title
stringlengths
5
65
summary
stringlengths
5
98.2k
context
stringlengths
9
121k
path
stringlengths
10
84
pandas.tseries.offsets.FY5253.__call__
`pandas.tseries.offsets.FY5253.__call__` Call self as a function.
FY5253.__call__(*args, **kwargs)# Call self as a function.
reference/api/pandas.tseries.offsets.FY5253.__call__.html
How to manipulate textual data?
How to manipulate textual data? This tutorial uses the Titanic data set, stored as CSV. The data consists of the following data columns: PassengerId: Id of every passenger. Survived: Indication whether passenger survived. 0 for yes and 1 for no. Pclass: One out of the 3 ticket classes: Class 1, Class 2 and Class 3. Name: Name of passenger. Sex: Gender of passenger. Age: Age of passenger in years. SibSp: Number of siblings or spouses aboard. Parch: Number of parents or children aboard. Ticket: Ticket number of passenger. Fare: Indicating the fare. Cabin: Cabin number of passenger. Embarked: Port of embarkation. This tutorial uses the Titanic data set, stored as CSV. The data consists of the following data columns: PassengerId: Id of every passenger. Survived: Indication whether passenger survived. 0 for yes and 1 for no. Pclass: One out of the 3 ticket classes: Class 1, Class 2 and Class 3.
Data used for this tutorial: Titanic data This tutorial uses the Titanic data set, stored as CSV. The data consists of the following data columns: PassengerId: Id of every passenger. Survived: Indication whether passenger survived. 0 for yes and 1 for no. Pclass: One out of the 3 ticket classes: Class 1, Class 2 and Class 3. Name: Name of passenger. Sex: Gender of passenger. Age: Age of passenger in years. SibSp: Number of siblings or spouses aboard. Parch: Number of parents or children aboard. Ticket: Ticket number of passenger. Fare: Indicating the fare. Cabin: Cabin number of passenger. Embarked: Port of embarkation. To raw data In [2]: titanic = pd.read_csv("data/titanic.csv") In [3]: titanic.head() Out[3]: PassengerId Survived Pclass ... Fare Cabin Embarked 0 1 0 3 ... 7.2500 NaN S 1 2 1 1 ... 71.2833 C85 C 2 3 1 3 ... 7.9250 NaN S 3 4 1 1 ... 53.1000 C123 S 4 5 0 3 ... 8.0500 NaN S [5 rows x 12 columns] How to manipulate textual data?# Make all name characters lowercase. In [4]: titanic["Name"].str.lower() Out[4]: 0 braund, mr. owen harris 1 cumings, mrs. john bradley (florence briggs th... 2 heikkinen, miss. laina 3 futrelle, mrs. jacques heath (lily may peel) 4 allen, mr. william henry ... 886 montvila, rev. juozas 887 graham, miss. margaret edith 888 johnston, miss. catherine helen "carrie" 889 behr, mr. karl howell 890 dooley, mr. patrick Name: Name, Length: 891, dtype: object To make each of the strings in the Name column lowercase, select the Name column (see the tutorial on selection of data), add the str accessor and apply the lower method. As such, each of the strings is converted element-wise. Similar to datetime objects in the time series tutorial having a dt accessor, a number of specialized string methods are available when using the str accessor. These methods have in general matching names with the equivalent built-in string methods for single elements, but are applied element-wise (remember element-wise calculations?) on each of the values of the columns. Create a new column Surname that contains the surname of the passengers by extracting the part before the comma. In [5]: titanic["Name"].str.split(",") Out[5]: 0 [Braund, Mr. Owen Harris] 1 [Cumings, Mrs. John Bradley (Florence Briggs ... 2 [Heikkinen, Miss. Laina] 3 [Futrelle, Mrs. Jacques Heath (Lily May Peel)] 4 [Allen, Mr. William Henry] ... 886 [Montvila, Rev. Juozas] 887 [Graham, Miss. Margaret Edith] 888 [Johnston, Miss. Catherine Helen "Carrie"] 889 [Behr, Mr. Karl Howell] 890 [Dooley, Mr. Patrick] Name: Name, Length: 891, dtype: object Using the Series.str.split() method, each of the values is returned as a list of 2 elements. The first element is the part before the comma and the second element is the part after the comma. In [6]: titanic["Surname"] = titanic["Name"].str.split(",").str.get(0) In [7]: titanic["Surname"] Out[7]: 0 Braund 1 Cumings 2 Heikkinen 3 Futrelle 4 Allen ... 886 Montvila 887 Graham 888 Johnston 889 Behr 890 Dooley Name: Surname, Length: 891, dtype: object As we are only interested in the first part representing the surname (element 0), we can again use the str accessor and apply Series.str.get() to extract the relevant part. Indeed, these string functions can be concatenated to combine multiple functions at once! To user guideMore information on extracting parts of strings is available in the user guide section on splitting and replacing strings. Extract the passenger data about the countesses on board of the Titanic. In [8]: titanic["Name"].str.contains("Countess") Out[8]: 0 False 1 False 2 False 3 False 4 False ... 886 False 887 False 888 False 889 False 890 False Name: Name, Length: 891, dtype: bool In [9]: titanic[titanic["Name"].str.contains("Countess")] Out[9]: PassengerId Survived Pclass ... Cabin Embarked Surname 759 760 1 1 ... B77 S Rothes [1 rows x 13 columns] (Interested in her story? See Wikipedia!) The string method Series.str.contains() checks for each of the values in the column Name if the string contains the word Countess and returns for each of the values True (Countess is part of the name) or False (Countess is not part of the name). This output can be used to subselect the data using conditional (boolean) indexing introduced in the subsetting of data tutorial. As there was only one countess on the Titanic, we get one row as a result. Note More powerful extractions on strings are supported, as the Series.str.contains() and Series.str.extract() methods accept regular expressions, but out of scope of this tutorial. To user guideMore information on extracting parts of strings is available in the user guide section on string matching and extracting. Which passenger of the Titanic has the longest name? In [10]: titanic["Name"].str.len() Out[10]: 0 23 1 51 2 22 3 44 4 24 .. 886 21 887 28 888 40 889 21 890 19 Name: Name, Length: 891, dtype: int64 To get the longest name we first have to get the lengths of each of the names in the Name column. By using pandas string methods, the Series.str.len() function is applied to each of the names individually (element-wise). In [11]: titanic["Name"].str.len().idxmax() Out[11]: 307 Next, we need to get the corresponding location, preferably the index label, in the table for which the name length is the largest. The idxmax() method does exactly that. It is not a string method and is applied to integers, so no str is used. In [12]: titanic.loc[titanic["Name"].str.len().idxmax(), "Name"] Out[12]: 'Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)' Based on the index name of the row (307) and the column (Name), we can do a selection using the loc operator, introduced in the tutorial on subsetting. In the “Sex” column, replace values of “male” by “M” and values of “female” by “F”. In [13]: titanic["Sex_short"] = titanic["Sex"].replace({"male": "M", "female": "F"}) In [14]: titanic["Sex_short"] Out[14]: 0 M 1 F 2 F 3 F 4 M .. 886 M 887 F 888 F 889 M 890 M Name: Sex_short, Length: 891, dtype: object Whereas replace() is not a string method, it provides a convenient way to use mappings or vocabularies to translate certain values. It requires a dictionary to define the mapping {from : to}. Warning There is also a replace() method available to replace a specific set of characters. However, when having a mapping of multiple values, this would become: titanic["Sex_short"] = titanic["Sex"].str.replace("female", "F") titanic["Sex_short"] = titanic["Sex_short"].str.replace("male", "M") This would become cumbersome and easily lead to mistakes. Just think (or try out yourself) what would happen if those two statements are applied in the opposite order… REMEMBER String methods are available using the str accessor. String methods work element-wise and can be used for conditional indexing. The replace method is a convenient method to convert values according to a given dictionary. To user guideA full overview is provided in the user guide pages on working with text data.
getting_started/intro_tutorials/10_text_data.html
Index
Index
_ | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z _ __array__() (pandas.Categorical method) (pandas.Series method) __call__() (pandas.option_context method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) __dataframe__() (pandas.DataFrame method) __iter__() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) _concat_same_type() (pandas.api.extensions.ExtensionArray class method) _formatter() (pandas.api.extensions.ExtensionArray method) _from_factorized() (pandas.api.extensions.ExtensionArray class method) _from_sequence() (pandas.api.extensions.ExtensionArray class method) _from_sequence_of_strings() (pandas.api.extensions.ExtensionArray class method) _reduce() (pandas.api.extensions.ExtensionArray method) _values_for_argsort() (pandas.api.extensions.ExtensionArray method) _values_for_factorize() (pandas.api.extensions.ExtensionArray method) A abs() (pandas.DataFrame method) (pandas.Series method) AbstractMethodError AccessorRegistrationWarning add() (pandas.DataFrame method) (pandas.Series method) add_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) add_prefix() (pandas.DataFrame method) (pandas.Series method) add_suffix() (pandas.DataFrame method) (pandas.Series method) agg() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) aggregate() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) align() (pandas.DataFrame method) (pandas.Series method) all() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) allows_duplicate_labels (pandas.Flags property) andrews_curves() (in module pandas.plotting) any() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) append() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Index method) (pandas.Series method) apply() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) apply_index() (pandas.io.formats.style.Styler method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) applymap() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) applymap_index() (pandas.io.formats.style.Styler method) area() (pandas.DataFrame.plot method) (pandas.Series.plot method) argmax() (pandas.Index method) (pandas.Series method) argmin() (pandas.Index method) (pandas.Series method) argsort() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) array (pandas.Index attribute) (pandas.Series property) array() (in module pandas) ArrowDtype (class in pandas) ArrowExtensionArray (class in pandas.arrays) ArrowStringArray (class in pandas.arrays) as_ordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) as_unordered() (pandas.CategoricalIndex method) (pandas.Series.cat method) asfreq() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) asi8 (pandas.Index property) asm8 (pandas.Timedelta attribute) (pandas.Timestamp attribute) asof() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) asof_locs() (pandas.Index method) assert_extension_array_equal() (in module pandas.testing) assert_frame_equal() (in module pandas.testing) assert_index_equal() (in module pandas.testing) assert_series_equal() (in module pandas.testing) assign() (pandas.DataFrame method) astimezone() (pandas.Timestamp method) astype() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) at (pandas.DataFrame property) (pandas.Series property) at_time() (pandas.DataFrame method) (pandas.Series method) AttributeConflictWarning attrs (pandas.DataFrame property) (pandas.Series property) autocorr() (pandas.Series method) autocorrelation_plot() (in module pandas.plotting) axes (pandas.DataFrame property) (pandas.Series property) B backfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) background_gradient() (pandas.io.formats.style.Styler method) bar() (pandas.DataFrame.plot method) (pandas.io.formats.style.Styler method) (pandas.Series.plot method) barh() (pandas.DataFrame.plot method) (pandas.Series.plot method) base (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) BaseIndexer (class in pandas.api.indexers) bdate_range() (in module pandas) BDay (in module pandas.tseries.offsets) between() (pandas.Series method) between_time() (pandas.DataFrame method) (pandas.Series method) bfill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) BMonthBegin (in module pandas.tseries.offsets) BMonthEnd (in module pandas.tseries.offsets) book (pandas.ExcelWriter property) bool() (pandas.DataFrame method) (pandas.Series method) BooleanArray (class in pandas.arrays) BooleanDtype (class in pandas) bootstrap_plot() (in module pandas.plotting) box() (pandas.DataFrame.plot method) (pandas.Series.plot method) boxplot() (in module pandas.plotting) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) BQuarterBegin (class in pandas.tseries.offsets) BQuarterEnd (class in pandas.tseries.offsets) build_table_schema() (in module pandas.io.json) BusinessDay (class in pandas.tseries.offsets) BusinessHour (class in pandas.tseries.offsets) BusinessMonthBegin (class in pandas.tseries.offsets) BusinessMonthEnd (class in pandas.tseries.offsets) BYearBegin (class in pandas.tseries.offsets) BYearEnd (class in pandas.tseries.offsets) C calendar (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) capitalize() (pandas.Series.str method) casefold() (pandas.Series.str method) cat() (pandas.Series method) (pandas.Series.str method) Categorical (class in pandas) CategoricalConversionWarning CategoricalDtype (class in pandas) CategoricalIndex (class in pandas) categories (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) cbday_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) CBMonthBegin (in module pandas.tseries.offsets) CBMonthEnd (in module pandas.tseries.offsets) CDay (in module pandas.tseries.offsets) ceil() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) center() (pandas.Series.str method) check_array_indexer() (in module pandas.api.indexers) check_extension() (pandas.ExcelWriter class method) clear() (pandas.io.formats.style.Styler method) clip() (pandas.DataFrame method) (pandas.Series method) close() (pandas.ExcelWriter method) closed (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) closed_left (pandas.Interval attribute) closed_right (pandas.Interval attribute) ClosedFileError codes (pandas.Categorical property) (pandas.CategoricalIndex property) (pandas.MultiIndex property) (pandas.Series.cat attribute) columns (pandas.DataFrame attribute) combine() (pandas.DataFrame method) (pandas.Series method) (pandas.Timestamp class method) combine_first() (pandas.DataFrame method) (pandas.Series method) compare() (pandas.DataFrame method) (pandas.Series method) components (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) concat() (in module pandas) (pandas.io.formats.style.Styler method) construct_array_type() (pandas.api.extensions.ExtensionDtype class method) construct_from_string() (pandas.api.extensions.ExtensionDtype class method) contains() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) (pandas.Series.str method) convert_dtypes() (pandas.DataFrame method) (pandas.Series method) copy() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) corr (pandas.core.groupby.DataFrameGroupBy property) corr() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) corrwith (pandas.core.groupby.DataFrameGroupBy property) corrwith() (pandas.DataFrame method) count() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) cov (pandas.core.groupby.DataFrameGroupBy property) cov() (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) crosstab() (in module pandas) CSSWarning ctime() (pandas.Timestamp method) cumcount() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) cummax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cummin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumprod() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cumsum() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) cur_sheet (pandas.ExcelWriter property) CustomBusinessDay (class in pandas.tseries.offsets) CustomBusinessHour (class in pandas.tseries.offsets) CustomBusinessMonthBegin (class in pandas.tseries.offsets) CustomBusinessMonthEnd (class in pandas.tseries.offsets) cut() (in module pandas) D data_label (pandas.io.stata.StataReader property) DatabaseError DataError DataFrame (class in pandas) date (pandas.DatetimeIndex property) (pandas.Series.dt attribute) date() (pandas.Timestamp method) date_format (pandas.ExcelWriter property) date_range() (in module pandas) DateOffset (class in pandas.tseries.offsets) datetime_format (pandas.ExcelWriter property) DatetimeArray (class in pandas.arrays) DatetimeIndex (class in pandas) DatetimeTZDtype (class in pandas) Day (class in pandas.tseries.offsets) day (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) day_of_month (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) day_of_week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) day_of_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofweek (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) dayofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) days (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) days_in_month (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) daysinmonth (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) decode() (pandas.Series.str method) delete() (pandas.Index method) delta (pandas.Timedelta attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.Tick attribute) density (pandas.DataFrame.sparse attribute) (pandas.Series.sparse attribute) density() (pandas.DataFrame.plot method) (pandas.Series.plot method) deregister_matplotlib_converters() (in module pandas.plotting) describe() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) describe_option (in module pandas) diff() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) difference() (pandas.Index method) div() (pandas.DataFrame method) (pandas.Series method) divide() (pandas.DataFrame