In [240]: df Out[240]: 0 1 color food red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255 green eggs -0.748199 1.318931 eggs -2.029766 0.792652 ham 0.461007 -0.542749 ham -0.305384 -0.479195 eggs 0.095031 -0.270099 eggs -0.707140 -0.773882 eggs 0.229453 0.304418 In [241]: df.query('color == "red"') Out[241]: 0 1 color food red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255 If the levels of the MultiIndex are unnamed, you can refer to them using special names: In [242]: df.index.names = [None, None] In [243]: df Out[243]: 0 1 red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255 green eggs -0.748199 1.318931 eggs -2.029766 0.792652 ham 0.461007 -0.542749 ham -0.305384 -0.479195 eggs 0.095031 -0.270099 eggs -0.707140 -0.773882 eggs 0.229453 0.304418 In [244]: df.query('ilevel_0 == "red"') Out[244]: 0 1 red ham 0.194889 -0.381994 ham 0.318587 2.089075 eggs -0.728293 -0.090255 The convention is ilevel_0, which means “index level 0” for the 0th level of the index. query() Use Cases# A use case for query() is when you have a collection of DataFrame objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you’re interested in querying In [245]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) In [246]: df Out[246]: a b c 0 0.224283 0.736107 0.139168 1 0.302827 0.657803 0.713897 2 0.611185 0.136624 0.984960 3 0.195246 0.123436 0.627712 4 0.618673 0.371660 0.047902 5 0.480088 0.062993 0.185760 6 0.568018 0.483467 0.445289 7 0.309040 0.274580 0.587101 8 0.258993 0.477769 0.370255 9 0.550459 0.840870 0.304611 In [247]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns) In [248]: df2 Out[248]: a b c 0 0.357579 0.229800 0.596001 1 0.309059 0.957923 0.965663 2 0.123102 0.336914 0.318616 3 0.526506 0.323321 0.860813 4 0.518736 0.486514 0.384724 5 0.190804 0.505723 0.614533 6 0.891939 0.623977 0.676639 7 0.480559 0.378528 0.460858 8 0.420223 0.136404 0.141295 9 0.732206 0.419540 0.604675 10 0.604466 0.848974 0.896165 11 0.589168 0.920046 0.732716 In [249]: expr = '0.0 <= a <= c <= 0.5' In [250]: map(lambda frame: frame.query(expr), [df, df2]) Out[250]: <map at 0x7f1ea0d8e580> query() Python versus pandas Syntax Comparison# Full numpy-like syntax: In [251]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc')) In [252]: df Out[252]: a b c 0 7 8 9 1 1 0 7 2 2 7 2 3 6 2 2 4 2 6 3 5 3 8 2 6 1 7 2 7 5 1 5 8 9 8 0 9 1 5 0 In [253]: df.query('(a < b) & (b < c)') Out[253]: a b c 0 7 8 9 In [254]: df[(df['a'] < df['b']) & (df['b'] < df['c'])] Out[254]: a b c 0 7 8 9 Slightly nicer by removing the parentheses (comparison operators bind tighter than & and |): In [255]: df.query('a < b & b < c') Out[255]: a b c 0 7 8 9 Use English instead of symbols: In [256]: df.query('a < b and b < c') Out[256]: a b c 0 7 8 9 Pretty close to how you might write it on paper: In [257]: df.query('a < b < c') Out[257]: a b c 0 7 8 9 The in and not in operators# query() also supports special use of Python’s in and not in comparison operators, providing a succinct syntax for calling the isin method of a Series or DataFrame. # get all rows where columns "a" and "b" have overlapping values In [258]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'), .....: 'c': np.random.randint(5, size=12), .....: 'd': np.random.randint(9, size=12)}) .....: In [259]: df Out[259]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 In [260]: df.query('a in b') Out[260]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 # How you'd do it in pure Python In [261]: df[df['a'].isin(df['b'])] Out[261]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 In [262]: df.query('a not in b') Out[262]: a b c d 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 # pure Python In [263]: df[~df['a'].isin(df['b'])] Out[263]: a b c d 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 You can combine this with other expressions for very succinct queries: # rows where cols a and b have overlapping values # and col c's values are less than col d's In [264]: df.query('a in b and c < d') Out[264]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 4 c b 3 6 5 c b 0 2 # pure Python In [265]: df[df['b'].isin(df['a']) & (df['c'] < df['d'])] Out[265]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 4 c b 3 6 5 c b 0 2 10 f c 0 6 11 f c 1 2 Note Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation. However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression df.query('a in b + c + d') (b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr will be. Special use of the == operator with list objects# Comparing a list of values to a column using ==/!= works similarly to in/not in. In [266]: df.query('b == ["a", "b", "c"]') Out[266]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 # pure Python In [267]: df[df['b'].isin(["a", "b", "c"])] Out[267]: a b c d 0 a a 2 6 1 a a 4 7 2 b a 1 6 3 b a 2 1 4 c b 3 6 5 c b 0 2 6 d b 3 3 7 d b 2 1 8 e c 4 3 9 e c 2 0 10 f c 0 6 11 f c 1 2 In [268]: df.query('c == [1, 2]') Out[268]: a b c d 0 a a 2 6 2 b a 1 6 3 b a 2 1 7 d b 2 1 9 e c 2 0 11 f c 1 2 In [269]: df.query('c != [1, 2]') Out[269]: a b c d 1 a a 4 7 4 c b 3 6 5 c b 0 2 6 d b 3 3 8 e c 4 3 10 f c 0 6 # using in/not in In [270]: df.query('[1, 2] in c') Out[270]: a b c d 0 a a 2 6 2 b a 1 6 3 b a 2 1 7 d b 2 1 9 e c 2 0 11 f c 1 2 In [271]: df.query('[1, 2] not in c') Out[271]: a b c d 1 a a 4 7 4 c b 3 6 5 c b 0 2 6 d b 3 3 8 e c 4 3 10 f c 0 6 # pure Python In [272]: df[df['c'].isin([1, 2])] Out[272]: a b c d 0 a a 2 6 2 b a 1 6 3 b a 2 1 7 d b 2 1 9 e c 2 0 11 f c 1 2 Boolean operators# You can negate boolean expressions with the word not or the ~ operator. In [273]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc')) In [274]: df['bools'] = np.random.rand(len(df)) > 0.5 In [275]: df.query('~bools') Out[275]: a b c bools 2 0.697753 0.212799 0.329209 False 7 0.275396 0.691034 0.826619 False 8 0.190649 0.558748 0.262467 False In [276]: df.query('not bools') Out[276]: a b c bools 2 0.697753 0.212799 0.329209 False 7 0.275396 0.691034 0.826619 False 8 0.190649 0.558748 0.262467 False In [277]: df.query('not bools') == df[~df['bools']] Out[277]: a b c bools 2 True True True True 7 True True True True 8 True True True True Of course, expressions can be arbitrarily complex too: # short query syntax In [278]: shorter = df.query('a < b < c and (not bools) or bools > 2') # equivalent in pure Python In [279]: longer = df[(df['a'] < df['b']) .....: & (df['b'] < df['c']) .....: & (~df['bools']) .....: | (df['bools'] > 2)] .....: In [280]: shorter Out[280]: a b c bools 7 0.275396 0.691034 0.826619 False In [281]: longer Out[281]: a b c bools 7 0.275396 0.691034 0.826619 False In [282]: shorter == longer Out[282]: a b c bools 7 True True True True Performance of query()# DataFrame.query() using numexpr is slightly faster than Python for large frames. Note You will only see the performance benefits of using the numexpr engine with DataFrame.query() if your frame has more than approximately 200,000 rows. This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn(). Duplicate data# If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows. duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated. drop_duplicates removes duplicate rows. By default, the first observed row of a duplicate set is considered unique, but each method has a keep parameter to specify targets to be kept. keep='first' (default): mark / drop duplicates except for the first occurrence. keep='last': mark / drop duplicates except for the last occurrence. keep=False: mark / drop all duplicates. In [283]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'], .....: 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'], .....: 'c': np.random.randn(7)}) .....: In [284]: df2 Out[284]: a b c 0 one x -1.067137 1 one y 0.309500 2 two x -0.211056 3 two y -1.842023 4 two x -0.390820 5 three x -1.964475 6 four x 1.298329 In [285]: df2.duplicated('a') Out[285]: 0 False 1 True 2 False 3 True 4 True 5 False 6 False dtype: bool In [286]: df2.duplicated('a', keep='last') Out[286]: 0 True 1 False 2 True 3 True 4 False 5 False 6 False dtype: bool In [287]: df2.duplicated('a', keep=False) Out[287]: 0 True 1 True 2 True 3 True 4 True 5 False 6 False dtype: bool In [288]: df2.drop_duplicates('a') Out[288]: a b c 0 one x -1.067137 2 two x -0.211056 5 three x -1.964475 6 four x 1.298329 In [289]: df2.drop_duplicates('a', keep='last') Out[289]: a b c 1 one y 0.309500 4 two x -0.390820 5 three x -1.964475 6 four x 1.298329 In [290]: df2.drop_duplicates('a', keep=False) Out[290]: a b c 5 three x -1.964475 6 four x 1.298329 Also, you can pass a list of columns to identify duplications. In [291]: df2.duplicated(['a', 'b']) Out[291]: 0 False 1 False 2 False 3 False 4 True 5 False 6 False dtype: bool In [292]: df2.drop_duplicates(['a', 'b']) Out[292]: a b c 0 one x -1.067137 1 one y 0.309500 2 two x -0.211056 3 two y -1.842023 5 three x -1.964475 6 four x 1.298329 To drop duplicates by index value, use Index.duplicated then perform slicing. The same set of options are available for the keep parameter. In [293]: df3 = pd.DataFrame({'a': np.arange(6), .....: 'b': np.random.randn(6)}, .....: index=['a', 'a', 'b', 'c', 'b', 'a']) .....: In [294]: df3 Out[294]: a b a 0 1.440455 a 1 2.456086 b 2 1.038402 c 3 -0.894409 b 4 0.683536 a 5 3.082764 In [295]: df3.index.duplicated() Out[295]: array([False, True, False, False, True, True]) In [296]: df3[~df3.index.duplicated()] Out[296]: a b a 0 1.440455 b 2 1.038402 c 3 -0.894409 In [297]: df3[~df3.index.duplicated(keep='last')] Out[297]: a b c 3 -0.894409 b 4 0.683536 a 5 3.082764 In [298]: df3[~df3.index.duplicated(keep=False)] Out[298]: a b c 3 -0.894409 Dictionary-like get() method# Each of Series or DataFrame have a get method which can return a default value. In [299]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c']) In [300]: s.get('a') # equivalent to s['a'] Out[300]: 1 In [301]: s.get('x', default=-1) Out[301]: -1 Looking up values by index/column labels# Sometimes you want to extract a set of values given a sequence of row labels and column labels, this can be achieved by pandas.factorize and NumPy indexing. For instance: In [302]: df = pd.DataFrame({'col': ["A", "A", "B", "B"], .....: 'A': [80, 23, np.nan, 22], .....: 'B': [80, 55, 76, 67]}) .....: In [303]: df Out[303]: col A B 0 A 80.0 80 1 A 23.0 55 2 B NaN 76 3 B 22.0 67 In [304]: idx, cols = pd.factorize(df['col']) In [305]: df.reindex(cols, axis=1).to_numpy()[np.arange(len(df)), idx] Out[305]: array([80., 23., 76., 67.]) Formerly this could be achieved with the dedicated DataFrame.lookup method which was deprecated in version 1.2.0. Index objects# The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be raised. Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index directly is to pass a list or other sequence to Index: In [306]: index = pd.Index(['e', 'd', 'a', 'b']) In [307]: index Out[307]: Index(['e', 'd', 'a', 'b'], dtype='object') In [308]: 'd' in index Out[308]: True You can also pass a name to be stored in the index: In [309]: index = pd.Index(['e', 'd', 'a', 'b'], name='something') In [310]: index.name Out[310]: 'something' The name, if set, will be shown in the console display: In [311]: index = pd.Index(list(range(5)), name='rows') In [312]: columns = pd.Index(['A', 'B', 'C'], name='cols') In [313]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns) In [314]: df Out[314]: cols A B C rows 0 1.295989 -1.051694 1.340429 1 -2.366110 0.428241 0.387275 2 0.433306 0.929548 0.278094 3 2.154730 -0.315628 0.264223 4 1.126818 1.132290 -0.353310 In [315]: df['A'] Out[315]: rows 0 1.295989 1 -2.366110 2 0.433306 3 2.154730 4 1.126818 Name: A, dtype: float64 Setting metadata# Indexes are “mostly immutable”, but it is possible to set and change their name attribute. You can use the rename, set_names to set these attributes directly, and they default to returning a copy. See Advanced Indexing for usage of MultiIndexes. In [316]: ind = pd.Index([1, 2, 3]) In [317]: ind.rename("apple") Out[317]: Int64Index([1, 2, 3], dtype='int64', name='apple') In [318]: ind Out[318]: Int64Index([1, 2, 3], dtype='int64') In [319]: ind.set_names(["apple"], inplace=True) In [320]: ind.name = "bob" In [321]: ind Out[321]: Int64Index([1, 2, 3], dtype='int64', name='bob') set_names, set_levels, and set_codes also take an optional level argument In [322]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second']) In [323]: index Out[323]: MultiIndex([(0, 'one'), (0, 'two'), (1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')], names=['first', 'second']) In [324]: index.levels[1] Out[324]: Index(['one', 'two'], dtype='object', name='second') In [325]: index.set_levels(["a", "b"], level=1) Out[325]: MultiIndex([(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')], names=['first', 'second']) Set operations on Index objects# The two main operations are union and intersection. Difference is provided via the .difference() method. In [326]: a = pd.Index(['c', 'b', 'a']) In [327]: b = pd.Index(['c', 'e', 'd']) In [328]: a.difference(b) Out[328]: Index(['a', 'b'], dtype='object') Also available is the symmetric_difference operation, which returns elements that appear in either idx1 or idx2, but not in both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1)), with duplicates dropped. In [329]: idx1 = pd.Index([1, 2, 3, 4]) In [330]: idx2 = pd.Index([2, 3, 4, 5]) In [331]: idx1.symmetric_difference(idx2) Out[331]: Int64Index([1, 5], dtype='int64') Note The resulting index from a set operation will be sorted in ascending order. When performing Index.union() between indexes with different dtypes, the indexes must be cast to a common dtype. Typically, though not always, this is object dtype. The exception is when performing a union between integer and float data. In this case, the integer values are converted to float In [332]: idx1 = pd.Index([0, 1, 2]) In [333]: idx2 = pd.Index([0.5, 1.5]) In [334]: idx1.union(idx2) Out[334]: Float64Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64') Missing values# Important Even though Index can hold missing values (NaN), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly. Index.fillna fills missing values with specified scalar value. In [335]: idx1 = pd.Index([1, np.nan, 3, 4]) In [336]: idx1 Out[336]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64') In [337]: idx1.fillna(2) Out[337]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64') In [338]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), .....: pd.NaT, .....: pd.Timestamp('2011-01-03')]) .....: In [339]: idx2 Out[339]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None) In [340]: idx2.fillna(pd.Timestamp('2011-01-02')) Out[340]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None) Set / reset index# Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways. Set an index# DataFrame has a set_index() method which takes a column name (for a regular Index) or a list of column names (for a MultiIndex). To create a new, re-indexed DataFrame: In [341]: data Out[341]: a b c d 0 bar one z 1.0 1 bar