method) (pandas.Series method) divmod() (pandas.Series method) dot() (pandas.DataFrame method) (pandas.Series method) drop() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) drop_duplicates() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) droplevel() (pandas.DataFrame method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) dropna() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) dst() (pandas.Timestamp method) dt() (pandas.Series method) dtype (pandas.api.extensions.ExtensionArray property) (pandas.Categorical property) (pandas.Index attribute) (pandas.Series property) dtypes (pandas.DataFrame property) (pandas.MultiIndex attribute) (pandas.Series property) DtypeWarning duplicated() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) DuplicateLabelError E Easter (class in pandas.tseries.offsets) empty (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) empty() (pandas.api.extensions.ExtensionDtype method) EmptyDataError encode() (pandas.Series.str method) end (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) end_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) endswith() (pandas.Series.str method) engine (pandas.ExcelWriter property) env (pandas.io.formats.style.Styler attribute) eq() (pandas.DataFrame method) (pandas.Series method) equals() (pandas.api.extensions.ExtensionArray method) (pandas.CategoricalIndex method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) eval() (in module pandas) (pandas.DataFrame method) ewm() (pandas.DataFrame method) (pandas.Series method) ExcelWriter (class in pandas) expanding() (pandas.DataFrame method) (pandas.Series method) explode() (pandas.DataFrame method) (pandas.Series method) export() (pandas.io.formats.style.Styler method) ExtensionArray (class in pandas.api.extensions) ExtensionDtype (class in pandas.api.extensions) extract() (pandas.Series.str method) extractall() (pandas.Series.str method) F factorize() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) ffill() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) fill_value (pandas.Series.sparse attribute) fillna (pandas.core.groupby.DataFrameGroupBy property) fillna() (pandas.api.extensions.ExtensionArray method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) filter() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) find() (pandas.Series.str method) findall() (pandas.Series.str method) first() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) first_valid_index() (pandas.DataFrame method) (pandas.Series method) FixedForwardWindowIndexer (class in pandas.api.indexers) Flags (class in pandas) flags (pandas.DataFrame property) (pandas.Series property) Float64Index (class in pandas) floor() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) floordiv() (pandas.DataFrame method) (pandas.Series method) fold (pandas.Timestamp attribute) format() (pandas.Index method) (pandas.io.formats.style.Styler method) format_index() (pandas.io.formats.style.Styler method) freq (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodDtype property) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.Timestamp attribute) freqstr (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Timestamp property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) from_arrays() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) from_breaks() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) from_codes() (pandas.Categorical class method) from_coo() (pandas.Series.sparse class method) from_custom_template() (pandas.io.formats.style.Styler class method) from_dataframe() (in module pandas.api.interchange) from_dict() (pandas.DataFrame class method) from_dummies() (in module pandas) from_frame() (pandas.MultiIndex class method) from_product() (pandas.MultiIndex class method) from_range() (pandas.RangeIndex class method) from_records() (pandas.DataFrame class method) from_spmatrix() (pandas.DataFrame.sparse class method) from_tuples() (pandas.arrays.IntervalArray class method) (pandas.IntervalIndex class method) (pandas.MultiIndex class method) fromisocalendar() (pandas.Timestamp method) fromisoformat() (pandas.Timestamp method) fromordinal() (pandas.Timestamp class method) fromtimestamp() (pandas.Timestamp class method) fullmatch() (pandas.Series.str method) FY5253 (class in pandas.tseries.offsets) FY5253Quarter (class in pandas.tseries.offsets) G ge() (pandas.DataFrame method) (pandas.Series method) get() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) (pandas.Series.str method) get_dummies() (in module pandas) (pandas.Series.str method) get_group() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) get_indexer() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_indexer_for() (pandas.Index method) get_indexer_non_unique() (pandas.Index method) get_level_values() (pandas.Index method) (pandas.MultiIndex method) get_loc() (pandas.Index method) (pandas.IntervalIndex method) (pandas.MultiIndex method) get_loc_level() (pandas.MultiIndex method) get_locs() (pandas.MultiIndex method) get_option (in module pandas) get_rule_code_suffix() (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) get_slice_bound() (pandas.Index method) get_value() (pandas.Index method) get_weeks() (pandas.tseries.offsets.FY5253Quarter method) get_window_bounds() (pandas.api.indexers.BaseIndexer method) (pandas.api.indexers.FixedForwardWindowIndexer method) (pandas.api.indexers.VariableOffsetWindowIndexer method) get_year_end() (pandas.tseries.offsets.FY5253 method) groupby() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Grouper (class in pandas) groups (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) groups() (pandas.HDFStore method) gt() (pandas.DataFrame method) (pandas.Series method) H handles (pandas.ExcelWriter property) has_duplicates (pandas.Index property) hash_array() (in module pandas.util) hash_pandas_object() (in module pandas.util) hasnans (pandas.Index attribute) (pandas.Series property) head() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) hexbin() (pandas.DataFrame.plot method) hide() (pandas.io.formats.style.Styler method) hide_columns() (pandas.io.formats.style.Styler method) hide_index() (pandas.io.formats.style.Styler method) highlight_between() (pandas.io.formats.style.Styler method) highlight_max() (pandas.io.formats.style.Styler method) highlight_min() (pandas.io.formats.style.Styler method) highlight_null() (pandas.io.formats.style.Styler method) highlight_quantile() (pandas.io.formats.style.Styler method) hist (pandas.core.groupby.DataFrameGroupBy property) (pandas.core.groupby.SeriesGroupBy property) hist() (pandas.DataFrame method) (pandas.DataFrame.plot method) (pandas.Series method) (pandas.Series.plot method) holds_integer() (pandas.Index method) holidays (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) Hour (class in pandas.tseries.offsets) hour (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) I iat (pandas.DataFrame property) (pandas.Series property) identical() (pandas.Index method) idxmax() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) idxmin() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) if_sheet_exists (pandas.ExcelWriter property) iloc (pandas.DataFrame property) (pandas.Series property) IncompatibilityWarning Index (class in pandas) index (pandas.DataFrame attribute) (pandas.Series attribute) index() (pandas.Series.str method) indexer_at_time() (pandas.DatetimeIndex method) indexer_between_time() (pandas.DatetimeIndex method) IndexingError IndexSlice (in module pandas) indices (pandas.core.groupby.GroupBy property) (pandas.core.resample.Resampler property) infer_dtype() (in module pandas.api.types) infer_freq() (in module pandas) infer_objects() (pandas.DataFrame method) (pandas.Series method) inferred_freq (pandas.DatetimeIndex attribute) (pandas.TimedeltaIndex attribute) inferred_type (pandas.Index attribute) info() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) insert() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) Int16Dtype (class in pandas) Int32Dtype (class in pandas) Int64Dtype (class in pandas) Int64Index (class in pandas) Int8Dtype (class in pandas) IntCastingNaNError IntegerArray (class in pandas.arrays) interpolate() (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) intersection() (pandas.Index method) Interval (class in pandas) interval_range() (in module pandas) IntervalArray (class in pandas.arrays) IntervalDtype (class in pandas) IntervalIndex (class in pandas) InvalidColumnName InvalidIndexError is_() (pandas.Index method) is_all_dates (pandas.Index attribute) is_anchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_bool() (in module pandas.api.types) is_bool_dtype() (in module pandas.api.types) is_boolean() (pandas.Index method) is_categorical() (in module pandas.api.types) (pandas.Index method) is_categorical_dtype() (in module pandas.api.types) is_complex() (in module pandas.api.types) is_complex_dtype() (in module pandas.api.types) is_datetime64_any_dtype() (in module pandas.api.types) is_datetime64_dtype() (in module pandas.api.types) is_datetime64_ns_dtype() (in module pandas.api.types) is_datetime64tz_dtype() (in module pandas.api.types) is_dict_like() (in module pandas.api.types) is_dtype() (pandas.api.extensions.ExtensionDtype class method) is_empty (pandas.arrays.IntervalArray attribute) (pandas.Interval attribute) (pandas.IntervalIndex property) is_extension_array_dtype() (in module pandas.api.types) is_extension_type() (in module pandas.api.types) is_file_like() (in module pandas.api.types) is_float() (in module pandas.api.types) is_float_dtype() (in module pandas.api.types) is_floating() (pandas.Index method) is_hashable() (in module pandas.api.types) is_int64_dtype() (in module pandas.api.types) is_integer() (in module pandas.api.types) (pandas.Index method) is_integer_dtype() (in module pandas.api.types) is_interval() (in module pandas.api.types) (pandas.Index method) is_interval_dtype() (in module pandas.api.types) is_iterator() (in module pandas.api.types) is_leap_year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_list_like() (in module pandas.api.types) is_mixed() (pandas.Index method) is_monotonic (pandas.Index property) (pandas.Series property) is_monotonic_decreasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_monotonic_increasing (pandas.core.groupby.SeriesGroupBy property) (pandas.Index property) (pandas.Series property) is_month_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_month_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_month_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_named_tuple() (in module pandas.api.types) is_non_overlapping_monotonic (pandas.arrays.IntervalArray property) (pandas.IntervalIndex attribute) is_number() (in module pandas.api.types) is_numeric() (pandas.Index method) is_numeric_dtype() (in module pandas.api.types) is_object() (pandas.Index method) is_object_dtype() (in module pandas.api.types) is_on_offset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_overlapping (pandas.IntervalIndex property) is_period_dtype() (in module pandas.api.types) is_populated (pandas.Timedelta attribute) is_quarter_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_quarter_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_quarter_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_re() (in module pandas.api.types) is_re_compilable() (in module pandas.api.types) is_scalar() (in module pandas.api.types) is_signed_integer_dtype() (in module pandas.api.types) is_sparse() (in module pandas.api.types) is_string_dtype() (in module pandas.api.types) is_timedelta64_dtype() (in module pandas.api.types) is_timedelta64_ns_dtype() (in module pandas.api.types) is_type_compatible() (pandas.Index method) is_unique (pandas.Index attribute) (pandas.Series property) is_unsigned_integer_dtype() (in module pandas.api.types) is_year_end (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_end() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) is_year_start (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) is_year_start() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isalnum() (pandas.Series.str method) isalpha() (pandas.Series.str method) isAnchored() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) isdecimal() (pandas.Series.str method) isdigit() (pandas.Series.str method) isetitem() (pandas.DataFrame method) isin() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) islower() (pandas.Series.str method) isna() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) isnumeric() (pandas.Series.str method) isocalendar() (pandas.Series.dt method) (pandas.Timestamp method) isoformat() (pandas.Timedelta method) (pandas.Timestamp method) isoweekday() (pandas.Timestamp method) isspace() (pandas.Series.str method) istitle() (pandas.Series.str method) isupper() (pandas.Series.str method) item() (pandas.Index method) (pandas.Series method) items() (pandas.DataFrame method) (pandas.Series method) iteritems() (pandas.DataFrame method) (pandas.Series method) iterrows() (pandas.DataFrame method) itertuples() (pandas.DataFrame method) J join() (pandas.DataFrame method) (pandas.Index method) (pandas.Series.str method) json_normalize() (in module pandas) K kde() (pandas.DataFrame.plot method) (pandas.Series.plot method) keys() (pandas.DataFrame method) (pandas.HDFStore method) (pandas.Series method) kind (pandas.api.extensions.ExtensionDtype property) kurt() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) kurtosis() (pandas.DataFrame method) (pandas.Series method) kwds (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) L lag_plot() (in module pandas.plotting) last() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) last_valid_index() (pandas.DataFrame method) (pandas.Series method) LastWeekOfMonth (class in pandas.tseries.offsets) le() (pandas.DataFrame method) (pandas.Series method) left (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) len() (pandas.Series.str method) length (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex property) levels (pandas.MultiIndex attribute) levshape (pandas.MultiIndex property) line() (pandas.DataFrame.plot method) (pandas.Series.plot method) ljust() (pandas.Series.str method) loader (pandas.io.formats.style.Styler attribute) loc (pandas.DataFrame property) (pandas.Series property) lookup() (pandas.DataFrame method) lower() (pandas.Series.str method) lstrip() (pandas.Series.str method) lt() (pandas.DataFrame method) (pandas.Series method) M m_offset (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) mad (pandas.core.groupby.DataFrameGroupBy property) mad() (pandas.DataFrame method) (pandas.Series method) map() (pandas.CategoricalIndex method) (pandas.Index method) (pandas.Series method) mask() (pandas.DataFrame method) (pandas.Series method) match() (pandas.Series.str method) max (pandas.Timedelta attribute) (pandas.Timestamp attribute) max() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) mean() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) median() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) melt() (in module pandas) (pandas.DataFrame method) memory_usage() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) merge() (in module pandas) (pandas.DataFrame method) merge_asof() (in module pandas) merge_ordered() (in module pandas) MergeError Micro (class in pandas.tseries.offsets) microsecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) microseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) mid (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) Milli (class in pandas.tseries.offsets) min (pandas.Timedelta attribute) (pandas.Timestamp attribute) min() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) Minute (class in pandas.tseries.offsets) minute (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) mod() (pandas.DataFrame method) (pandas.Series method) mode() (pandas.DataFrame method) (pandas.Series method) module pandas month (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) month_name() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) month_roll (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) MonthBegin (class in pandas.tseries.offsets) MonthEnd (class in pandas.tseries.offsets) mul() (pandas.DataFrame method) (pandas.Series method) MultiIndex (class in pandas) multiply() (pandas.DataFrame method) (pandas.Series method) N n (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) na_value (pandas.api.extensions.ExtensionDtype property) name (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.Series property) (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) names (pandas.api.extensions.ExtensionDtype property) (pandas.Index property) (pandas.MultiIndex property) Nano (class in pandas.tseries.offsets) nanos (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) nanosecond (pandas.DatetimeIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) nanoseconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) nbytes (pandas.api.extensions.ExtensionArray property) (pandas.Index property) (pandas.Series property) ndim (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) ne() (pandas.DataFrame method) (pandas.Series method) nearest() (pandas.core.resample.Resampler method) next_bday (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) ngroup() (pandas.core.groupby.GroupBy method) nlargest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nlevels (pandas.Index property) (pandas.MultiIndex property) normalize (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) normalize() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Series.str method) (pandas.Timestamp method) notna() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) notnull() (in module pandas) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) now() (pandas.Period method) (pandas.Timestamp class method) npoints (pandas.Series.sparse attribute) nsmallest() (pandas.core.groupby.SeriesGroupBy method) (pandas.DataFrame method) (pandas.Series method) nth (pandas.core.groupby.GroupBy property) NullFrequencyError NumbaUtilError NumExprClobberingError nunique() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) O offset (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) ohlc() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) onOffset() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) open_left (pandas.Interval attribute) open_right (pandas.Interval attribute) option_context (class in pandas) OptionError ordered (pandas.Categorical property) (pandas.CategoricalDtype property) (pandas.CategoricalIndex property) (pandas.Series.cat attribute) ordinal (pandas.Period attribute) OutOfBoundsDatetime OutOfBoundsTimedelta overlaps() (pandas.arrays.IntervalArray method) (pandas.Interval method) (pandas.IntervalIndex method) P pad() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) pandas module pandas_dtype() (in module pandas.api.types) PandasArray (class in pandas.arrays) parallel_coordinates() (in module pandas.plotting) parse() (pandas.ExcelFile method) ParserError ParserWarning partition() (pandas.Series.str method) path (pandas.ExcelWriter property) pct_change() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) PerformanceWarning Period (class in pandas) period_range() (in module pandas) PeriodArray (class in pandas.arrays) PeriodDtype (class in pandas) PeriodIndex (class in pandas) pie() (pandas.DataFrame.plot method) (pandas.Series.plot method) pipe() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) pivot() (in module pandas) (pandas.DataFrame method) pivot_table() (in module pandas) (pandas.DataFrame method) plot (pandas.core.groupby.DataFrameGroupBy property) plot() (pandas.DataFrame method) (pandas.Series method) plot_params (in module pandas.plotting) pop() (pandas.DataFrame method) (pandas.Series method) PossibleDataLossError PossiblePrecisionLoss pow() (pandas.DataFrame method) (pandas.Series method) prod() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) product() (pandas.DataFrame method) (pandas.Series method) put() (pandas.HDFStore method) putmask() (pandas.Index method) PyperclipException PyperclipWindowsException Python Enhancement Proposals PEP 484 PEP 561 PEP 585 PEP 8#imports Q qcut() (in module pandas) qtr_with_extra_week (pandas.tseries.offsets.FY5253Quarter attribute) quantile() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) quarter (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) QuarterBegin (class in pandas.tseries.offsets) QuarterEnd (class in pandas.tseries.offsets) query() (pandas.DataFrame method) qyear (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) R radd() (pandas.DataFrame method) (pandas.Series method) radviz() (in module pandas.plotting) RangeIndex (class in pandas) rank() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) ravel() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) rdiv() (pandas.DataFrame method) (pandas.Series method) rdivmod() (pandas.Series method) read_clipboard() (in module pandas) read_csv() (in module pandas) read_excel() (in module pandas) read_feather() (in module pandas) read_fwf() (in module pandas) read_gbq() (in module pandas) read_hdf() (in module pandas) read_html() (in module pandas) read_json() (in module pandas) read_orc() (in module pandas) read_parquet() (in module pandas) read_pickle() (in module pandas) read_sas() (in module pandas) read_spss() (in module pandas) read_sql() (in module pandas) read_sql_query() (in module pandas) read_sql_table() (in module pandas) read_stata() (in module pandas) read_table() (in module pandas) read_xml() (in module pandas) register_dataframe_accessor() (in module pandas.api.extensions) register_extension_dtype() (in module pandas.api.extensions) register_index_accessor() (in module pandas.api.extensions) register_matplotlib_converters() (in module pandas.plotting) register_series_accessor() (in module pandas.api.extensions) reindex() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) reindex_like() (pandas.DataFrame method) (pandas.Series method) relabel_index() (pandas.io.formats.style.Styler method) remove_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) remove_unused_levels() (pandas.MultiIndex method) removeprefix() (pandas.Series.str method) removesuffix() (pandas.Series.str method) rename() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) rename_axis() (pandas.DataFrame method) (pandas.Series method) rename_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) render() (pandas.io.formats.style.Styler method) reorder_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) reorder_levels() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) repeat() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Series.str method) replace() (pandas.DataFrame method) (pandas.Series method) (pandas.Series.str method) (pandas.Timestamp method) resample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) reset_index() (pandas.DataFrame method) (pandas.Series method) reset_option (in module pandas) resolution (pandas.Timedelta attribute) (pandas.Timestamp attribute) resolution_string (pandas.Timedelta attribute) rfind() (pandas.Series.str method) rfloordiv() (pandas.DataFrame method) (pandas.Series method) right (pandas.arrays.IntervalArray property) (pandas.Interval attribute) (pandas.IntervalIndex attribute) rindex() (pandas.Series.str method) rjust() (pandas.Series.str method) rmod() (pandas.DataFrame method) (pandas.Series method) rmul() (pandas.DataFrame method) (pandas.Series method) rollback() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rollforward() (pandas.tseries.offsets.BQuarterBegin method) (pandas.tseries.offsets.BQuarterEnd method) (pandas.tseries.offsets.BusinessDay method) (pandas.tseries.offsets.BusinessHour method) (pandas.tseries.offsets.BusinessMonthBegin method) (pandas.tseries.offsets.BusinessMonthEnd method) (pandas.tseries.offsets.BYearBegin method) (pandas.tseries.offsets.BYearEnd method) (pandas.tseries.offsets.CustomBusinessDay method) (pandas.tseries.offsets.CustomBusinessHour method) (pandas.tseries.offsets.CustomBusinessMonthBegin method) (pandas.tseries.offsets.CustomBusinessMonthEnd method) (pandas.tseries.offsets.DateOffset method) (pandas.tseries.offsets.Day method) (pandas.tseries.offsets.Easter method) (pandas.tseries.offsets.FY5253 method) (pandas.tseries.offsets.FY5253Quarter method) (pandas.tseries.offsets.Hour method) (pandas.tseries.offsets.LastWeekOfMonth method) (pandas.tseries.offsets.Micro method) (pandas.tseries.offsets.Milli method) (pandas.tseries.offsets.Minute method) (pandas.tseries.offsets.MonthBegin method) (pandas.tseries.offsets.MonthEnd method) (pandas.tseries.offsets.Nano method) (pandas.tseries.offsets.QuarterBegin method) (pandas.tseries.offsets.QuarterEnd method) (pandas.tseries.offsets.Second method) (pandas.tseries.offsets.SemiMonthBegin method) (pandas.tseries.offsets.SemiMonthEnd method) (pandas.tseries.offsets.Tick method) (pandas.tseries.offsets.Week method) (pandas.tseries.offsets.WeekOfMonth method) (pandas.tseries.offsets.YearBegin method) (pandas.tseries.offsets.YearEnd method) rolling() (pandas.DataFrame method) (pandas.Series method) round() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) (pandas.Timestamp method) rpartition() (pandas.Series.str method) rpow() (pandas.DataFrame method) (pandas.Series method) rsplit() (pandas.Series.str method) rstrip() (pandas.Series.str method) rsub() (pandas.DataFrame method) (pandas.Series method) rtruediv() (pandas.DataFrame method) (pandas.Series method) rule_code (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.BusinessMonthBegin attribute) (pandas.tseries.offsets.BusinessMonthEnd attribute) (pandas.tseries.offsets.BYearBegin attribute) (pandas.tseries.offsets.BYearEnd attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) (pandas.tseries.offsets.DateOffset attribute) (pandas.tseries.offsets.Day attribute) (pandas.tseries.offsets.Easter attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.Hour attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Micro attribute) (pandas.tseries.offsets.Milli attribute) (pandas.tseries.offsets.Minute attribute) (pandas.tseries.offsets.MonthBegin attribute) (pandas.tseries.offsets.MonthEnd attribute) (pandas.tseries.offsets.Nano attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) (pandas.tseries.offsets.Second attribute) (pandas.tseries.offsets.SemiMonthBegin attribute) (pandas.tseries.offsets.SemiMonthEnd attribute) (pandas.tseries.offsets.Tick attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) (pandas.tseries.offsets.YearBegin attribute) (pandas.tseries.offsets.YearEnd attribute) S sample() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Series method) save() (pandas.ExcelWriter method) scatter() (pandas.DataFrame.plot method) scatter_matrix() (in module pandas.plotting) searchsorted() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) Second (class in pandas.tseries.offsets) second (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) seconds (pandas.Series.dt attribute) (pandas.Timedelta attribute) (pandas.TimedeltaIndex property) select() (pandas.HDFStore method) select_dtypes() (pandas.DataFrame method) sem() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) SemiMonthBegin (class in pandas.tseries.offsets) SemiMonthEnd (class in pandas.tseries.offsets) Series (class in pandas) set_axis() (pandas.DataFrame method) (pandas.Series method) set_caption() (pandas.io.formats.style.Styler method) set_categories() (pandas.CategoricalIndex method) (pandas.Series.cat method) set_closed() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) set_codes() (pandas.MultiIndex method) set_flags() (pandas.DataFrame method) (pandas.Series method) set_index() (pandas.DataFrame method) set_levels() (pandas.MultiIndex method) set_na_rep() (pandas.io.formats.style.Styler method) set_names() (pandas.Index method) set_option (in module pandas) set_precision() (pandas.io.formats.style.Styler method) set_properties() (pandas.io.formats.style.Styler method) set_sticky() (pandas.io.formats.style.Styler method) set_table_attributes() (pandas.io.formats.style.Styler method) set_table_styles() (pandas.io.formats.style.Styler method) set_td_classes() (pandas.io.formats.style.Styler method) set_tooltips() (pandas.io.formats.style.Styler method) set_uuid() (pandas.io.formats.style.Styler method) set_value() (pandas.Index method) SettingWithCopyError SettingWithCopyWarning shape (pandas.api.extensions.ExtensionArray property) (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) sheets (pandas.ExcelWriter property) shift() (pandas.api.extensions.ExtensionArray method) (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) show_versions() (in module pandas) size (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) size() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) skew (pandas.core.groupby.DataFrameGroupBy property) skew() (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.DataFrame method) (pandas.Series method) slice() (pandas.Series.str method) slice_indexer() (pandas.Index method) slice_locs() (pandas.Index method) slice_replace() (pandas.Series.str method) slice_shift() (pandas.DataFrame method) (pandas.Series method) snap() (pandas.DatetimeIndex method) sort() (pandas.Index method) sort_index() (pandas.DataFrame method) (pandas.Series method) sort_values() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) sortlevel() (pandas.Index method) (pandas.MultiIndex method) sp_values (pandas.Series.sparse attribute) sparse() (pandas.DataFrame method) (pandas.Series method) SparseArray (class in pandas.arrays) SparseDtype (class in pandas) SpecificationError split() (pandas.Series.str method) squeeze() (pandas.DataFrame method) (pandas.Series method) stack() (pandas.DataFrame method) start (pandas.RangeIndex property) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) start_time (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) startingMonth (pandas.tseries.offsets.BQuarterBegin attribute) (pandas.tseries.offsets.BQuarterEnd attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.QuarterBegin attribute) (pandas.tseries.offsets.QuarterEnd attribute) startswith() (pandas.Series.str method) std() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) step (pandas.RangeIndex property) stop (pandas.RangeIndex property) str() (pandas.Index method) (pandas.Series method) strftime() (pandas.DatetimeIndex method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series.dt method) (pandas.Timestamp method) StringArray (class in pandas.arrays) StringDtype (class in pandas) strip() (pandas.Series.str method) strptime() (pandas.Timestamp class method) style (pandas.DataFrame property) Styler (class in pandas.io.formats.style) sub() (pandas.DataFrame method) (pandas.Series method) subtract() (pandas.DataFrame method) (pandas.Series method) subtype (pandas.IntervalDtype property) sum() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) supported_extensions (pandas.ExcelWriter property) swapaxes() (pandas.DataFrame method) (pandas.Series method) swapcase() (pandas.Series.str method) swaplevel() (pandas.DataFrame method) (pandas.MultiIndex method) (pandas.Series method) symmetric_difference() (pandas.Index method) T T (pandas.DataFrame property) (pandas.Index property) (pandas.Series property) table() (in module pandas.plotting) tail() (pandas.core.groupby.GroupBy method) (pandas.DataFrame method) (pandas.Series method) take (pandas.core.groupby.DataFrameGroupBy property) take() (pandas.api.extensions.ExtensionArray method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) template_html (pandas.io.formats.style.Styler attribute) template_html_style (pandas.io.formats.style.Styler attribute) template_html_table (pandas.io.formats.style.Styler attribute) template_latex (pandas.io.formats.style.Styler attribute) template_string (pandas.io.formats.style.Styler attribute) test() (in module pandas) text_gradient() (pandas.io.formats.style.Styler method) Tick (class in pandas.tseries.offsets) time (pandas.DatetimeIndex property) (pandas.Series.dt attribute) time() (pandas.Timestamp method) Timedelta (class in pandas) timedelta_range() (in module pandas) TimedeltaArray (class in pandas.arrays) TimedeltaIndex (class in pandas) Timestamp (class in pandas) timestamp() (pandas.Timestamp method) timetuple() (pandas.Timestamp method) timetz (pandas.DatetimeIndex property) (pandas.Series.dt attribute) timetz() (pandas.Timestamp method) title() (pandas.Series.str method) to_clipboard() (pandas.DataFrame method) (pandas.Series method) to_coo() (pandas.DataFrame.sparse method) (pandas.Series.sparse method) to_csv() (pandas.DataFrame method) (pandas.Series method) to_datetime() (in module pandas) to_datetime64() (pandas.Timestamp method) to_dense() (pandas.DataFrame.sparse method) to_dict() (pandas.DataFrame method) (pandas.Series method) to_excel() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_feather() (pandas.DataFrame method) to_flat_index() (pandas.Index method) (pandas.MultiIndex method) to_frame() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.MultiIndex method) (pandas.Series method) (pandas.TimedeltaIndex method) to_gbq() (pandas.DataFrame method) to_hdf() (pandas.DataFrame method) (pandas.Series method) to_html() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) to_json() (pandas.DataFrame method) (pandas.Series method) to_julian_date() (pandas.Timestamp method) to_latex() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_list() (pandas.Index method) (pandas.Series method) to_markdown() (pandas.DataFrame method) (pandas.Series method) to_native_types() (pandas.Index method) to_numeric() (in module pandas) to_numpy() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) (pandas.Timestamp method) to_offset() (in module pandas.tseries.frequencies) to_orc() (pandas.DataFrame method) to_parquet() (pandas.DataFrame method) to_period() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) to_perioddelta() (pandas.DatetimeIndex method) to_pickle() (pandas.DataFrame method) (pandas.Series method) to_pydatetime() (pandas.DatetimeIndex method) (pandas.Series.dt method) (pandas.Timestamp method) to_pytimedelta() (pandas.Series.dt method) (pandas.Timedelta method) (pandas.TimedeltaIndex method) to_records() (pandas.DataFrame method) to_series() (pandas.DatetimeIndex method) (pandas.Index method) (pandas.TimedeltaIndex method) to_sql() (pandas.DataFrame method) (pandas.Series method) to_stata() (pandas.DataFrame method) to_string() (pandas.DataFrame method) (pandas.io.formats.style.Styler method) (pandas.Series method) to_timedelta() (in module pandas) to_timedelta64() (pandas.Timedelta method) to_timestamp() (pandas.DataFrame method) (pandas.Period method) (pandas.PeriodIndex method) (pandas.Series method) to_tuples() (pandas.arrays.IntervalArray method) (pandas.IntervalIndex method) to_xarray() (pandas.DataFrame method) (pandas.Series method) to_xml() (pandas.DataFrame method) today() (pandas.Timestamp class method) tolist() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) toordinal() (pandas.Timestamp method) total_seconds() (pandas.Series.dt method) (pandas.Timedelta method) transform() (pandas.core.groupby.DataFrameGroupBy method) (pandas.core.groupby.SeriesGroupBy method) (pandas.core.resample.Resampler method) (pandas.DataFrame method) (pandas.Series method) translate() (pandas.Series.str method) transpose() (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) truediv() (pandas.DataFrame method) (pandas.Series method) truncate() (pandas.DataFrame method) (pandas.Series method) tshift (pandas.core.groupby.DataFrameGroupBy property) tshift() (pandas.DataFrame method) (pandas.Series method) type (pandas.api.extensions.ExtensionDtype property) tz (pandas.DatetimeIndex property) (pandas.DatetimeTZDtype property) (pandas.Series.dt attribute) (pandas.Timestamp property) tz_convert() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tz_localize() (pandas.DataFrame method) (pandas.DatetimeIndex method) (pandas.Series method) (pandas.Series.dt method) (pandas.Timestamp method) tzinfo (pandas.Timestamp attribute) tzname() (pandas.Timestamp method) U UInt16Dtype (class in pandas) UInt32Dtype (class in pandas) UInt64Dtype (class in pandas) UInt64Index (class in pandas) UInt8Dtype (class in pandas) UndefinedVariableError union() (pandas.Index method) union_categoricals() (in module pandas.api.types) unique (pandas.core.groupby.SeriesGroupBy property) unique() (in module pandas) (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) unit (pandas.DatetimeTZDtype property) UnsortedIndexError unstack() (pandas.DataFrame method) (pandas.Series method) UnsupportedFunctionCall update() (pandas.DataFrame method) (pandas.Series method) upper() (pandas.Series.str method) use() (pandas.io.formats.style.Styler method) utcfromtimestamp() (pandas.Timestamp class method) utcnow() (pandas.Timestamp class method) utcoffset() (pandas.Timestamp method) utctimetuple() (pandas.Timestamp method) V value (pandas.Timedelta attribute) (pandas.Timestamp attribute) value_counts() (pandas.core.groupby.DataFrameGroupBy method) (pandas.DataFrame method) (pandas.Index method) (pandas.Series method) value_labels() (pandas.io.stata.StataReader method) ValueLabelTypeMismatch values (pandas.DataFrame property) (pandas.Index property) (pandas.IntervalIndex property) (pandas.Series property) var() (pandas.core.groupby.GroupBy method) (pandas.core.resample.Resampler method) (pandas.core.window.ewm.ExponentialMovingWindow method) (pandas.core.window.expanding.Expanding method) (pandas.core.window.rolling.Rolling method) (pandas.core.window.rolling.Window method) (pandas.DataFrame method) (pandas.Series method) variable_labels() (pandas.io.stata.StataReader method) VariableOffsetWindowIndexer (class in pandas.api.indexers) variation (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) view() (pandas.api.extensions.ExtensionArray method) (pandas.Index method) (pandas.Series method) (pandas.Timedelta method) W walk() (pandas.HDFStore method) Week (class in pandas.tseries.offsets) week (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.tseries.offsets.FY5253 attribute) (pandas.tseries.offsets.FY5253Quarter attribute) (pandas.tseries.offsets.LastWeekOfMonth attribute) (pandas.tseries.offsets.Week attribute) (pandas.tseries.offsets.WeekOfMonth attribute) weekday() (pandas.Timestamp method) weekmask (pandas.tseries.offsets.BusinessDay attribute) (pandas.tseries.offsets.BusinessHour attribute) (pandas.tseries.offsets.CustomBusinessDay attribute) (pandas.tseries.offsets.CustomBusinessHour attribute) (pandas.tseries.offsets.CustomBusinessMonthBegin attribute) (pandas.tseries.offsets.CustomBusinessMonthEnd attribute) WeekOfMonth (class in pandas.tseries.offsets) weekofyear (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) where() (pandas.DataFrame method) (pandas.Index method) (pandas.io.formats.style.Styler method) (pandas.Series method) wide_to_long() (in module pandas) wrap() (pandas.Series.str method) write_cells() (pandas.ExcelWriter method) write_file() (pandas.io.stata.StataWriter method) X xs() (pandas.DataFrame method) (pandas.Series method) Y year (pandas.DatetimeIndex property) (pandas.Period attribute) (pandas.PeriodIndex property) (pandas.Series.dt attribute) (pandas.Timestamp attribute) year_has_extra_week() (pandas.tseries.offsets.FY5253Quarter method) YearBegin (class in pandas.tseries.offsets) YearEnd (class in pandas.tseries.offsets) Z zfill() (pandas.Series.str method)
genindex.html
pandas.core.window.expanding.Expanding.mean
`pandas.core.window.expanding.Expanding.mean` Calculate the expanding mean.
Expanding.mean(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the expanding mean. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.meanAggregating mean for Series. pandas.DataFrame.meanAggregating mean for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
reference/api/pandas.core.window.expanding.Expanding.mean.html
pandas.tseries.offsets.YearBegin
`pandas.tseries.offsets.YearBegin` DateOffset increments between calendar year begin dates. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.YearBegin() Timestamp('2023-01-01 00:00:00') ```
class pandas.tseries.offsets.YearBegin# DateOffset increments between calendar year begin dates. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> ts + pd.offsets.YearBegin() Timestamp('2023-01-01 00:00:00') Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. name Return a string representing the base frequency. month n nanos normalize rule_code Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.YearBegin.html
pandas.tseries.offsets.BusinessMonthBegin.isAnchored
pandas.tseries.offsets.BusinessMonthBegin.isAnchored
BusinessMonthBegin.isAnchored()#
reference/api/pandas.tseries.offsets.BusinessMonthBegin.isAnchored.html
pandas.read_clipboard
`pandas.read_clipboard` Read text from clipboard and pass to read_csv. A string or regex delimiter. The default of ‘s+’ denotes one or more whitespace characters.
pandas.read_clipboard(sep='\\s+', **kwargs)[source]# Read text from clipboard and pass to read_csv. Parameters sepstr, default ‘s+’A string or regex delimiter. The default of ‘s+’ denotes one or more whitespace characters. **kwargsSee read_csv for the full argument list. Returns DataFrameA parsed DataFrame object.
reference/api/pandas.read_clipboard.html
pandas.read_csv
`pandas.read_csv` Read a comma-separated values (csv) file into DataFrame. ``` >>> pd.read_csv('data.csv') ```
pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, squeeze=None, prefix=_NoDefault.no_default, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=None, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, error_bad_lines=None, warn_bad_lines=None, on_bad_lines=None, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None)[source]# Read a comma-separated values (csv) file into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for IO Tools. Parameters filepath_or_bufferstr, path object or file-like objectAny valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a read() method, such as a file handle (e.g. via builtin open function) or StringIO. sepstr, default ‘,’Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python’s builtin sniffer tool, csv.Sniffer. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\r\t'. delimiterstr, default NoneAlias for sep. headerint, list of int, None, default ‘infer’Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0 and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to header=None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file. namesarray-like, optionalList of column names to use. If the file contains a header row, then you should explicitly pass header=0 to override the column names. Duplicates in this list are not allowed. index_colint, str, sequence of int / str, or False, optional, default NoneColumn(s) to use as the row labels of the DataFrame, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: index_col=False can be used to force pandas to not use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecolslist-like or callable, optionalReturn a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). If names are given, the document header row(s) are not taken into account. For example, a valid list-like usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Element order is ignored, so usecols=[0, 1] is the same as [1, 0]. To instantiate a DataFrame from data with element order preserved use pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage. squeezebool, default FalseIf the parsed data only contains one column then return a Series. Deprecated since version 1.4.0: Append .squeeze("columns") to the call to read_csv to squeeze the data. prefixstr, optionalPrefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, … Deprecated since version 1.4.0: Use a list comprehension on the DataFrame’s columns after calling read_csv. mangle_dupe_colsbool, default TrueDuplicate columns will be specified as ‘X’, ‘X.1’, …’X.N’, rather than ‘X’…’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Deprecated since version 1.5.0: Not implemented, and a new argument to specify the pattern for the names of duplicated columns will be added instead dtypeType name or dict of column -> type, optionalData type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32, ‘c’: ‘Int64’} Use str or object together with suitable na_values settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. New in version 1.5.0: Support for defaultdict was added. Specify a defaultdict as input where the default determines the dtype of the columns which are not explicitly listed. engine{‘c’, ‘python’, ‘pyarrow’}, optionalParser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine. New in version 1.4.0: The “pyarrow” engine was added as an experimental engine, and some features are unsupported, or may not work correctly, with this engine. convertersdict, optionalDict of functions for converting values in certain columns. Keys can either be integers or column labels. true_valueslist, optionalValues to consider as True. false_valueslist, optionalValues to consider as False. skipinitialspacebool, default FalseSkip spaces after delimiter. skiprowslist-like, int or callable, optionalLine numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be lambda x: x in [0, 2]. skipfooterint, default 0Number of lines at bottom of file to skip (Unsupported with engine=’c’). nrowsint, optionalNumber of rows of file to read. Useful for reading pieces of large files. na_valuesscalar, str, list-like, or dict, optionalAdditional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’. keep_default_nabool, default TrueWhether or not to include the default NaN values when parsing the data. Depending on whether na_values is passed in, the behavior is as follows: If keep_default_na is True, and na_values are specified, na_values is appended to the default NaN values used for parsing. If keep_default_na is True, and na_values are not specified, only the default NaN values are used for parsing. If keep_default_na is False, and na_values are specified, only the NaN values specified na_values are used for parsing. If keep_default_na is False, and na_values are not specified, no strings will be parsed as NaN. Note that if na_filter is passed in as False, the keep_default_na and na_values parameters will be ignored. na_filterbool, default TrueDetect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbosebool, default FalseIndicate number of NA values placed in non-numeric columns. skip_blank_linesbool, default TrueIf True, skip over blank lines rather than interpreting as NaN values. parse_datesbool or list of int or names or list of lists or dict, default FalseThe behavior is as follows: boolean. If True -> try parsing the index. list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv. To parse an index or column with a mixture of timezones, specify date_parser to be a partially-applied pandas.to_datetime() with utc=True. See Parsing a CSV with mixed timezones for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_formatbool, default FalseIf True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_colbool, default FalseIf True and parse_dates specifies combining multiple columns then keep the original columns. date_parserfunction, optionalFunction to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirstbool, default FalseDD/MM format dates, international and European format. cache_datesbool, default TrueIf True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. New in version 0.25.0. iteratorbool, default FalseReturn TextFileReader object for iteration or getting chunks with get_chunk(). Changed in version 1.2: TextFileReader is a context manager. chunksizeint, optionalReturn TextFileReader object for iteration. See the IO Tools docs for more information on iterator and chunksize. Changed in version 1.2: TextFileReader is a context manager. compressionstr or dict, default ‘infer’For on-the-fly decompression of on-disk data. If ‘infer’ and ‘filepath_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to None for no decompression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdDecompressor or tarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: compression={'method': 'zstd', 'dict_data': my_compression_dict}. New in version 1.5.0: Added support for .tar files. Changed in version 1.4.0: Zstandard support. thousandsstr, optionalThousands separator. decimalstr, default ‘.’Character to recognize as decimal point (e.g. use ‘,’ for European data). lineterminatorstr (length 1), optionalCharacter to break file into lines. Only valid with C parser. quotecharstr (length 1), optionalThe character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quotingint or csv.QUOTE_* instance, default 0Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequotebool, default TrueWhen quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element. escapecharstr (length 1), optionalOne-character string used to escape other characters. commentstr, optionalIndicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing #empty\na,b,c\n1,2,3 with header=0 will result in ‘a,b,c’ being treated as the header. encodingstr, optionalEncoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings . Changed in version 1.2: When encoding is None, errors="replace" is passed to open(). Otherwise, errors="strict" is passed to open(). This behavior was previously only the case for engine="python". Changed in version 1.3.0: encoding_errors is a new argument. encoding has no longer an influence on how encoding errors are handled. encoding_errorsstr, optional, default “strict”How encoding errors are treated. List of possible values . New in version 1.3.0. dialectstr or csv.Dialect, optionalIf provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. error_bad_linesbool, optional, default NoneLines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will be dropped from the DataFrame that is returned. Deprecated since version 1.3.0: The on_bad_lines parameter should be used instead to specify behavior upon encountering a bad line instead. warn_bad_linesbool, optional, default NoneIf error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. Deprecated since version 1.3.0: The on_bad_lines parameter should be used instead to specify behavior upon encountering a bad line instead. on_bad_lines{‘error’, ‘warn’, ‘skip’} or callable, default ‘error’Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are : ‘error’, raise an Exception when a bad line is encountered. ‘warn’, raise a warning when a bad line is encountered and skip that line. ‘skip’, skip bad lines without raising or warning when they are encountered. New in version 1.3.0. New in version 1.4.0: callable, function with signature (bad_line: list[str]) -> list[str] | None that will process a single bad line. bad_line is a list of strings split by the sep. If the function returns None, the bad line will be ignored. If the function returns a new list of strings with more elements than expected, a ParserWarning will be emitted while dropping extra elements. Only supported when engine="python" delim_whitespacebool, default FalseSpecifies whether or not whitespace (e.g. ' ' or '    ') will be used as the sep. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter. low_memorybool, default TrueInternally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser). memory_mapbool, default FalseIf a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precisionstr, optionalSpecifies which converter the C engine should use for floating-point values. The options are None or ‘high’ for the ordinary converter, ‘legacy’ for the original lower precision pandas converter, and ‘round_trip’ for the round-trip converter. Changed in version 1.2. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2. Returns DataFrame or TextParserA comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See also DataFrame.to_csvWrite DataFrame to a comma-separated values (csv) file. read_csvRead a comma-separated values (csv) file into DataFrame. read_fwfRead a table of fixed-width formatted lines into DataFrame. Examples >>> pd.read_csv('data.csv')
reference/api/pandas.read_csv.html
pandas.tseries.offsets.Hour.copy
`pandas.tseries.offsets.Hour.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
Hour.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.Hour.copy.html
pandas.Series.argmax
`pandas.Series.argmax` Return int position of the largest value in the Series. If the maximum is achieved in multiple locations, the first row position is returned. ``` >>> s = pd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0, ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}) >>> s Corn Flakes 100.0 Almond Delight 110.0 Cinnamon Toast Crunch 120.0 Cocoa Puff 110.0 dtype: float64 ```
Series.argmax(axis=None, skipna=True, *args, **kwargs)[source]# Return int position of the largest value in the Series. If the maximum is achieved in multiple locations, the first row position is returned. Parameters axis{None}Unused. Parameter needed for compatibility with DataFrame. skipnabool, default TrueExclude NA/null values when showing the result. *args, **kwargsAdditional arguments and keywords for compatibility with NumPy. Returns intRow position of the maximum value. See also Series.argmaxReturn position of the maximum value. Series.argminReturn position of the minimum value. numpy.ndarray.argmaxEquivalent method for numpy arrays. Series.idxmaxReturn index label of the maximum values. Series.idxminReturn index label of the minimum values. Examples Consider dataset containing cereal calories >>> s = pd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0, ... 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}) >>> s Corn Flakes 100.0 Almond Delight 110.0 Cinnamon Toast Crunch 120.0 Cocoa Puff 110.0 dtype: float64 >>> s.argmax() 2 >>> s.argmin() 0 The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.