two y 2.0 2 foo one x 3.0 3 foo two w 4.0 In [342]: indexed1 = data.set_index('c') In [343]: indexed1 Out[343]: a b d c z bar one 1.0 y bar two 2.0 x foo one 3.0 w foo two 4.0 In [344]: indexed2 = data.set_index(['a', 'b']) In [345]: indexed2 Out[345]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0 The append keyword option allow you to keep the existing index and append the given columns to a MultiIndex: In [346]: frame = data.set_index('c', drop=False) In [347]: frame = frame.set_index(['a', 'b'], append=True) In [348]: frame Out[348]: c d c a b z bar one z 1.0 y bar two y 2.0 x foo one x 3.0 w foo two w 4.0 Other options in set_index allow you not drop the index columns or to add the index in-place (without creating a new object): In [349]: data.set_index('c', drop=False) Out[349]: a b c d c z bar one z 1.0 y bar two y 2.0 x foo one x 3.0 w foo two w 4.0 In [350]: data.set_index(['a', 'b'], inplace=True) In [351]: data Out[351]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0 Reset the index# As a convenience, there is a new function on DataFrame called reset_index() which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation of set_index(). In [352]: data Out[352]: c d a b bar one z 1.0 two y 2.0 foo one x 3.0 two w 4.0 In [353]: data.reset_index() Out[353]: a b c d 0 bar one z 1.0 1 bar two y 2.0 2 foo one x 3.0 3 foo two w 4.0 The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the names attribute. You can use the level keyword to remove only a portion of the index: In [354]: frame Out[354]: c d c a b z bar one z 1.0 y bar two y 2.0 x foo one x 3.0 w foo two w 4.0 In [355]: frame.reset_index(level=1) Out[355]: a c d c b z one bar z 1.0 y two bar y 2.0 x one foo x 3.0 w two foo w 4.0 reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index values in the DataFrame’s columns. Adding an ad hoc index# If you create an index yourself, you can just assign it to the index field: data.index = index Returning a view versus a copy# When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an example. In [356]: dfmi = pd.DataFrame([list('abcd'), .....: list('efgh'), .....: list('ijkl'), .....: list('mnop')], .....: columns=pd.MultiIndex.from_product([['one', 'two'], .....: ['first', 'second']])) .....: In [357]: dfmi Out[357]: one two first second first second 0 a b c d 1 e f g h 2 i j k l 3 m n o p Compare these two access methods: In [358]: dfmi['one']['second'] Out[358]: 0 b 1 f 2 j 3 n Name: second, dtype: object In [359]: dfmi.loc[:, ('one', 'second')] Out[359]: 0 b 1 f 2 j 3 n Name: (one, second), dtype: object These both yield the same results, so which should you use? It is instructive to understand the order of operations on these and why method 2 (.loc) is much preferred over method 1 (chained []). dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed. Then another Python operation dfmi_with_one['second'] selects the series indexed by 'second'. This is indicated by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls to __getitem__, so it has to treat them as linear operations, they happen one after another. Contrast this to df.loc[:,('one','second')] which passes a nested tuple of (slice(None),('one','second')) to a single call to __getitem__. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index both axes if so desired. Why does assignment fail when using chained indexing?# The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy warning? We don’t usually throw warnings around when you do something that might cost a few extra milliseconds! But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this, think about how the Python interpreter executes this code: dfmi.loc[:, ('one', 'second')] = value # becomes dfmi.loc.__setitem__((slice(None), ('one', 'second')), value) But this code is handled differently: dfmi['one']['second'] = value # becomes dfmi.__getitem__('one').__setitem__('second', value) See that __getitem__ in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether the __setitem__ will modify dfmi or a temporary object that gets thrown out immediately afterward. That’s what SettingWithCopy is warning you about! Note You may be wondering whether we should be concerned about the loc property in the first example. But dfmi.loc is guaranteed to be dfmi itself with modified indexing behavior, so dfmi.loc.__getitem__ / dfmi.loc.__setitem__ operate on dfmi directly. Of course, dfmi.loc.__getitem__(idx) may be a view or a copy of dfmi. Sometimes a SettingWithCopy warning will arise at times when there’s no obvious chained indexing going on. These are the bugs that SettingWithCopy is designed to catch! pandas is probably trying to warn you that you’ve done this: def do_something(df): foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows! # ... many lines here ... # We don't know whether this will modify df or not! foo['quux'] = value return foo Yikes! Evaluation order matters# When you use chained indexing, the order and type of the indexing operation partially determine whether the result is a slice into the original object, or a copy of the slice. pandas has the SettingWithCopyWarning because assigning to a copy of a slice is frequently not intentional, but a mistake caused by chained indexing returning a copy where a slice was expected. If you would like pandas to be more or less trusting about assignment to a chained indexing expression, you can set the option mode.chained_assignment to one of these values: 'warn', the default, means a SettingWithCopyWarning is printed. 'raise' means pandas will raise a SettingWithCopyError you have to deal with. None will suppress the warnings entirely. In [360]: dfb = pd.DataFrame({'a': ['one', 'one', 'two', .....: 'three', 'two', 'one', 'six'], .....: 'c': np.arange(7)}) .....: # This will show the SettingWithCopyWarning # but the frame values will be set In [361]: dfb['c'][dfb['a'].str.startswith('o')] = 42 This however is operating on a copy and will not work. >>> pd.set_option('mode.chained_assignment','warn') >>> dfb[dfb['a'].str.startswith('o')]['c'] = 42 Traceback (most recent call last) ... SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead A chained assignment can also crop up in setting in a mixed dtype frame. Note These setting rules apply to all of .loc/.iloc. The following is the recommended access method using .loc for multiple items (using mask) and a single item using a fixed index: In [362]: dfc = pd.DataFrame({'a': ['one', 'one', 'two', .....: 'three', 'two', 'one', 'six'], .....: 'c': np.arange(7)}) .....: In [363]: dfd = dfc.copy() # Setting multiple items using a mask In [364]: mask = dfd['a'].str.startswith('o') In [365]: dfd.loc[mask, 'c'] = 42 In [366]: dfd Out[366]: a c 0 one 42 1 one 42 2 two 2 3 three 3 4 two 4 5 one 42 6 six 6 # Setting a single item In [367]: dfd = dfc.copy() In [368]: dfd.loc[2, 'a'] = 11 In [369]: dfd Out[369]: a c 0 one 0 1 one 1 2 11 2 3 three 3 4 two 4 5 one 5 6 six 6 The following can work at times, but it is not guaranteed to, and therefore should be avoided: In [370]: dfd = dfc.copy() In [371]: dfd['a'][2] = 111 In [372]: dfd Out[372]: a c 0 one 0 1 one 1 2 111 2 3 three 3 4 two 4 5 one 5 6 six 6 Last, the subsequent example will not work at all, and so should be avoided: >>> pd.set_option('mode.chained_assignment','raise') >>> dfd.loc[0]['a'] = 1111 Traceback (most recent call last) ... SettingWithCopyError: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_index,col_indexer] = value instead Warning The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.