reference/api/pandas.Series.argmax.html
pandas.Series.copy
`pandas.Series.copy` Make a copy of this object’s indices and data. ``` >>> s = pd.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 ```
Series.copy(deep=True)[source]# Make a copy of this object’s indices and data. When deep=True (default), a new object will be created with a copy of the calling object’s data and indices. Modifications to the data or indices of the copy will not be reflected in the original object (see notes below). When deep=False, a new object will be created without copying the calling object’s data or index (only references to the data and index are copied). Any changes to the data of the original will be reflected in the shallow copy (and vice versa). Parameters deepbool, default TrueMake a deep copy, including a copy of the data and the indices. With deep=False neither the indices nor the data are copied. Returns copySeries or DataFrameObject type matches caller. Notes When deep=True, data is copied but actual Python objects will not be copied recursively, only the reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively copies object data (see examples below). While Index objects are copied when deep=True, the underlying numpy array is not copied for performance reasons. Since Index is immutable, the underlying data can be safely shared and a copy is not needed. Since pandas is not thread safe, see the gotchas when copying in a threading environment. Examples >>> s = pd.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 >>> s_copy = s.copy() >>> s_copy a 1 b 2 dtype: int64 Shallow copy versus default (deep) copy: >>> s = pd.Series([1, 2], index=["a", "b"]) >>> deep = s.copy() >>> shallow = s.copy(deep=False) Shallow copy shares data and index with original. >>> s is shallow False >>> s.values is shallow.values and s.index is shallow.index True Deep copy has own copy of data and index. >>> s is deep False >>> s.values is deep.values or s.index is deep.index False Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged. >>> s[0] = 3 >>> shallow[1] = 4 >>> s a 3 b 4 dtype: int64 >>> shallow a 3 b 4 dtype: int64 >>> deep a 1 b 2 dtype: int64 Note that when copying an object containing Python objects, a deep copy will copy the data, but will not do so recursively. Updating a nested data object will be reflected in the deep copy. >>> s = pd.Series([[1, 2], [3, 4]]) >>> deep = s.copy() >>> s[0][0] = 10 >>> s 0 [10, 2] 1 [3, 4] dtype: object >>> deep 0 [10, 2] 1 [3, 4] dtype: object
reference/api/pandas.Series.copy.html
pandas.DataFrame.radd
`pandas.DataFrame.radd` Get Addition of dataframe and other, element-wise (binary operator radd). ``` >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 ```
DataFrame.radd(other, axis='columns', level=None, fill_value=None)[source]# Get Addition of dataframe and other, element-wise (binary operator radd). Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs. With reverse version, add. Among flexible wrappers (add, sub, mul, div, mod, pow) to arithmetic operators: +, -, *, /, //, %, **. Parameters otherscalar, sequence, Series, dict or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}Whether to compare by the index (0 or ‘index’) or columns. (1 or ‘columns’). For Series input, axis to match Series index on. levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valuefloat or None, default NoneFill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing. Returns DataFrameResult of the arithmetic operation. See also DataFrame.addAdd DataFrames. DataFrame.subSubtract DataFrames. DataFrame.mulMultiply DataFrames. DataFrame.divDivide DataFrames (float division). DataFrame.truedivDivide DataFrames (float division). DataFrame.floordivDivide DataFrames (integer division). DataFrame.modCalculate modulo (remainder after division). DataFrame.powCalculate exponential power. Notes Mismatched indices will be unioned together. Examples >>> df = pd.DataFrame({'angles': [0, 3, 4], ... 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle']) >>> df angles degrees circle 0 360 triangle 3 180 rectangle 4 360 Add a scalar with operator version which return the same results. >>> df + 1 angles degrees circle 1 361 triangle 4 181 rectangle 5 361 >>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361 Divide by constant with reverse version. >>> df.div(10) angles degrees circle 0.0 36.0 triangle 0.3 18.0 rectangle 0.4 36.0 >>> df.rdiv(10) angles degrees circle inf 0.027778 triangle 3.333333 0.055556 rectangle 2.500000 0.027778 Subtract a list and Series by axis with operator version. >>> df - [1, 2] angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub([1, 2], axis='columns') angles degrees circle -1 358 triangle 2 178 rectangle 3 358 >>> df.sub(pd.Series([1, 1, 1], index=['circle', 'triangle', 'rectangle']), ... axis='index') angles degrees circle -1 359 triangle 2 179 rectangle 3 359 Multiply a dictionary by axis. >>> df.mul({'angles': 0, 'degrees': 2}) angles degrees circle 0 720 triangle 0 360 rectangle 0 720 >>> df.mul({'circle': 0, 'triangle': 2, 'rectangle': 3}, axis='index') angles degrees circle 0 0 triangle 6 360 rectangle 12 1080 Multiply a DataFrame of different shape with operator version. >>> other = pd.DataFrame({'angles': [0, 3, 4]}, ... index=['circle', 'triangle', 'rectangle']) >>> other angles circle 0 triangle 3 rectangle 4 >>> df * other angles degrees circle 0 NaN triangle 9 NaN rectangle 16 NaN >>> df.mul(other, fill_value=0) angles degrees circle 0 0.0 triangle 9 0.0 rectangle 16 0.0 Divide by a MultiIndex by level. >>> df_multindex = pd.DataFrame({'angles': [0, 3, 4, 4, 5, 6], ... 'degrees': [360, 180, 360, 360, 540, 720]}, ... index=[['A', 'A', 'A', 'B', 'B', 'B'], ... ['circle', 'triangle', 'rectangle', ... 'square', 'pentagon', 'hexagon']]) >>> df_multindex angles degrees A circle 0 360 triangle 3 180 rectangle 4 360 B square 4 360 pentagon 5 540 hexagon 6 720 >>> df.div(df_multindex, level=1, fill_value=0) angles degrees A circle NaN 1.0 triangle 1.0 1.0 rectangle 1.0 1.0 B square 0.0 0.0 pentagon 0.0 0.0 hexagon 0.0 0.0
reference/api/pandas.DataFrame.radd.html
pandas.core.window.rolling.Window.mean
`pandas.core.window.rolling.Window.mean` Calculate the rolling weighted window mean.
Window.mean(numeric_only=False, *args, **kwargs)[source]# Calculate the rolling weighted window mean. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsKeyword arguments to configure the SciPy weighted window type. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.meanAggregating mean for Series. pandas.DataFrame.meanAggregating mean for DataFrame.
reference/api/pandas.core.window.rolling.Window.mean.html
pandas.Index.slice_indexer
`pandas.Index.slice_indexer` Compute the slice indexer for input labels and step. ``` >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3, None) ```
Index.slice_indexer(start=None, end=None, step=None, kind=_NoDefault.no_default)[source]# Compute the slice indexer for input labels and step. Index needs to be ordered and unique. Parameters startlabel, default NoneIf None, defaults to the beginning. endlabel, default NoneIf None, defaults to the end. stepint, default None kindstr, default None Deprecated since version 1.4.0. Returns indexerslice Raises KeyErrorIf key does not exist, or key is not unique and index isnot ordered. Notes This function assumes that the data is sorted, so use at your own peril Examples This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3, None) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3, None)
reference/api/pandas.Index.slice_indexer.html
pandas.core.groupby.GroupBy.last
`pandas.core.groupby.GroupBy.last` Compute the last non-null entry of each column. ``` >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3])) >>> df.groupby("A").last() B C A 1 5.0 2 3 6.0 3 ```
final GroupBy.last(numeric_only=False, min_count=- 1)[source]# Compute the last non-null entry of each column. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. min_countint, default -1The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. Returns Series or DataFrameLast non-null of values within each group. See also DataFrame.groupbyApply a function groupby to each row or column of a DataFrame. DataFrame.core.groupby.GroupBy.firstCompute the first non-null entry of each column. DataFrame.core.groupby.GroupBy.nthTake the nth row from each group. Examples >>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[5, None, 6], C=[1, 2, 3])) >>> df.groupby("A").last() B C A 1 5.0 2 3 6.0 3
reference/api/pandas.core.groupby.GroupBy.last.html
pandas.MultiIndex.nlevels
`pandas.MultiIndex.nlevels` Integer number of levels in this MultiIndex. ``` >>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']]) >>> mi MultiIndex([('a', 'b', 'c')], ) >>> mi.nlevels 3 ```
property MultiIndex.nlevels[source]# Integer number of levels in this MultiIndex. Examples >>> mi = pd.MultiIndex.from_arrays([['a'], ['b'], ['c']]) >>> mi MultiIndex([('a', 'b', 'c')], ) >>> mi.nlevels 3
reference/api/pandas.MultiIndex.nlevels.html
pandas.Series.max
`pandas.Series.max` Return the maximum of the values over the requested axis. ``` >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 ```
Series.max(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]# Return the maximum of the values over the requested axis. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax. Parameters axis{index (0)}Axis for the function to be applied on. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values when computing the result. levelint or level name, default NoneIf the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar. Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead. numeric_onlybool, default NoneInclude only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Deprecated since version 1.5.0: Specifying numeric_only=None is deprecated. The default value will be False in a future version of pandas. **kwargsAdditional keyword arguments to be passed to the function. Returns scalar or Series (if level specified) See also Series.sumReturn the sum. Series.minReturn the minimum. Series.maxReturn the maximum. Series.idxminReturn the index of the minimum. Series.idxmaxReturn the index of the maximum. DataFrame.sumReturn the sum over the requested axis. DataFrame.minReturn the minimum over the requested axis. DataFrame.maxReturn the maximum over the requested axis. DataFrame.idxminReturn the index of the minimum over the requested axis. DataFrame.idxmaxReturn the index of the maximum over the requested axis. Examples >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.max() 8
reference/api/pandas.Series.max.html
pandas.TimedeltaIndex.inferred_freq
`pandas.TimedeltaIndex.inferred_freq` Tries to return a string representing a frequency generated by infer_freq.
TimedeltaIndex.inferred_freq[source]# Tries to return a string representing a frequency generated by infer_freq. Returns None if it can’t autodetect the frequency.
reference/api/pandas.TimedeltaIndex.inferred_freq.html
pandas.plotting.register_matplotlib_converters
`pandas.plotting.register_matplotlib_converters` Register pandas formatters and converters with matplotlib.
pandas.plotting.register_matplotlib_converters()[source]# Register pandas formatters and converters with matplotlib. This function modifies the global matplotlib.units.registry dictionary. pandas adds custom converters for pd.Timestamp pd.Period np.datetime64 datetime.datetime datetime.date datetime.time See also deregister_matplotlib_convertersRemove pandas formatters and converters.
reference/api/pandas.plotting.register_matplotlib_converters.html
pandas.Series.dt.microsecond
`pandas.Series.dt.microsecond` The microseconds of the datetime. Examples ``` >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="us") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int64 ```
Series.dt.microsecond[source]# The microseconds of the datetime. Examples >>> datetime_series = pd.Series( ... pd.date_range("2000-01-01", periods=3, freq="us") ... ) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int64
reference/api/pandas.Series.dt.microsecond.html
pandas.api.extensions.ExtensionArray.equals
`pandas.api.extensions.ExtensionArray.equals` Return if another array is equivalent to this array.
ExtensionArray.equals(other)[source]# Return if another array is equivalent to this array. Equivalent means that both arrays have the same shape and dtype, and all values compare equal. Missing values in the same location are considered equal (in contrast with normal equality). Parameters otherExtensionArrayArray to compare to this Array. Returns booleanWhether the arrays are equivalent.
reference/api/pandas.api.extensions.ExtensionArray.equals.html
pandas.tseries.offsets.BusinessMonthEnd.is_month_start
`pandas.tseries.offsets.BusinessMonthEnd.is_month_start` Return boolean whether a timestamp occurs on the month start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
BusinessMonthEnd.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.BusinessMonthEnd.is_month_start.html
pandas.DataFrame.eq
`pandas.DataFrame.eq` Get Equal to of dataframe and other, element-wise (binary operator eq). ``` >>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 ```
DataFrame.eq(other, axis='columns', level=None)[source]# Get Equal to of dataframe and other, element-wise (binary operator eq). Among flexible wrappers (eq, ne, le, lt, ge, gt) to comparison operators. Equivalent to ==, !=, <=, <, >=, > with support to choose axis (rows or columns) and level for comparison. Parameters otherscalar, sequence, Series, or DataFrameAny single or multiple element data structure, or list-like object. axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’). levelint or labelBroadcast across a level, matching Index values on the passed MultiIndex level. Returns DataFrame of boolResult of the comparison. See also DataFrame.eqCompare DataFrames for equality elementwise. DataFrame.neCompare DataFrames for inequality elementwise. DataFrame.leCompare DataFrames for less than inequality or equality elementwise. DataFrame.ltCompare DataFrames for strictly less than inequality elementwise. DataFrame.geCompare DataFrames for greater than inequality or equality elementwise. DataFrame.gtCompare DataFrames for strictly greater than inequality elementwise. Notes Mismatched indices will be unioned together. NaN values are considered different (i.e. NaN != NaN). Examples >>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300 Comparison with a scalar, using either the operator or method: >>> df == 100 cost revenue A False True B False False C True False >>> df.eq(100) cost revenue A False True B False False C True False When other is a Series, the columns of a DataFrame are aligned with the index of other and broadcast: >>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False True Use the method to control the broadcast axis: >>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True True When comparing to an arbitrary sequence, the number of columns must match the number elements in other: >>> df == [250, 100] cost revenue A True True B False False C False False Use the method to control the axis: >>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True False Compare to a DataFrame of different shape. >>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150 >>> df.gt(other) cost revenue A False False B False False C False True D False False Compare to a MultiIndex by level. >>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225 >>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False
reference/api/pandas.DataFrame.eq.html
pandas.tseries.offsets.QuarterBegin.startingMonth
pandas.tseries.offsets.QuarterBegin.startingMonth
QuarterBegin.startingMonth#
reference/api/pandas.tseries.offsets.QuarterBegin.startingMonth.html
pandas.tseries.offsets.CBMonthEnd
`pandas.tseries.offsets.CBMonthEnd` alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd
pandas.tseries.offsets.CBMonthEnd# alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd
reference/api/pandas.tseries.offsets.CBMonthEnd.html
pandas.DataFrame.infer_objects
`pandas.DataFrame.infer_objects` Attempt to infer better dtypes for object columns. ``` >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 ```
DataFrame.infer_objects()[source]# Attempt to infer better dtypes for object columns. Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction. Returns convertedsame type as input object See also to_datetimeConvert argument to datetime. to_timedeltaConvert argument to timedelta. to_numericConvert argument to numeric type. convert_dtypesConvert argument to best possible dtype. Examples >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 >>> df.dtypes A object dtype: object >>> df.infer_objects().dtypes A int64 dtype: object
reference/api/pandas.DataFrame.infer_objects.html
pandas.tseries.offsets.Week.is_quarter_start
`pandas.tseries.offsets.Week.is_quarter_start` Return boolean whether a timestamp occurs on the quarter start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True ```
Week.is_quarter_start()# Return boolean whether a timestamp occurs on the quarter start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_quarter_start(ts) True
reference/api/pandas.tseries.offsets.Week.is_quarter_start.html
pandas.tseries.offsets.YearEnd.is_month_end
`pandas.tseries.offsets.YearEnd.is_month_end` Return boolean whether a timestamp occurs on the month end. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
YearEnd.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.YearEnd.is_month_end.html
pandas.Index.get_indexer
`pandas.Index.get_indexer` Compute indexer and mask for new index given the current index. ``` >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) ```
final Index.get_indexer(target, method=None, limit=None, tolerance=None)[source]# Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters targetIndex method{None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional default: exact matches only. pad / ffill: find the PREVIOUS index value if no exact match. backfill / bfill: use NEXT index value if no exact match nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limitint, optionalMaximum number of consecutive labels in target to match for inexact matches. toleranceoptionalMaximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. Returns indexernp.ndarray[np.intp]Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Notes Returns -1 for unmatched values, for further explanation see the example below. Examples >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in index and x is marked by -1, as it is not in index.
reference/api/pandas.Index.get_indexer.html
pandas.Series.dtype
`pandas.Series.dtype` Return the dtype object of the underlying data.
property Series.dtype[source]# Return the dtype object of the underlying data.
reference/api/pandas.Series.dtype.html
pandas.Series.dt.is_leap_year
`pandas.Series.dt.is_leap_year` Boolean indicator if the date belongs to a leap year. ``` >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False]) ```
Series.dt.is_leap_year[source]# Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns Series or ndarrayBooleans indicating if dates belong to a leap year. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="Y") >>> idx DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'], dtype='datetime64[ns]', freq='A-DEC') >>> idx.is_leap_year array([ True, False, False]) >>> dates_series = pd.Series(idx) >>> dates_series 0 2012-12-31 1 2013-12-31 2 2014-12-31 dtype: datetime64[ns] >>> dates_series.dt.is_leap_year 0 True 1 False 2 False dtype: bool
reference/api/pandas.Series.dt.is_leap_year.html
pandas.api.types.is_float
`pandas.api.types.is_float` Return True if given object is float.
pandas.api.types.is_float()# Return True if given object is float. Returns bool
reference/api/pandas.api.types.is_float.html
Merge, join, concatenate and compare
Merge, join, concatenate and compare pandas provides various facilities for easily combining together Series or DataFrame with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations. In addition, pandas also provides utilities to compare two Series or DataFrame and summarize their differences. The concat() function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series. Before diving into all of the details of concat and what it can do, here is a simple example: Like its sibling function on ndarrays, numpy.concatenate, pandas.concat takes a list or dict of homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other axes”:
pandas provides various facilities for easily combining together Series or DataFrame with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations. In addition, pandas also provides utilities to compare two Series or DataFrame and summarize their differences. Concatenating objects# The concat() function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series. Before diving into all of the details of concat and what it can do, here is a simple example: In [1]: df1 = pd.DataFrame( ...: { ...: "A": ["A0", "A1", "A2", "A3"], ...: "B": ["B0", "B1", "B2", "B3"], ...: "C": ["C0", "C1", "C2", "C3"], ...: "D": ["D0", "D1", "D2", "D3"], ...: }, ...: index=[0, 1, 2, 3], ...: ) ...: In [2]: df2 = pd.DataFrame( ...: { ...: "A": ["A4", "A5", "A6", "A7"], ...: "B": ["B4", "B5", "B6", "B7"], ...: "C": ["C4", "C5", "C6", "C7"], ...: "D": ["D4", "D5", "D6", "D7"], ...: }, ...: index=[4, 5, 6, 7], ...: ) ...: In [3]: df3 = pd.DataFrame( ...: { ...: "A": ["A8", "A9", "A10", "A11"], ...: "B": ["B8", "B9", "B10", "B11"], ...: "C": ["C8", "C9", "C10", "C11"], ...: "D": ["D8", "D9", "D10", "D11"], ...: }, ...: index=[8, 9, 10, 11], ...: ) ...: In [4]: frames = [df1, df2, df3] In [5]: result = pd.concat(frames) Like its sibling function on ndarrays, numpy.concatenate, pandas.concat takes a list or dict of homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other axes”: pd.concat( objs, axis=0, join="outer", ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True, ) objs : a sequence or mapping of Series or DataFrame objects. If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised. axis : {0, 1, …}, default 0. The axis to concatenate along. join : {‘inner’, ‘outer’}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner for intersection. ignore_index : boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, …, n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. keys : sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If multiple levels passed, should contain tuples. levels : list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys. names : list, default None. Names for the levels in the resulting hierarchical index. verify_integrity : boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation. copy : boolean, default True. If False, do not copy data unnecessarily. Without a little bit of context many of these arguments don’t make much sense. Let’s revisit the above example. Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can do this using the keys argument: In [6]: result = pd.concat(frames, keys=["x", "y", "z"]) As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a hierarchical index. This means that we can now select out each chunk by key: In [7]: result.loc["y"] Out[7]: A B C D 4 A4 B4 C4 D4 5 A5 B5 C5 D5 6 A6 B6 C6 D6 7 A7 B7 C7 D7 It’s not a stretch to see how this can be very useful. More detail on this functionality below. Note It is worth noting that concat() (and therefore append()) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension. frames = [ process_your_file(f) for f in files ] result = pd.concat(frames) Note When concatenating DataFrames with named axes, pandas will attempt to preserve these index/column names whenever possible. In the case where all inputs share a common name, this name will be assigned to the result. When the input names do not all agree, the result will be unnamed. The same is true for MultiIndex, but the logic is applied separately on a level-by-level basis. Set logic on the other axes# When gluing together multiple DataFrames, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in the following two ways: Take the union of them all, join='outer'. This is the default option as it results in zero information loss. Take the intersection, join='inner'. Here is an example of each of these methods. First, the default join='outer' behavior: In [8]: df4 = pd.DataFrame( ...: { ...: "B": ["B2", "B3", "B6", "B7"], ...: "D": ["D2", "D3", "D6", "D7"], ...: "F": ["F2", "F3", "F6", "F7"], ...: }, ...: index=[2, 3, 6, 7], ...: ) ...: In [9]: result = pd.concat([df1, df4], axis=1) Here is the same thing with join='inner': In [10]: result = pd.concat([df1, df4], axis=1, join="inner") Lastly, suppose we just wanted to reuse the exact index from the original DataFrame: In [11]: result = pd.concat([df1, df4], axis=1).reindex(df1.index) Similarly, we could index before the concatenation: In [12]: pd.concat([df1, df4.reindex(df1.index)], axis=1) Out[12]: A B C D B D F 0 A0 B0 C0 D0 NaN NaN NaN 1 A1 B1 C1 D1 NaN NaN NaN 2 A2 B2 C2 D2 B2 D2 F2 3 A3 B3 C3 D3 B3 D3 F3 Ignoring indexes on the concatenation axis# For DataFrame objects which don’t have a meaningful index, you may wish to append them and ignore the fact that they may have overlapping indexes. To do this, use the ignore_index argument: In [13]: result = pd.concat([df1, df4], ignore_index=True, sort=False) Concatenating with mixed ndims# You can concatenate a mix of Series and DataFrame objects. The Series will be transformed to DataFrame with the column name as the name of the Series. In [14]: s1 = pd.Series(["X0", "X1", "X2", "X3"], name="X") In [15]: result = pd.concat([df1, s1], axis=1) Note Since we’re concatenating a Series to a DataFrame, we could have achieved the same result with DataFrame.assign(). To concatenate an arbitrary number of pandas objects (DataFrame or Series), use concat. If unnamed Series are passed they will be numbered consecutively. In [16]: s2 = pd.Series(["_0", "_1", "_2", "_3"]) In [17]: result = pd.concat([df1, s2, s2, s2], axis=1) Passing ignore_index=True will drop all name references. In [18]: result = pd.concat([df1, s1], axis=1, ignore_index=True) More concatenating with group keys# A fairly common use of the keys argument is to override the column names when creating a new DataFrame based on existing Series. Notice how the default behaviour consists on letting the resulting DataFrame inherit the parent Series’ name, when these existed. In [19]: s3 = pd.Series([0, 1, 2, 3], name="foo") In [20]: s4 = pd.Series([0, 1, 2, 3]) In [21]: s5 = pd.Series([0, 1, 4, 5]) In [22]: pd.concat([s3, s4, s5], axis=1) Out[22]: foo 0 1 0 0 0 0 1 1 1 1 2 2 2 4 3 3 3 5 Through the keys argument we can override the existing column names. In [23]: pd.concat([s3, s4, s5], axis=1, keys=["red", "blue", "yellow"]) Out[23]: red blue yellow 0 0 0 0 1 1 1 1 2 2 2 4 3 3 3 5 Let’s consider a variation of the very first example presented: In [24]: result = pd.concat(frames, keys=["x", "y", "z"]) You can also pass a dict to concat in which case the dict keys will be used for the keys argument (unless other keys are specified): In [25]: pieces = {"x": df1, "y": df2, "z": df3} In [26]: result = pd.concat(pieces) In [27]: result = pd.concat(pieces, keys=["z", "y"]) The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces: In [28]: result.index.levels Out[28]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]]) If you wish to specify other levels (as will occasionally be the case), you can do so using the levels argument: In [29]: result = pd.concat( ....: pieces, keys=["x", "y", "z"], levels=[["z", "y", "x", "w"]], names=["group_key"] ....: ) ....: In [30]: result.index.levels Out[30]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]) This is fairly esoteric, but it is actually necessary for implementing things like GroupBy where the order of a categorical variable is meaningful. Appending rows to a DataFrame# If you have a series that you want to append as a single row to a DataFrame, you can convert the row into a DataFrame and use concat In [31]: s2 = pd.Series(["X0", "X1", "X2", "X3"], index=["A", "B", "C", "D"]) In [32]: result = pd.concat([df1, s2.to_frame().T], ignore_index=True) You should use ignore_index with this method to instruct DataFrame to discard its index. If you wish to preserve the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects. Database-style DataFrame or named Series joining/merging# pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better) than other open source implementations (like base::merge.data.frame in R). The reason for this is careful algorithmic design and the internal layout of the data in DataFrame. See the cookbook for some advanced strategies. Users who are familiar with SQL but new to pandas might be interested in a comparison with SQL. pandas provides a single function, merge(), as the entry point for all standard database join operations between DataFrame or named Series objects: pd.merge( left, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ) left: A DataFrame or named Series object. right: Another DataFrame or named Series object. on: Column or index level names to join on. Must be found in both the left and right DataFrame and/or Series objects. If not passed and left_index and right_index are False, the intersection of the columns in the DataFrames and/or Series will be inferred to be the join keys. left_on: Columns or index levels from the left DataFrame or Series to use as keys. Can either be column names, index level names, or arrays with length equal to the length of the DataFrame or Series. right_on: Columns or index levels from the right DataFrame or Series to use as keys. Can either be column names, index level names, or arrays with length equal to the length of the DataFrame or Series. left_index: If True, use the index (row labels) from the left DataFrame or Series as its join key(s). In the case of a DataFrame or Series with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame or Series. right_index: Same usage as left_index for the right DataFrame or Series how: One of 'left', 'right', 'outer', 'inner', 'cross'. Defaults to inner. See below for more detailed description of each method. sort: Sort the result DataFrame by the join keys in lexicographical order. Defaults to True, setting to False will improve performance substantially in many cases. suffixes: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y'). copy: Always copy data (default True) from the passed DataFrame or named Series objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless. indicator: Add a column to the output DataFrame called _merge with information on the source of each row. _merge is Categorical-type and takes on a value of left_only for observations whose merge key only appears in 'left' DataFrame or Series, right_only for observations whose merge key only appears in 'right' DataFrame or Series, and both if the observation’s merge key is found in both. validate : string, default None. If specified, checks if merge is of specified type. “one_to_one” or “1:1”: checks if merge keys are unique in both left and right datasets. “one_to_many” or “1:m”: checks if merge keys are unique in left dataset. “many_to_one” or “m:1”: checks if merge keys are unique in right dataset. “many_to_many” or “m:m”: allowed, but does not result in checks. Note Support for specifying index levels as the on, left_on, and right_on parameters was added in version 0.23.0. Support for merging named Series objects was added in version 0.24.0. The return type will be the same as left. If left is a DataFrame or named Series and right is a subclass of DataFrame, the return type will still be DataFrame. merge is a function in the pandas namespace, and it is also available as a DataFrame instance method merge(), with the calling DataFrame being implicitly considered the left object in the join. The related join() method, uses merge internally for the index-on-index (by default) and column(s)-on-index join. If you are joining on index only, you may wish to use DataFrame.join to save yourself some typing. Brief primer on merge methods (relational algebra)# Experienced users of relational databases like SQL will be familiar with the terminology used to describe join operations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very important to understand: one-to-one joins: for example when joining two DataFrame objects on their indexes (which must contain unique values). many-to-one joins: for example when joining an index (unique) to one or more columns in a different DataFrame. many-to-many joins: joining columns on columns. Note When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame objects will be discarded. It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the Cartesian product of the associated data. Here is a very basic example with one unique key combination: In [33]: left = pd.DataFrame( ....: { ....: "key": ["K0", "K1", "K2", "K3"], ....: "A": ["A0", "A1", "A2", "A3"], ....: "B": ["B0", "B1", "B2", "B3"], ....: } ....: ) ....: In [34]: right = pd.DataFrame( ....: { ....: "key": ["K0", "K1", "K2", "K3"], ....: "C": ["C0", "C1", "C2", "C3"], ....: "D": ["D0", "D1", "D2", "D3"], ....: } ....: ) ....: In [35]: result = pd.merge(left, right, on="key") Here is a more complicated example with multiple join keys. Only the keys appearing in left and right are present (the intersection), since how='inner' by default. In [36]: left = pd.DataFrame( ....: { ....: "key1": ["K0", "K0", "K1", "K2"], ....: "key2": ["K0", "K1", "K0", "K1"], ....: "A": ["A0", "A1", "A2", "A3"], ....: "B": ["B0", "B1", "B2", "B3"], ....: } ....: ) ....: In [37]: right = pd.DataFrame( ....: { ....: "key1": ["K0", "K1", "K1", "K2"], ....: "key2": ["K0", "K0", "K0", "K0"], ....: "C": ["C0", "C1", "C2", "C3"], ....: "D": ["D0", "D1", "D2", "D3"], ....: } ....: ) ....: In [38]: result = pd.merge(left, right, on=["key1", "key2"]) The how argument to merge specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a summary of the how options and their SQL equivalent names: Merge method SQL Join Name Description left LEFT OUTER JOIN Use keys from left frame only right RIGHT OUTER JOIN Use keys from right frame only outer FULL OUTER JOIN Use union of keys from both frames inner INNER JOIN Use intersection of keys from both frames cross CROSS JOIN Create the cartesian product of rows of both frames In [39]: result = pd.merge(left, right, how="left", on=["key1", "key2"]) In [40]: result = pd.merge(left, right, how="right", on=["key1", "key2"]) In [41]: result = pd.merge(left, right, how="outer", on=["key1", "key2"]) In [42]: result = pd.merge(left, right, how="inner", on=["key1", "key2"]) In [43]: result = pd.merge(left, right, how="cross") You can merge a mult-indexed Series and a DataFrame, if the names of the MultiIndex correspond to the columns from the DataFrame. Transform the Series to a DataFrame using Series.reset_index() before merging, as shown in the following example. In [44]: df = pd.DataFrame({"Let": ["A", "B", "C"], "Num": [1, 2, 3]}) In [45]: df Out[45]: Let Num 0 A 1 1 B 2 2 C 3 In [46]: ser = pd.Series( ....: ["a", "b", "c", "d", "e", "f"], ....: index=pd.MultiIndex.from_arrays( ....: [["A", "B", "C"] * 2, [1, 2, 3, 4, 5, 6]], names=["Let", "Num"] ....: ), ....: ) ....: In [47]: ser Out[47]: Let Num A 1 a B 2 b C 3 c A 4 d B 5 e C 6 f dtype: object In [48]: pd.merge(df, ser.reset_index(), on=["Let", "Num"]) Out[48]: Let Num 0 0 A 1 a 1 B 2 b 2 C 3 c Here is another example with duplicate join keys in DataFrames: In [49]: left = pd.DataFrame({"A": [1, 2], "B": [2, 2]}) In [50]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]}) In [51]: result = pd.merge(left, right, on="B", how="outer") Warning Joining / merging on duplicate keys can cause a returned frame that is the multiplication of the row dimensions, which may result in memory overflow. It is the user’ s responsibility to manage duplicate values in keys before joining large DataFrames. Checking for duplicate keys# Users can use the validate argument to automatically check whether there are unexpected duplicates in their merge keys. Key uniqueness is checked before merge operations and so should protect against memory overflows. Checking key uniqueness is also a good way to ensure user data structures are as expected. In the following example, there are duplicate values of B in the right DataFrame. As this is not a one-to-one merge – as specified in the validate argument – an exception will be raised. In [52]: left = pd.DataFrame({"A": [1, 2], "B": [1, 2]}) In [53]: right = pd.DataFrame({"A": [4, 5, 6], "B": [2, 2, 2]}) In [53]: result = pd.merge(left, right, on="B", how="outer", validate="one_to_one") ... MergeError: Merge keys are not unique in right dataset; not a one-to-one merge If the user is aware of the duplicates in the right DataFrame but wants to ensure there are no duplicates in the left DataFrame, one can use the validate='one_to_many' argument instead, which will not raise an exception. In [54]: pd.merge(left, right, on="B", how="outer", validate="one_to_many") Out[54]: A_x B A_y 0 1 1 NaN 1 2 2 4.0 2 2 2 5.0 3 2 2 6.0 The merge indicator# merge() accepts the argument indicator. If True, a Categorical-type column called _merge will be added to the output object that takes on values: Observation Origin _merge value Merge key only in 'left' frame left_only Merge key only in 'right' frame right_only Merge key in both frames both In [55]: df1 = pd.DataFrame({"col1": [0, 1], "col_left": ["a", "b"]}) In [56]: df2 = pd.DataFrame({"col1": [1, 2, 2], "col_right": [2, 2, 2]}) In [57]: pd.merge(df1, df2, on="col1", how="outer", indicator=True) Out[57]: col1 col_left col_right _merge 0 0 a NaN left_only 1 1 b 2.0 both 2 2 NaN 2.0 right_only 3 2 NaN 2.0 right_only The indicator argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column. In [58]: pd.merge(df1, df2, on="col1", how="outer", indicator="indicator_column") Out[58]: col1 col_left col_right indicator_column 0 0 a NaN left_only 1 1 b 2.0 both 2 2 NaN 2.0 right_only 3 2 NaN 2.0 right_only Merge dtypes# Merging will preserve the dtype of the join keys. In [59]: left = pd.DataFrame({"key": [1], "v1": [10]}) In [60]: left Out[60]: key v1 0 1 10 In [61]: right = pd.DataFrame({"key": [1, 2], "v1": [20, 30]}) In [62]: right Out[62]: key v1 0 1 20 1 2 30 We are able to preserve the join keys: In [63]: pd.merge(left, right, how="outer") Out[63]: key v1 0 1 10 1 1 20 2 2 30 In [64]: pd.merge(left, right, how="outer").dtypes Out[64]: key int64 v1 int64 dtype: object Of course if you have missing values that are introduced, then the resulting dtype will be upcast. In [65]: pd.merge(left, right, how="outer", on="key") Out[65]: key v1_x v1_y 0 1 10.0 20 1 2 NaN 30 In [66]: pd.merge(left, right, how="outer", on="key").dtypes Out[66]: key int64 v1_x float64 v1_y int64 dtype: object Merging will preserve category dtypes of the mergands. See also the section on categoricals. The left frame. In [67]: from pandas.api.types import CategoricalDtype In [68]: X = pd.Series(np.random.choice(["foo", "bar"], size=(10,))) In [69]: X = X.astype(CategoricalDtype(categories=["foo", "bar"])) In [70]: left = pd.DataFrame( ....: {"X": X, "Y": np.random.choice(["one", "two", "three"], size=(10,))} ....: ) ....: In [71]: left Out[71]: X Y 0 bar one 1 foo one 2 foo three 3 bar three 4 foo one 5 bar one 6 bar three 7 bar three 8 bar three 9 foo three In [72]: left.dtypes Out[72]: X category Y object dtype: object The right frame. In [73]: right = pd.DataFrame( ....: { ....: "X": pd.Series(["foo", "bar"], dtype=CategoricalDtype(["foo", "bar"])), ....: "Z": [1, 2], ....: } ....: ) ....: In [74]: right Out[74]: X Z 0 foo 1 1 bar 2 In [75]: right.dtypes Out[75]: X category Z int64 dtype: object The merged result: In [76]: result = pd.merge(left, right, how="outer") In [77]: result Out[77]: X Y Z 0 bar one 2 1 bar three 2 2 bar one 2 3 bar three 2 4 bar three 2 5 bar three 2 6 foo one 1 7 foo three 1 8 foo one 1 9 foo three 1 In [78]: result.dtypes Out[78]: X category Y object Z int64 dtype: object Note The category dtypes must be exactly the same, meaning the same categories and the ordered attribute. Otherwise the result will coerce to the categories’ dtype. Note Merging on category dtypes that are the same can be quite performant compared to object dtype merging. Joining on index# DataFrame.join() is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Here is a very basic example: In [79]: left = pd.DataFrame( ....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=["K0", "K1", "K2"] ....: ) ....: In [80]: right = pd.DataFrame( ....: {"C": ["C0", "C2", "C3"], "D": ["D0", "D2", "D3"]}, index=["K0", "K2", "K3"] ....: ) ....: In [81]: result = left.join(right) In [82]: result = left.join(right, how="outer") The same as above, but with how='inner'. In [83]: result = left.join(right, how="inner") The data alignment here is on the indexes (row labels). This same behavior can be achieved using merge plus additional arguments instructing it to use the indexes: In [84]: result = pd.merge(left, right, left_index=True, right_index=True, how="outer") In [85]: result = pd.merge(left, right, left_index=True, right_index=True, how="inner") Joining key columns on an index# join() takes an optional on argument which may be a column or multiple column names, which specifies that the passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equivalent: left.join(right, on=key_or_keys) pd.merge( left, right, left_on=key_or_keys, right_index=True, how="left", sort=False ) Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example: In [86]: left = pd.DataFrame( ....: { ....: "A": ["A0", "A1", "A2", "A3"], ....: "B": ["B0", "B1", "B2", "B3"], ....: "key": ["K0", "K1", "K0", "K1"], ....: } ....: ) ....: In [87]: right = pd.DataFrame({"C": ["C0", "C1"], "D": ["D0", "D1"]}, index=["K0", "K1"]) In [88]: result = left.join(right, on="key") In [89]: result = pd.merge( ....: left, right, left_on="key", right_index=True, how="left", sort=False ....: ) ....: To join on multiple keys, the passed DataFrame must have a MultiIndex: In [90]: left = pd.DataFrame( ....: { ....: "A": ["A0", "A1", "A2", "A3"], ....: "B": ["B0", "B1", "B2", "B3"], ....: "key1": ["K0", "K0", "K1", "K2"], ....: "key2": ["K0", "K1", "K0", "K1"], ....: } ....: ) ....: In [91]: index = pd.MultiIndex.from_tuples( ....: [("K0", "K0"), ("K1", "K0"), ("K2", "K0"), ("K2", "K1")] ....: ) ....: In [92]: right = pd.DataFrame( ....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=index ....: ) ....: Now this can be joined by passing the two key column names: In [93]: result = left.join(right, on=["key1", "key2"]) The default for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily performed: In [94]: result = left.join(right, on=["key1", "key2"], how="inner") As you can see, this drops any rows where there was no match. Joining a single Index to a MultiIndex# You can join a singly-indexed DataFrame with a level of a MultiIndexed DataFrame. The level will match on the name of the index of the singly-indexed frame against a level name of the MultiIndexed frame. In [95]: left = pd.DataFrame( ....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, ....: index=pd.Index(["K0", "K1", "K2"], name="key"), ....: ) ....: In [96]: index = pd.MultiIndex.from_tuples( ....: [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], ....: names=["key", "Y"], ....: ) ....: In [97]: right = pd.DataFrame( ....