user_guide/indexing.html
pandas.DataFrame.ewm
`pandas.DataFrame.ewm` Provide exponentially weighted (EW) calculations. Exactly one of com, span, halflife, or alpha must be provided if times is not provided. If times is provided, halflife and one of com, span or alpha may be provided. ``` >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 ```
DataFrame.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, times=None, method='single')[source]# Provide exponentially weighted (EW) calculations. Exactly one of com, span, halflife, or alpha must be provided if times is not provided. If times is provided, halflife and one of com, span or alpha may be provided. Parameters comfloat, optionalSpecify decay in terms of center of mass \(\alpha = 1 / (1 + com)\), for \(com \geq 0\). spanfloat, optionalSpecify decay in terms of span \(\alpha = 2 / (span + 1)\), for \(span \geq 1\). halflifefloat, str, timedelta, optionalSpecify decay in terms of half-life \(\alpha = 1 - \exp\left(-\ln(2) / halflife\right)\), for \(halflife > 0\). If times is specified, a timedelta convertible unit over which an observation decays to half its value. Only applicable to mean(), and halflife value will not apply to the other functions. New in version 1.1.0. alphafloat, optionalSpecify smoothing factor \(\alpha\) directly \(0 < \alpha \leq 1\). min_periodsint, default 0Minimum number of observations in window required to have a value; otherwise, result is np.nan. adjustbool, default TrueDivide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). When adjust=True (default), the EW function is calculated using weights \(w_i = (1 - \alpha)^i\). For example, the EW moving average of the series [\(x_0, x_1, ..., x_t\)] would be: \[y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}\] When adjust=False, the exponentially weighted function is calculated recursively: \[\begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split}\] ignore_nabool, default FalseIgnore missing values when calculating weights. When ignore_na=False (default), weights are based on absolute positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \((1-\alpha)^2\) and \(1\) if adjust=True, and \((1-\alpha)^2\) and \(\alpha\) if adjust=False. When ignore_na=True, weights are based on relative positions. For example, the weights of \(x_0\) and \(x_2\) used in calculating the final weighted average of [\(x_0\), None, \(x_2\)] are \(1-\alpha\) and \(1\) if adjust=True, and \(1-\alpha\) and \(\alpha\) if adjust=False. axis{0, 1}, default 0If 0 or 'index', calculate across the rows. If 1 or 'columns', calculate across the columns. For Series this parameter is unused and defaults to 0. timesstr, np.ndarray, Series, default None New in version 1.1.0. Only applicable to mean(). Times corresponding to the observations. Must be monotonically increasing and datetime64[ns] dtype. If 1-D array like, a sequence with the same shape as the observations. Deprecated since version 1.4.0: If str, the name of the column in the DataFrame representing the times. methodstr {‘single’, ‘table’}, default ‘single’ New in version 1.4.0. Execute the rolling operation per single column or row ('single') or over the entire object ('table'). This argument is only implemented when specifying engine='numba' in the method call. Only applicable to mean() Returns ExponentialMovingWindow subclass See also rollingProvides rolling window calculations. expandingProvides expanding transformations. Notes See Windowing Operations for further usage details and examples. Examples >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 >>> df.ewm(alpha=2 / 3).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 adjust >>> df.ewm(com=0.5, adjust=True).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 >>> df.ewm(com=0.5, adjust=False).mean() B 0 0.000000 1 0.666667 2 1.555556 3 1.555556 4 3.650794 ignore_na >>> df.ewm(com=0.5, ignore_na=True).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.225000 >>> df.ewm(com=0.5, ignore_na=False).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 times Exponentially weighted mean with weights calculated with a timedelta halflife relative to times. >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17'] >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean() B 0 0.000000 1 0.585786 2 1.523889 3 1.523889 4 3.233686
reference/api/pandas.DataFrame.ewm.html
pandas.IntervalIndex.to_tuples
`pandas.IntervalIndex.to_tuples` Return an ndarray of tuples of the form (left, right).
IntervalIndex.to_tuples(*args, **kwargs)[source]# Return an ndarray of tuples of the form (left, right). Parameters na_tuplebool, default TrueReturns NA as a tuple if True, (nan, nan), or just as the NA value itself if False, nan. Returns tuples: ndarray
reference/api/pandas.IntervalIndex.to_tuples.html
pandas.DataFrame.reorder_levels
`pandas.DataFrame.reorder_levels` Rearrange index levels using input order. May not drop or duplicate levels. ``` >>> data = { ... "class": ["Mammals", "Mammals", "Reptiles"], ... "diet": ["Omnivore", "Carnivore", "Carnivore"], ... "species": ["Humans", "Dogs", "Snakes"], ... } >>> df = pd.DataFrame(data, columns=["class", "diet", "species"]) >>> df = df.set_index(["class", "diet"]) >>> df species class diet Mammals Omnivore Humans Carnivore Dogs Reptiles Carnivore Snakes ```
DataFrame.reorder_levels(order, axis=0)[source]# Rearrange index levels using input order. May not drop or duplicate levels. Parameters orderlist of int or list of strList representing new level order. Reference level by number (position) or by key (label). axis{0 or ‘index’, 1 or ‘columns’}, default 0Where to reorder levels. Returns DataFrame Examples >>> data = { ... "class": ["Mammals", "Mammals", "Reptiles"], ... "diet": ["Omnivore", "Carnivore", "Carnivore"], ... "species": ["Humans", "Dogs", "Snakes"], ... } >>> df = pd.DataFrame(data, columns=["class", "diet", "species"]) >>> df = df.set_index(["class", "diet"]) >>> df species class diet Mammals Omnivore Humans Carnivore Dogs Reptiles Carnivore Snakes Let’s reorder the levels of the index: >>> df.reorder_levels(["diet", "class"]) species diet class Omnivore Mammals Humans Carnivore Mammals Dogs Reptiles Snakes
reference/api/pandas.DataFrame.reorder_levels.html
pandas.tseries.offsets.SemiMonthEnd
`pandas.tseries.offsets.SemiMonthEnd` Two DateOffset’s per month repeating on the last day of the month & day_of_month. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.SemiMonthEnd() Timestamp('2022-01-15 00:00:00') ```
class pandas.tseries.offsets.SemiMonthEnd# Two DateOffset’s per month repeating on the last day of the month & day_of_month. Parameters nint normalizebool, default False day_of_monthint, {1, 3,…,27}, default 15 Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.SemiMonthEnd() Timestamp('2022-01-15 00:00:00') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. day_of_month n nanos normalize rule_code Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.SemiMonthEnd.html
pandas.DataFrame.empty
`pandas.DataFrame.empty` Indicator whether Series/DataFrame is empty. ``` >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True ```
property DataFrame.empty[source]# Indicator whether Series/DataFrame is empty. True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns boolIf Series/DataFrame is empty, return True, if not return False. See also Series.dropnaReturn series without null values. DataFrame.dropnaReturn DataFrame with labels on given axis omitted where (all or any) data are missing. Notes If Series/DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True >>> ser_empty = pd.Series({'A' : []}) >>> ser_empty A [] dtype: object >>> ser_empty.empty False >>> ser_empty = pd.Series() >>> ser_empty.empty True
reference/api/pandas.DataFrame.empty.html
pandas.DataFrame.mode
`pandas.DataFrame.mode` Get the mode(s) of each element along the selected axis. ``` >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN ```
DataFrame.mode(axis=0, numeric_only=False, dropna=True)[source]# Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The axis to iterate over while searching for the mode: 0 or ‘index’ : get mode of each column 1 or ‘columns’ : get mode of each row. numeric_onlybool, default FalseIf True, only apply to numeric columns. dropnabool, default TrueDon’t consider counts of NaN/NaT. Returns DataFrameThe modes of each column or row. See also Series.modeReturn the highest frequency value in a Series. Series.value_countsReturn the counts of values in a Series. Examples >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of species and legs contains NaN. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting dropna=False NaN values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting numeric_only=True, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN
reference/api/pandas.DataFrame.mode.html
pandas.tseries.offsets.Nano.is_year_start
`pandas.tseries.offsets.Nano.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
Nano.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.Nano.is_year_start.html
pandas.DataFrame.memory_usage
`pandas.DataFrame.memory_usage` Return the memory usage of each column in bytes. ``` >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True ```
DataFrame.memory_usage(index=True, deep=False)[source]# Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of object dtype. This value is displayed in DataFrame.info by default. This can be suppressed by setting pandas.options.display.memory_usage to False. Parameters indexbool, default TrueSpecifies whether to include the memory usage of the DataFrame’s index in returned Series. If index=True, the memory usage of the index is the first item in the output. deepbool, default FalseIf True, introspect the data deeply by interrogating object dtypes for system-level memory consumption, and include it in the returned values. Returns SeriesA Series whose index is the original column names and whose values is the memory usage of each column in bytes. See also numpy.ndarray.nbytesTotal bytes consumed by the elements of an ndarray. Series.memory_usageBytes consumed by a Series. CategoricalMemory-efficient array for string values with many repeated values. DataFrame.infoConcise summary of a DataFrame. Notes See the Frequently Asked Questions for more details. Examples >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000, dtype=int).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of object dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 180000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5244
reference/api/pandas.DataFrame.memory_usage.html
pandas.tseries.offsets.Second.is_year_start
`pandas.tseries.offsets.Second.is_year_start` Return boolean whether a timestamp occurs on the year start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True ```
Second.is_year_start()# Return boolean whether a timestamp occurs on the year start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_year_start(ts) True
reference/api/pandas.tseries.offsets.Second.is_year_start.html
pandas.Series.aggregate
`pandas.Series.aggregate` Aggregate using one or more operations over the specified axis. ``` >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 ```
Series.aggregate(func=None, axis=0, *args, **kwargs)[source]# Aggregate using one or more operations over the specified axis. Parameters funcfunction, str, list or dictFunction to use for aggregating the data. If a function, must either work when passed a Series or when passed to Series.apply. Accepted combinations are: function string function name list of functions and/or function names, e.g. [np.sum, 'mean'] dict of axis labels -> functions, function names or list of such. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. *argsPositional arguments to pass to func. **kwargsKeyword arguments to pass to func. Returns scalar, Series or DataFrameThe return can be: scalar : when Series.agg is called with single function Series : when DataFrame.agg is called with a single function DataFrame : when DataFrame.agg is called with several functions Return scalar, Series or DataFrame. See also Series.applyInvoke function on a Series. Series.transformTransform function producing a Series with like indexes. Notes agg is an alias for aggregate. Use the alias. Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See Mutating with User Defined Function (UDF) methods for more details. A passed user-defined-function will be passed a Series for evaluation. Examples >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64
reference/api/pandas.Series.aggregate.html
Chart visualization
Chart visualization Note The examples below assume that you’re using Jupyter. This section demonstrates visualization through charting. For information on visualization of tabular data please see the section on Table Visualization. We use the standard convention for referencing the matplotlib API: We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization libraries that go beyond the basics documented here.
Note The examples below assume that you’re using Jupyter. This section demonstrates visualization through charting. For information on visualization of tabular data please see the section on Table Visualization. We use the standard convention for referencing the matplotlib API: In [1]: import matplotlib.pyplot as plt In [2]: plt.close("all") We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization libraries that go beyond the basics documented here. Note All calls to np.random are seeded with 123456. Basic plotting: plot# We will demonstrate the basics, see the cookbook for some advanced strategies. The plot method on Series and DataFrame is just a simple wrapper around plt.plot(): In [3]: ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) In [4]: ts = ts.cumsum() In [5]: ts.plot(); If the index consists of dates, it calls gcf().autofmt_xdate() to try to format the x-axis nicely as per above. On DataFrame, plot() is a convenience to plot all of the columns with labels: In [6]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD")) In [7]: df = df.cumsum() In [8]: plt.figure(); In [9]: df.plot(); You can plot one column versus another using the x and y keywords in plot(): In [10]: df3 = pd.DataFrame(np.random.randn(1000, 2), columns=["B", "C"]).cumsum() In [11]: df3["A"] = pd.Series(list(range(len(df)))) In [12]: df3.plot(x="A", y="B"); Note For more formatting and styling options, see formatting below. Other plots# Plotting methods allow for a handful of plot styles other than the default line plot. These methods can be provided as the kind keyword argument to plot(), and include: ‘bar’ or ‘barh’ for bar plots ‘hist’ for histogram ‘box’ for boxplot ‘kde’ or ‘density’ for density plots ‘area’ for area plots ‘scatter’ for scatter plots ‘hexbin’ for hexagonal bin plots ‘pie’ for pie plots For example, a bar plot can be created the following way: In [13]: plt.figure(); In [14]: df.iloc[5].plot(kind="bar"); You can also create these other plots using the methods DataFrame.plot.<kind> instead of providing the kind keyword argument. This makes it easier to discover plot methods and the specific arguments they use: In [15]: df = pd.DataFrame() In [16]: df.plot.<TAB> # noqa: E225, E999 df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line df.plot.scatter df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie In addition to these kind s, there are the DataFrame.hist(), and DataFrame.boxplot() methods, which use a separate interface. Finally, there are several plotting functions in pandas.plotting that take a Series or DataFrame as an argument. These include: Scatter Matrix Andrews Curves Parallel Coordinates Lag Plot Autocorrelation Plot Bootstrap Plot RadViz Plots may also be adorned with errorbars or tables. Bar plots# For labeled, non-time series data, you may wish to produce a bar plot: In [17]: plt.figure(); In [18]: df.iloc[5].plot.bar(); In [19]: plt.axhline(0, color="k"); Calling a DataFrame’s plot.bar() method produces a multiple bar plot: In [20]: df2 = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"]) In [21]: df2.plot.bar(); To produce a stacked bar plot, pass stacked=True: In [22]: df2.plot.bar(stacked=True); To get horizontal bar plots, use the barh method: In [23]: df2.plot.barh(stacked=True); Histograms# Histograms can be drawn by using the DataFrame.plot.hist() and Series.plot.hist() methods. In [24]: df4 = pd.DataFrame( ....: { ....: "a": np.random.randn(1000) + 1, ....: "b": np.random.randn(1000), ....: "c": np.random.randn(1000) - 1, ....: }, ....: columns=["a", "b", "c"], ....: ) ....: In [25]: plt.figure(); In [26]: df4.plot.hist(alpha=0.5); A histogram can be stacked using stacked=True. Bin size can be changed using the bins keyword. In [27]: plt.figure(); In [28]: df4.plot.hist(stacked=True, bins=20); You can pass other keywords supported by matplotlib hist. For example, horizontal and cumulative histograms can be drawn by orientation='horizontal' and cumulative=True. In [29]: plt.figure(); In [30]: df4["a"].plot.hist(orientation="horizontal", cumulative=True); See the hist method and the matplotlib hist documentation for more. The existing interface DataFrame.hist to plot histogram still can be used. In [31]: plt.figure(); In [32]: df["A"].diff().hist(); DataFrame.hist() plots the histograms of the columns on multiple subplots: In [33]: plt.figure(); In [34]: df.diff().hist(color="k", alpha=0.5, bins=50); The by keyword can be specified to plot grouped histograms: In [35]: data = pd.Series(np.random.randn(1000)) In [36]: data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4)); In addition, the by keyword can also be specified in DataFrame.plot.hist(). Changed in version 1.4.0. In [37]: data = pd.DataFrame( ....: { ....: "a": np.random.choice(["x", "y", "z"], 1000), ....: "b": np.random.choice(["e", "f", "g"], 1000), ....: "c": np.random.randn(1000), ....: "d": np.random.randn(1000) - 1, ....: }, ....: ) ....: In [38]: data.plot.hist(by=["a", "b"], figsize=(10, 5)); Box plots# Boxplot can be drawn calling Series.plot.box() and DataFrame.plot.box(), or DataFrame.boxplot() to visualize the distribution of values within each column. For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1). In [39]: df = pd.DataFrame(np.random.rand(10, 5), columns=["A", "B", "C", "D", "E"]) In [40]: df.plot.box(); Boxplot can be colorized by passing color keyword. You can pass a dict whose keys are boxes, whiskers, medians and caps. If some keys are missing in the dict, default colors are used for the corresponding artists. Also, boxplot has sym keyword to specify fliers style. When you pass other type of arguments via color keyword, it will be directly passed to matplotlib for all the boxes, whiskers, medians and caps colorization. The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn artists by passing return_type. In [41]: color = { ....: "boxes": "DarkGreen", ....: "whiskers": "DarkOrange", ....: "medians": "DarkBlue", ....: "caps": "Gray", ....: } ....: In [42]: df.plot.box(color=color, sym="r+"); Also, you can pass other keywords supported by matplotlib boxplot. For example, horizontal and custom-positioned boxplot can be drawn by vert=False and positions keywords. In [43]: df.plot.box(vert=False, positions=[1, 4, 5, 6, 8]); See the boxplot method and the matplotlib boxplot documentation for more. The existing interface DataFrame.boxplot to plot boxplot still can be used. In [44]: df = pd.DataFrame(np.random.rand(10, 5)) In [45]: plt.figure(); In [46]: bp = df.boxplot() You can create a stratified boxplot using the by keyword argument to create groupings. For instance, In [47]: df = pd.DataFrame(np.random.rand(10, 2), columns=["Col1", "Col2"]) In [48]: df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) In [49]: plt.figure(); In [50]: bp = df.boxplot(by="X") You can also pass a subset of columns to plot, as well as group by multiple columns: In [51]: df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"]) In [52]: df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) In [53]: df["Y"] = pd.Series(["A", "B", "A", "B", "A", "B", "A", "B", "A", "B"]) In [54]: plt.figure(); In [55]: bp = df.boxplot(column=["Col1", "Col2"], by=["X", "Y"]) You could also create groupings with DataFrame.plot.box(), for instance: Changed in version 1.4.0. In [56]: df = pd.DataFrame(np.random.rand(10, 3), columns=["Col1", "Col2", "Col3"]) In [57]: df["X"] = pd.Series(["A", "A", "A", "A", "A", "B", "B", "B", "B", "B"]) In [58]: plt.figure(); In [59]: bp = df.plot.box(column=["Col1", "Col2"], by="X") In boxplot, the return type can be controlled by the return_type, keyword. The valid choices are {"axes", "dict", "both", None}. Faceting, created by DataFrame.boxplot with the by keyword, will affect the output type as well: return_type Faceted Output type None No axes None Yes 2-D ndarray of axes 'axes' No axes 'axes' Yes Series of axes 'dict' No dict of artists 'dict' Yes Series of dicts of artists 'both' No namedtuple 'both' Yes Series of namedtuples Groupby.boxplot always returns a Series of return_type. In [60]: np.random.seed(1234) In [61]: df_box = pd.DataFrame(np.random.randn(50, 2)) In [62]: df_box["g"] = np.random.choice(["A", "B"], size=50) In [63]: df_box.loc[df_box["g"] == "B", 1] += 3 In [64]: bp = df_box.boxplot(by="g") The subplots above are split by the numeric columns first, then the value of the g column. Below the subplots are first split by the value of g, then by the numeric columns. In [65]: bp = df_box.groupby("g").boxplot() Area plot# You can create area plots with Series.plot.area() and DataFrame.plot.area(). Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values. When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use dataframe.dropna() or dataframe.fillna() before calling plot. In [66]: df = pd.DataFrame(np.random.rand(10, 4), columns=["a", "b", "c", "d"]) In [67]: df.plot.area(); To produce an unstacked plot, pass stacked=False. Alpha value is set to 0.5 unless otherwise specified: In [68]: df.plot.area(stacked=False); Scatter plot# Scatter plot can be drawn by using the DataFrame.plot.scatter() method. Scatter plot requires numeric columns for the x and y axes. These can be specified by the x and y keywords. In [69]: df = pd.DataFrame(np.random.rand(50, 4), columns=["a", "b", "c", "d"]) In [70]: df["species"] = pd.Categorical( ....: ["setosa"] * 20 + ["versicolor"] * 20 + ["virginica"] * 10 ....: ) ....: In [71]: df.plot.scatter(x="a", y="b"); To plot multiple column groups in a single axes, repeat plot method specifying target ax. It is recommended to specify color and label keywords to distinguish each groups. In [72]: ax = df.plot.scatter(x="a", y="b", color="DarkBlue", label="Group 1") In [73]: df.plot.scatter(x="c", y="d", color="DarkGreen", label="Group 2", ax=ax); The keyword c may be given as the name of a column to provide colors for each point: In [74]: df.plot.scatter(x="a", y="b", c="c", s=50); If a categorical column is passed to c, then a discrete colorbar will be produced: New in version 1.3.0. In [75]: df.plot.scatter(x="a", y="b", c="species", cmap="viridis", s=50); You can pass other keywords supported by matplotlib scatter. The example below shows a bubble chart using a column of the DataFrame as the bubble size. In [76]: df.plot.scatter(x="a", y="b", s=df["c"] * 200); See the scatter method and the matplotlib scatter documentation for more. Hexagonal bin plot# You can create hexagonal bin plots with DataFrame.plot.hexbin(). Hexbin plots can be a useful alternative to scatter plots if your data are too dense to plot each point individually. In [77]: df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"]) In [78]: df["b"] = df["b"] + np.arange(1000) In [79]: df.plot.hexbin(x="a", y="b", gridsize=25); A useful keyword argument is gridsize; it controls the number of hexagons in the x-direction, and defaults to 100. A larger gridsize means more, smaller bins. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std). In this example the positions are given by columns a and b, while the value is given by column z. The bins are aggregated with NumPy’s max function. In [80]: df = pd.DataFrame(np.random.randn(1000, 2), columns=["a", "b"]) In [81]: df["b"] = df["b"] + np.arange(1000) In [82]: df["z"] = np.random.uniform(0, 3, 1000) In [83]: df.plot.hexbin(x="a", y="b", C="z", reduce_C_function=np.max, gridsize=25); See the hexbin method and the matplotlib hexbin documentation for more. Pie plot# You can create a pie plot with DataFrame.plot.pie() or Series.plot.pie(). If your data includes any NaN, they will be automatically filled with 0. A ValueError will be raised if there are any negative values in your data. In [84]: series = pd.Series(3 * np.random.rand(4), index=["a", "b", "c", "d"], name="series") In [85]: series.plot.pie(figsize=(6, 6)); For pie plots it’s best to use square figures, i.e. a figure aspect ratio 1. You can create the figure with equal width and height, or force the aspect ratio to be equal after plotting by calling ax.set_aspect('equal') on the returned axes object. Note that pie plot with DataFrame requires that you either specify a target column by the y argument or subplots=True. When y is specified, pie plot of selected column will be drawn. If subplots=True is specified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify legend=False to hide it. In [86]: df = pd.DataFrame( ....: 3 * np.random.rand(4, 2), index=["a", "b", "c", "d"], columns=["x", "y"] ....: ) ....: In [87]: df.plot.pie(subplots=True, figsize=(8, 4)); You can use the labels and colors keywords to specify the labels and colors of each wedge. Warning Most pandas plots use the label and color arguments (note the lack of “s” on those). To be consistent with matplotlib.pyplot.pie() you must use labels and colors. If you want to hide wedge labels, specify labels=None. If fontsize is specified, the value will be applied to wedge labels. Also, other keywords supported by matplotlib.pyplot.pie() can be used. In [88]: series.plot.pie( ....: labels=["AA", "BB", "CC", "DD"], ....: colors=["r", "g", "b", "c"], ....: autopct="%.2f", ....: fontsize=20, ....: figsize=(6, 6), ....: ); ....: If you pass values whose sum total is less than 1.0 they will be rescaled so that they sum to 1. In [89]: series = pd.Series([0.1] * 4, index=["a", "b", "c", "d"], name="series2") In [90]: series.plot.pie(figsize=(6, 6)); See the matplotlib pie documentation for more. Plotting with missing data# pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are dropped, left out, or filled depending on the plot type. Plot Type NaN Handling Line Leave gaps at NaNs Line (stacked) Fill 0’s Bar Fill 0’s Scatter Drop NaNs Histogram Drop NaNs (column-wise) Box Drop NaNs (column-wise) Area Fill 0’s KDE Drop NaNs (column-wise) Hexbin Drop NaNs Pie Fill 0’s If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled, consider using fillna() or dropna() before plotting. Plotting tools# These functions can be imported from pandas.plotting and take a Series or DataFrame as an argument. Scatter matrix plot# You can create a scatter plot matrix using the scatter_matrix method in pandas.plotting: In [91]: from pandas.plotting import scatter_matrix In [92]: df = pd.DataFrame(np.random.randn(1000, 4), columns=["a", "b", "c", "d"]) In [93]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal="kde"); Density plot# You can create density plots using the Series.plot.kde() and DataFrame.plot.kde() methods. In [94]: ser = pd.Series(np.random.randn(1000)) In [95]: ser.plot.kde(); Andrews curves# Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series, see the Wikipedia entry for more information. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures. Note: The “Iris” dataset is available here. In [96]: from pandas.plotting import andrews_curves In [97]: data = pd.read_csv("data/iris.data") In [98]: plt.figure(); In [99]: andrews_curves(data, "Name"); Parallel coordinates# Parallel coordinates is a plotting technique for plotting multivariate data, see the Wikipedia entry for an introduction. Parallel coordinates allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together. In [100]: from pandas.plotting import parallel_coordinates In [101]: data = pd.read_csv("data/iris.data") In [102]: plt.figure(); In [103]: parallel_coordinates(data, "Name"); Lag plot# Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random. The lag argument may be passed, and when lag=1 the plot is essentially data[:-1] vs. data[1:]. In [104]: from pandas.plotting import lag_plot In [105]: plt.figure(); In [106]: spacing = np.linspace(-99 * np.pi, 99 * np.pi, num=1000) In [107]: data = pd.Series(0.1 * np.random.rand(1000) + 0.9 * np.sin(spacing)) In [108]: lag_plot(data); Autocorrelation plot# Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band. See the Wikipedia entry for more about autocorrelation plots. In [109]: from pandas.plotting import autocorrelation_plot In [110]: plt.figure(); In [111]: spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000) In [112]: data = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing)) In [113]: autocorrelation_plot(data); Bootstrap plot# Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot. In [114]: from pandas.plotting import bootstrap_plot In [115]: data = pd.Series(np.random.rand(1000)) In [116]: bootstrap_plot(data, size=50, samples=500, color="grey"); RadViz# RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently. See the R package Radviz for more information. Note: The “Iris” dataset is available here. In [117]: from pandas.plotting import radviz In [118]: data = pd.read_csv("data/iris.data") In [119]: plt.figure(); In [120]: radviz(data, "Name"); Plot formatting# Setting the plot style# From version 1.5 and up, matplotlib offers a range of pre-configured plotting styles. Setting the style can be used to easily give plots the general look that you want. Setting the style is as easy as calling matplotlib.style.use(my_plot_style) before creating your plot. For example you could write matplotlib.style.use('ggplot') for ggplot-style plots. You can see the various available style names at matplotlib.style.available and it’s very easy to try them out. General plot style arguments# Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot: In [121]: plt.figure(); In [122]: ts.plot(style="k--", label="Series"); For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding matplotlib function (ax.plot(), ax.bar(), ax.scatter()). These can be used to control additional styling, beyond what pandas provides. Controlling the legend# You may set the legend argument to False to hide the legend, which is shown by default. In [123]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list("ABCD")) In [124]: df = df.cumsum() In [125]: df.plot(legend=False); Controlling the labels# New in version 1.1.0. You may set the xlabel and ylabel arguments to give the plot custom labels for x and y axis. By default, pandas will pick up index name as xlabel, while leaving it empty for ylabel. In [126]: df.plot(); In [127]: df.plot(xlabel="new x", ylabel="new y"); Scales# You may pass logy to get a log-scale Y axis. In [128]: ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) In [129]: ts = np.exp(ts.cumsum()) In [130]: ts.plot(logy=True); See also the logx and loglog keyword arguments. Plotting on a secondary y-axis# To plot data on a secondary y-axis, use the secondary_y keyword: In [131]: df["A"].plot(); In [132]: df["B"].plot(secondary_y=True, style="g"); To plot some columns in a DataFrame, give the column names to the secondary_y keyword: In [133]: plt.figure(); In [134]: ax = df.plot(secondary_y=["A", "B"]) In [135]: ax.set_ylabel("CD scale"); In [136]: ax.right_ax.set_ylabel("AB scale"); Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off the automatic marking, use the mark_right=False keyword: In [137]: plt.figure(); In [138]: df.plot(secondary_y=["A", "B"], mark_right=False); Custom formatters for timeseries plots# Changed in version 1.0.0. pandas provides custom formatters for timeseries plots. These change the formatting of the axis labels for dates and times. By default, the custom formatters are applied only to plots created by pandas with DataFrame.plot() or Series.plot(). To have them apply to all plots, including those made by matplotlib, set the option pd.options.plotting.matplotlib.register_converters = True or use pandas.plotting.register_matplotlib_converters(). Suppressing tick resolution adjustment# pandas includes automatic tick resolution adjustment for regular frequency time-series data. For limited cases where pandas cannot infer the frequency information (e.g., in an externally created twinx), you can choose to suppress this behavior for alignment purposes. Here is the default behavior, notice how the x-axis tick labeling is performed: In [139]: plt.figure(); In [140]: df["A"].plot(); Using the x_compat parameter, you can suppress this behavior: In [141]: plt.figure(); In [142]: df["A"].plot(x_compat=True); If you have more than one plot that needs to be suppressed, the use method in pandas.plotting.plot_params can be used in a with statement: In [143]: plt.figure(); In [144]: with pd.plotting.plot_params.use("x_compat", True): .....: df["A"].plot(color="r") .....: df["B"].plot(color="g") .....: df["C"].plot(color="b") .....: Automatic date tick adjustment# TimedeltaIndex now uses the native matplotlib tick locator methods, it is useful to call the automatic date tick adjustment from matplotlib for figures whose ticklabels overlap. See the autofmt_xdate method and the matplotlib documentation for more. Subplots# Each Series in a DataFrame can be plotted on a different axis with the subplots keyword: In [145]: df.plot(subplots=True, figsize=(6, 6)); Using layout and targeting multiple axes# The layout of subplots can be specified by the layout keyword. It can accept (rows, columns). The layout keyword can be used in hist and boxplot also. If the input is invalid, a ValueError will be raised. The number of axes which can be contained by rows x columns specified by layout must be larger than the number of required subplots. If layout can contain more axes than required, blank axes are not drawn. Similar to a NumPy array’s reshape method, you can use -1 for one dimension to automatically calculate the number of rows or columns needed, given the other. In [146]: df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False); The above example is identical to using: In [147]: df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False); The required number of columns (3) is inferred from the number of series to plot and the given number of rows (2). You can pass multiple axes created beforehand as list-like via ax keyword. This allows more complicated layouts. The passed axes must be the same number as the subplots being drawn. When multiple axes are passed via the ax keyword, layout, sharex and sharey keywords don’t affect to the output. You should explicitly pass sharex=False and sharey=False, otherwise you will see a warning. In [148]: fig, axes = plt.subplots(4, 4, figsize=(9, 9)) In [149]: plt.subplots_adjust(wspace=0.5, hspace=0.5) In [150]: target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]] In [151]: target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]] In [152]: df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False); In [153]: (-df).plot(subplots=True, ax=target2, legend=False, sharex=False, sharey=False); Another option is passing an ax argument to Series.plot() to plot on a particular axis: In [154]: fig, axes = plt.subplots(nrows=2, ncols=2) In [155]: plt.subplots_adjust(wspace=0.2, hspace=0.5) In [156]: df["A"].plot(ax=axes[0, 0]); In [157]: axes[0, 0].set_title("A"); In [158]: df["B"].plot(ax=axes[0, 1]); In [159]: axes[0, 1].set_title("B"); In [160]: df["C"].plot(ax=axes[1, 0]); In [161]: axes[1, 0].set_title("C"); In [162]: df["D"].plot(ax=axes[1, 1]); In [163]: axes[1, 1].set_title("D"); Plotting with error bars# Plotting with error bars is supported in DataFrame.plot() and Series.plot(). Horizontal and vertical error bars can be supplied to the xerr and yerr keyword arguments to plot(). The error values can be specified using a variety of formats: As a DataFrame or dict of errors with column names matching the columns attribute of the plotting DataFrame or matching the name attribute of the Series. As a str indicating which of the columns of plotting DataFrame contain the error values. As raw values (list, tuple, or np.ndarray). Must be the same length as the plotting DataFrame/Series. Here is an example of one way to easily plot group means with standard deviations from the raw data. # Generate the data In [164]: ix3 = pd.MultiIndex.from_arrays( .....: [ .....: ["a", "a", "a", "a", "a", "b", "b", "b", "b", "b"], .....: ["foo", "foo", "foo", "bar", "bar", "foo", "foo", "bar", "bar", "bar"], .....: ], .....: names=["letter", "word"], .....: ) .....: In [165]: df3 = pd.DataFrame( .....: { .....: "data1": [9, 3, 2, 4, 3, 2, 4, 6, 3, 2], .....: "data2": [9, 6, 5, 7, 5, 4, 5, 6, 5, 1], .....: }, .....: index=ix3, .....: ) .....: # Group by index labels and take the means and standard deviations # for each group In [166]: gp3 = df3.groupby(level=("letter", "word")) In [167]: means = gp3.mean() In [168]: errors = gp3.std() In [169]: means Out[169]: data1 data2 letter word a bar 3.500000 6.000000 foo 4.666667 6.666667 b bar 3.666667 4.000000 foo 3.000000 4.500000 In [170]: errors Out[170]: data1 data2 letter word a bar 0.707107 1.414214 foo 3.785939 2.081666 b bar 2.081666 2.645751 foo 1.414214 0.707107 # Plot In [171]: fig, ax = plt.subplots() In [172]: means.plot.bar(yerr=errors, ax=ax, capsize=4, rot=0); Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a N length Series, a 2xN array should be provided indicating lower and upper (or left and right) errors. For a MxN DataFrame, asymmetrical errors should be in a Mx2xN array. Here is an example of one way to plot the min/max range using asymmetrical error bars. In [173]: mins = gp3.min() In [174]: maxs = gp3.max() # errors should be positive, and defined in the order of lower, upper In [175]: errors = [[means[c] - mins[c], maxs[c] - means[c]] for c in df3.columns] # Plot In [176]: fig, ax = plt.subplots() In [177]: means.plot.bar(yerr=errors, ax=ax, capsize=4, rot=0); Plotting tables# Plotting with matplotlib table is now supported in DataFrame.plot() and Series.plot() with a table keyword. The table keyword can accept bool, DataFrame or Series. The simple way to draw a table is to specify table=True. Data will be transposed to meet matplotlib’s default layout. In [178]: fig, ax = plt.subplots(1, 1, figsize=(7, 6.5)) In [179]: df = pd.DataFrame(np.random.rand(5, 3), columns=["a", "b", "c"]) In [180]: ax.xaxis.tick_top() # Display x-axis ticks on top. In [181]: df.plot(table=True, ax=ax); Also, you can pass a different DataFrame or Series to the table keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as seen in the example below. In [182]: fig, ax = plt.subplots(1, 1, figsize=(7, 6.75)) In [183]: ax.xaxis.tick_top() # Display x-axis ticks on top. In [184]: df.plot(table=np.round(df.T, 2), ax=ax); There also exists a helper function pandas.plotting.table, which creates a table from DataFrame or Series, and adds it to an matplotlib.Axes instance. This function can accept keywords which the matplotlib table has. In [185]: from pandas.plotting import table In [186]: fig, ax = plt.subplots(1, 1) In [187]: table(ax, np.round(df.describe(), 2), loc="upper right", colWidths=[0.2, 0.2, 0.2]); In [188]: df.plot(ax=ax, ylim=(0, 2), legend=None); Note: You can get table instances on the axes using axes.tables property for further decorations. See the matplotlib table documentation for more. Colormaps# A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to repetition in the default colors. To remedy this, DataFrame plotting supports the use of the colormap argument, which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A visualization of the default matplotlib colormaps is available here. As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible. To use the cubehelix colormap, we can pass colormap='cubehelix'. In [189]: df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index) In [190]: df = df.cumsum() In [191]: plt.figure(); In [192]: df.plot(colormap="cubehelix"); Alternatively, we can pass the colormap itself: In [193]: from matplotlib import cm In [194]: plt.figure(); In [195]: df.plot(colormap=cm.cubehelix); Colormaps can also be used other plot types, like bar charts: In [196]: dd = pd.DataFrame(np.random.randn(10, 10)).applymap(abs) In [197]: dd = dd.cumsum() In [198]: plt.figure(); In [199]: dd.plot.bar(colormap="Greens"); Parallel coordinates charts: In [200]: plt.figure(); In [201]: parallel_coordinates(data, "Name", colormap="gist_rainbow"); Andrews curves charts: In [202]: plt.figure(); In [203]: andrews_curves(data, "Name", colormap="winter"); Plotting directly with Matplotlib# In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts. pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points. In [204]: price = pd.Series( .....: np.random.randn(150).cumsum(), .....: index=pd.date_range("2000-1-1", periods=150, freq="B"), .....: ) .....: In [205]: ma = price.rolling(20).mean() In [206]: mstd = price.rolling(20).std() In [207]: plt.figure(); In [208]: plt.plot(price.index, price, "k"); In [209]: plt.plot(ma.index, ma, "b"); In [210]: plt.fill_between(mstd.index, ma - 2 * mstd, ma + 2 * mstd, color="b", alpha=0.2); Plotting backends# Starting in version 0.25, pandas can be extended with third-party plotting backends. The main idea is letting users select a plotting backend different than the provided one based on Matplotlib. This can be done by passing ‘backend.module’ as the argument backend in plot function. For example: >>> Series([1, 2, 3]).plot(backend="backend.module") Alternatively, you can also set this option globally, do you don’t need to specify the keyword in each plot call. For example: >>> pd.set_option("plotting.backend", "backend.module") >>> pd.Series([1, 2, 3]).plot() Or: >>> pd.options.plotting.backend = "backend.module" >>> pd.Series([1, 2, 3]).plot() This would be more or less equivalent to: >>> import backend.module >>> backend.module.plot(pd.Series([1, 2, 3])) The backend module can then use other visualization tools (Bokeh, Altair, hvplot,…) to generate the plots. Some libraries implementing a backend for pandas are listed on the ecosystem Visualization page. Developers guide can be found at https://pandas.pydata.org/docs/dev/development/extending.html#plotting-backends
user_guide/visualization.html
pandas.IntervalIndex.values
`pandas.IntervalIndex.values` Return an array representing the data in the Index.
property IntervalIndex.values[source]# Return an array representing the data in the Index. Warning We recommend using Index.array or Index.to_numpy(), depending on whether you need a reference to the underlying data or a NumPy array. Returns array: numpy.ndarray or ExtensionArray See also Index.arrayReference to the underlying data. Index.to_numpyA NumPy array representing the underlying data.
reference/api/pandas.IntervalIndex.values.html
pandas.errors.IntCastingNaNError
`pandas.errors.IntCastingNaNError` Exception raised when converting (astype) an array with NaN to an integer type.
exception pandas.errors.IntCastingNaNError[source]# Exception raised when converting (astype) an array with NaN to an integer type.
reference/api/pandas.errors.IntCastingNaNError.html
pandas.Series.pad
`pandas.Series.pad` Synonym for DataFrame.fillna() with method='ffill'.
Series.pad(*, axis=None, inplace=False, limit=None, downcast=None)[source]# Synonym for DataFrame.fillna() with method='ffill'. Returns Series/DataFrame or NoneObject with missing values filled or None if inplace=True.
reference/api/pandas.Series.pad.html
pandas.DataFrame.join
`pandas.DataFrame.join` Join columns of another DataFrame. ``` >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) ```
DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False, validate=None)[source]# Join columns of another DataFrame. Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters otherDataFrame, Series, or a list containing any combination of themIndex should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. onstr, list of str, or array-like, optionalColumn or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’How to handle the operation of the two objects. left: use calling frame’s index (or column if on is specified) right: use other’s index. outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it. lexicographically. inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one. cross: creates the cartesian product from both frames, preserves the order of the left keys. New in version 1.2.0. lsuffixstr, default ‘’Suffix to use from left frame’s overlapping columns. rsuffixstr, default ‘’Suffix to use from right frame’s overlapping columns. sortbool, default FalseOrder result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). validatestr, optionalIf specified, checks if join is of specified type. * “one_to_one” or “1:1”: check if join keys are unique in both left and right datasets. * “one_to_many” or “1:m”: check if join keys are unique in left dataset. * “many_to_one” or “m:1”: check if join keys are unique in right dataset. * “many_to_many” or “m:m”: allowed, but does not result in checks. .. versionadded:: 1.5.0 Returns DataFrameA dataframe containing columns from both the caller and other. See also DataFrame.mergeFor column(s)-on-column(s) operations. Notes Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects. Support for specifying index levels as the on parameter was added in version 0.23.0. Examples >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN Using non-unique key values shows how they are matched. >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K1 A2 3 K3 A3 4 K0 A4 5 K1 A5 >>> df.join(other.set_index('key'), on='key', validate='m:1') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K1 A2 B1 3 K3 A3 NaN 4 K0 A4 B0 5 K1 A5 B1
reference/api/pandas.DataFrame.join.html