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, ....: index=index, ....: ) ....: In [98]: result = left.join(right, how="inner") This is equivalent but less verbose and more memory efficient / faster than this. In [99]: result = pd.merge( ....: left.reset_index(), right.reset_index(), on=["key"], how="inner" ....: ).set_index(["key","Y"]) ....: Joining with two MultiIndexes# This is supported in a limited way, provided that the index for the right argument is completely used in the join, and is a subset of the indices in the left argument, as in this example: In [100]: leftindex = pd.MultiIndex.from_product( .....: [list("abc"), list("xy"), [1, 2]], names=["abc", "xy", "num"] .....: ) .....: In [101]: left = pd.DataFrame({"v1": range(12)}, index=leftindex) In [102]: left Out[102]: v1 abc xy num a x 1 0 2 1 y 1 2 2 3 b x 1 4 2 5 y 1 6 2 7 c x 1 8 2 9 y 1 10 2 11 In [103]: rightindex = pd.MultiIndex.from_product( .....: [list("abc"), list("xy")], names=["abc", "xy"] .....: ) .....: In [104]: right = pd.DataFrame({"v2": [100 * i for i in range(1, 7)]}, index=rightindex) In [105]: right Out[105]: v2 abc xy a x 100 y 200 b x 300 y 400 c x 500 y 600 In [106]: left.join(right, on=["abc", "xy"], how="inner") Out[106]: v1 v2 abc xy num a x 1 0 100 2 1 100 y 1 2 200 2 3 200 b x 1 4 300 2 5 300 y 1 6 400 2 7 400 c x 1 8 500 2 9 500 y 1 10 600 2 11 600 If that condition is not satisfied, a join with two multi-indexes can be done using the following code. In [107]: leftindex = pd.MultiIndex.from_tuples( .....: [("K0", "X0"), ("K0", "X1"), ("K1", "X2")], names=["key", "X"] .....: ) .....: In [108]: left = pd.DataFrame( .....: {"A": ["A0", "A1", "A2"], "B": ["B0", "B1", "B2"]}, index=leftindex .....: ) .....: In [109]: rightindex = pd.MultiIndex.from_tuples( .....: [("K0", "Y0"), ("K1", "Y1"), ("K2", "Y2"), ("K2", "Y3")], names=["key", "Y"] .....: ) .....: In [110]: right = pd.DataFrame( .....: {"C": ["C0", "C1", "C2", "C3"], "D": ["D0", "D1", "D2", "D3"]}, index=rightindex .....: ) .....: In [111]: result = pd.merge( .....: left.reset_index(), right.reset_index(), on=["key"], how="inner" .....: ).set_index(["key", "X", "Y"]) .....: Merging on a combination of columns and index levels# Strings passed as the on, left_on, and right_on parameters may refer to either column names or index level names. This enables merging DataFrame instances on a combination of index levels and columns without resetting indexes. In [112]: left_index = pd.Index(["K0", "K0", "K1", "K2"], name="key1") In [113]: left = pd.DataFrame( .....: { .....: "A": ["A0", "A1", "A2", "A3"], .....: "B": ["B0", "B1", "B2", "B3"], .....: "key2": ["K0", "K1", "K0", "K1"], .....: }, .....: index=left_index, .....: ) .....: In [114]: right_index = pd.Index(["K0", "K1", "K2", "K2"], name="key1") In [115]: right = pd.DataFrame( .....: { .....: "C": ["C0", "C1", "C2", "C3"], .....: "D": ["D0", "D1", "D2", "D3"], .....: "key2": ["K0", "K0", "K0", "K1"], .....: }, .....: index=right_index, .....: ) .....: In [116]: result = left.merge(right, on=["key1", "key2"]) Note When DataFrames are merged on a string that matches an index level in both frames, the index level is preserved as an index level in the resulting DataFrame. Note When DataFrames are merged using only some of the levels of a MultiIndex, the extra levels will be dropped from the resulting merge. In order to preserve those levels, use reset_index on those level names to move those levels to columns prior to doing the merge. Note If a string matches both a column name and an index level name, then a warning is issued and the column takes precedence. This will result in an ambiguity error in a future version. Overlapping value columns# The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input DataFrames to disambiguate the result columns: In [117]: left = pd.DataFrame({"k": ["K0", "K1", "K2"], "v": [1, 2, 3]}) In [118]: right = pd.DataFrame({"k": ["K0", "K0", "K3"], "v": [4, 5, 6]}) In [119]: result = pd.merge(left, right, on="k") In [120]: result = pd.merge(left, right, on="k", suffixes=("_l", "_r")) DataFrame.join() has lsuffix and rsuffix arguments which behave similarly. In [121]: left = left.set_index("k") In [122]: right = right.set_index("k") In [123]: result = left.join(right, lsuffix="_l", rsuffix="_r") Joining multiple DataFrames# A list or tuple of DataFrames can also be passed to join() to join them together on their indexes. In [124]: right2 = pd.DataFrame({"v": [7, 8, 9]}, index=["K1", "K1", "K2"]) In [125]: result = left.join([right, right2]) Merging together values within Series or DataFrame columns# Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and wanting to “patch” values in one object from values for matching indices in the other. Here is an example: In [126]: df1 = pd.DataFrame( .....: [[np.nan, 3.0, 5.0], [-4.6, np.nan, np.nan], [np.nan, 7.0, np.nan]] .....: ) .....: In [127]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5.0, 1.6, 4]], index=[1, 2]) For this, use the combine_first() method: In [128]: result = df1.combine_first(df2) Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A related method, update(), alters non-NA values in place: In [129]: df1.update(df2) Timeseries friendly merging# Merging ordered data# A merge_ordered() function allows combining time series and other ordered data. In particular it has an optional fill_method keyword to fill/interpolate missing data: In [130]: left = pd.DataFrame( .....: {"k": ["K0", "K1", "K1", "K2"], "lv": [1, 2, 3, 4], "s": ["a", "b", "c", "d"]} .....: ) .....: In [131]: right = pd.DataFrame({"k": ["K1", "K2", "K4"], "rv": [1, 2, 3]}) In [132]: pd.merge_ordered(left, right, fill_method="ffill", left_by="s") Out[132]: k lv s rv 0 K0 1.0 a NaN 1 K1 1.0 a 1.0 2 K2 1.0 a 2.0 3 K4 1.0 a 3.0 4 K1 2.0 b 1.0 5 K2 2.0 b 2.0 6 K4 2.0 b 3.0 7 K1 3.0 c 1.0 8 K2 3.0 c 2.0 9 K4 3.0 c 3.0 10 K1 NaN d 1.0 11 K2 4.0 d 2.0 12 K4 4.0 d 3.0 Merging asof# A merge_asof() is similar to an ordered left-join except that we match on nearest key rather than equal keys. For each row in the left DataFrame, we select the last row in the right DataFrame whose on key is less than the left’s key. Both DataFrames must be sorted by the key. Optionally an asof merge can perform a group-wise merge. This matches the by key equally, in addition to the nearest match on the on key. For example; we might have trades and quotes and we want to asof merge them. In [133]: trades = pd.DataFrame( .....: { .....: "time": pd.to_datetime( .....: [ .....: "20160525 13:30:00.023", .....: "20160525 13:30:00.038", .....: "20160525 13:30:00.048", .....: "20160525 13:30:00.048", .....: "20160525 13:30:00.048", .....: ] .....: ), .....: "ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"], .....: "price": [51.95, 51.95, 720.77, 720.92, 98.00], .....: "quantity": [75, 155, 100, 100, 100], .....: }, .....: columns=["time", "ticker", "price", "quantity"], .....: ) .....: In [134]: quotes = pd.DataFrame( .....: { .....: "time": pd.to_datetime( .....: [ .....: "20160525 13:30:00.023", .....: "20160525 13:30:00.023", .....: "20160525 13:30:00.030", .....: "20160525 13:30:00.041", .....: "20160525 13:30:00.048", .....: "20160525 13:30:00.049", .....: "20160525 13:30:00.072", .....: "20160525 13:30:00.075", .....: ] .....: ), .....: "ticker": ["GOOG", "MSFT", "MSFT", "MSFT", "GOOG", "AAPL", "GOOG", "MSFT"], .....: "bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01], .....: "ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03], .....: }, .....: columns=["time", "ticker", "bid", "ask"], .....: ) .....: In [135]: trades Out[135]: time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 In [136]: quotes Out[136]: time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 By default we are taking the asof of the quotes. In [137]: pd.merge_asof(trades, quotes, on="time", by="ticker") Out[137]: time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time. In [138]: pd.merge_asof(trades, quotes, on="time", by="ticker", tolerance=pd.Timedelta("2ms")) Out[138]: time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. Note that though we exclude the exact matches (of the quotes), prior quotes do propagate to that point in time. In [139]: pd.merge_asof( .....: trades, .....: quotes, .....: on="time", .....: by="ticker", .....: tolerance=pd.Timedelta("10ms"), .....: allow_exact_matches=False, .....: ) .....: Out[139]: time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN Comparing objects# The compare() and compare() methods allow you to compare two DataFrame or Series, respectively, and summarize their differences. This feature was added in V1.1.0. For example, you might want to compare two DataFrame and stack their differences side by side. In [140]: df = pd.DataFrame( .....: { .....: "col1": ["a", "a", "b", "b", "a"], .....: "col2": [1.0, 2.0, 3.0, np.nan, 5.0], .....: "col3": [1.0, 2.0, 3.0, 4.0, 5.0], .....: }, .....: columns=["col1", "col2", "col3"], .....: ) .....: In [141]: df Out[141]: col1 col2 col3 0 a 1.0 1.0 1 a 2.0 2.0 2 b 3.0 3.0 3 b NaN 4.0 4 a 5.0 5.0 In [142]: df2 = df.copy() In [143]: df2.loc[0, "col1"] = "c" In [144]: df2.loc[2, "col3"] = 4.0 In [145]: df2 Out[145]: col1 col2 col3 0 c 1.0 1.0 1 a 2.0 2.0 2 b 3.0 4.0 3 b NaN 4.0 4 a 5.0 5.0 In [146]: df.compare(df2) Out[146]: col1 col3 self other self other 0 a c NaN NaN 2 NaN NaN 3.0 4.0 By default, if two corresponding values are equal, they will be shown as NaN. Furthermore, if all values in an entire row / column, the row / column will be omitted from the result. The remaining differences will be aligned on columns. If you wish, you may choose to stack the differences on rows. In [147]: df.compare(df2, align_axis=0) Out[147]: col1 col3 0 self a NaN other c NaN 2 self NaN 3.0 other NaN 4.0 If you wish to keep all original rows and columns, set keep_shape argument to True. In [148]: df.compare(df2, keep_shape=True) Out[148]: col1 col2 col3 self other self other self other 0 a c NaN NaN NaN NaN 1 NaN NaN NaN NaN NaN NaN 2 NaN NaN NaN NaN 3.0 4.0 3 NaN NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN NaN You may also keep all the original values even if they are equal. In [149]: df.compare(df2, keep_shape=True, keep_equal=True) Out[149]: col1 col2 col3 self other self other self other 0 a c 1.0 1.0 1.0 1.0 1 a a 2.0 2.0 2.0 2.0 2 b b 3.0 3.0 3.0 4.0 3 b b NaN NaN 4.0 4.0 4 a a 5.0 5.0 5.0 5.0
user_guide/merging.html
pandas.Series.to_markdown
`pandas.Series.to_markdown` Print Series in Markdown-friendly format. ``` >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | ```
Series.to_markdown(buf=None, mode='wt', index=True, storage_options=None, **kwargs)[source]# Print Series in Markdown-friendly format. New in version 1.0.0. Parameters bufstr, Path or StringIO-like, optional, default NoneBuffer to write to. If None, the output is returned as a string. modestr, optionalMode in which file is opened, “wt” by default. indexbool, optional, default TrueAdd index (row) labels. New in version 1.1.0. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2.0. **kwargsThese parameters will be passed to tabulate. Returns strSeries in Markdown-friendly format. Notes Requires the tabulate package. Examples >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | Output markdown with a tabulate option. >>> print(s.to_markdown(tablefmt="grid")) +----+----------+ | | animal | +====+==========+ | 0 | elk | +----+----------+ | 1 | pig | +----+----------+ | 2 | dog | +----+----------+ | 3 | quetzal | +----+----------+
reference/api/pandas.Series.to_markdown.html
pandas.tseries.offsets.BusinessMonthEnd.is_anchored
`pandas.tseries.offsets.BusinessMonthEnd.is_anchored` Return boolean whether the frequency is a unit frequency (n=1). ``` >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False ```
BusinessMonthEnd.is_anchored()# Return boolean whether the frequency is a unit frequency (n=1). Examples >>> pd.DateOffset().is_anchored() True >>> pd.DateOffset(2).is_anchored() False
reference/api/pandas.tseries.offsets.BusinessMonthEnd.is_anchored.html
API reference
API reference
This page gives an overview of all public pandas objects, functions and methods. All classes and functions exposed in pandas.* namespace are public. Some subpackages are public which include pandas.errors, pandas.plotting, and pandas.testing. Public functions in pandas.io and pandas.tseries submodules are mentioned in the documentation. pandas.api.types subpackage holds some public functions related to data types in pandas. Warning The pandas.core, pandas.compat, and pandas.util top-level modules are PRIVATE. Stable functionality in such modules is not guaranteed. Input/output Pickling Flat file Clipboard Excel JSON HTML XML Latex HDFStore: PyTables (HDF5) Feather Parquet ORC SAS SPSS SQL Google BigQuery STATA General functions Data manipulations Top-level missing data Top-level dealing with numeric data Top-level dealing with datetimelike data Top-level dealing with Interval data Top-level evaluation Hashing Importing from other DataFrame libraries Series Constructor Attributes Conversion Indexing, iteration Binary operator functions Function application, GroupBy & window Computations / descriptive stats Reindexing / selection / label manipulation Missing data handling Reshaping, sorting Combining / comparing / joining / merging Time Series-related Accessors Plotting Serialization / IO / conversion DataFrame Constructor Attributes and underlying data Conversion Indexing, iteration Binary operator functions Function application, GroupBy & window Computations / descriptive stats Reindexing / selection / label manipulation Missing data handling Reshaping, sorting, transposing Combining / comparing / joining / merging Time Series-related Flags Metadata Plotting Sparse accessor Serialization / IO / conversion pandas arrays, scalars, and data types Objects Utilities Index objects Index Numeric Index CategoricalIndex IntervalIndex MultiIndex DatetimeIndex TimedeltaIndex PeriodIndex Date offsets DateOffset BusinessDay BusinessHour CustomBusinessDay CustomBusinessHour MonthEnd MonthBegin BusinessMonthEnd BusinessMonthBegin CustomBusinessMonthEnd CustomBusinessMonthBegin SemiMonthEnd SemiMonthBegin Week WeekOfMonth LastWeekOfMonth BQuarterEnd BQuarterBegin QuarterEnd QuarterBegin BYearEnd BYearBegin YearEnd YearBegin FY5253 FY5253Quarter Easter Tick Day Hour Minute Second Milli Micro Nano Frequencies pandas.tseries.frequencies.to_offset Window Rolling window functions Weighted window functions Expanding window functions Exponentially-weighted window functions Window indexer GroupBy Indexing, iteration Function application Computations / descriptive stats Resampling Indexing, iteration Function application Upsampling Computations / descriptive stats Style Styler constructor Styler properties Style application Builtin styles Style export and import Plotting pandas.plotting.andrews_curves pandas.plotting.autocorrelation_plot pandas.plotting.bootstrap_plot pandas.plotting.boxplot pandas.plotting.deregister_matplotlib_converters pandas.plotting.lag_plot pandas.plotting.parallel_coordinates pandas.plotting.plot_params pandas.plotting.radviz pandas.plotting.register_matplotlib_converters pandas.plotting.scatter_matrix pandas.plotting.table Options and settings Working with options Extensions pandas.api.extensions.register_extension_dtype pandas.api.extensions.register_dataframe_accessor pandas.api.extensions.register_series_accessor pandas.api.extensions.register_index_accessor pandas.api.extensions.ExtensionDtype pandas.api.extensions.ExtensionArray pandas.arrays.PandasArray pandas.api.indexers.check_array_indexer Testing Assertion functions Exceptions and warnings Bug report function Test suite runner
reference/index.html
pandas.tseries.offsets.LastWeekOfMonth.is_month_end
`pandas.tseries.offsets.LastWeekOfMonth.is_month_end` Return boolean whether a timestamp occurs on the month end. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False ```
LastWeekOfMonth.is_month_end()# Return boolean whether a timestamp occurs on the month end. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_end(ts) False
reference/api/pandas.tseries.offsets.LastWeekOfMonth.is_month_end.html
pandas.Series.dt
`pandas.Series.dt` Accessor object for datetimelike properties of the Series values. Examples ``` >>> seconds_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="s")) >>> seconds_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> seconds_series.dt.second 0 0 1 1 2 2 dtype: int64 ```
Series.dt()[source]# Accessor object for datetimelike properties of the Series values. Examples >>> seconds_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="s")) >>> seconds_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> seconds_series.dt.second 0 0 1 1 2 2 dtype: int64 >>> hours_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="h")) >>> hours_series 0 2000-01-01 00:00:00 1 2000-01-01 01:00:00 2 2000-01-01 02:00:00 dtype: datetime64[ns] >>> hours_series.dt.hour 0 0 1 1 2 2 dtype: int64 >>> quarters_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="q")) >>> quarters_series 0 2000-03-31 1 2000-06-30 2 2000-09-30 dtype: datetime64[ns] >>> quarters_series.dt.quarter 0 1 1 2 2 3 dtype: int64 Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetimelike values.
reference/api/pandas.Series.dt.html
pandas.Series.to_list
`pandas.Series.to_list` Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period)
Series.to_list()[source]# Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) Returns list See also numpy.ndarray.tolistReturn the array as an a.ndim-levels deep nested list of Python scalars.
reference/api/pandas.Series.to_list.html
pandas.Series.align
`pandas.Series.align` Align two objects on their axes with the specified join method. ``` >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 ```
Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)[source]# Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters otherDataFrame or Series join{‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’ axisallowed axis of the other object, default NoneAlign on index (0), columns (1), or both (None). levelint or level name, default NoneBroadcast across a level, matching Index values on the passed MultiIndex level. copybool, default TrueAlways returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_valuescalar, default np.NaNValue to use for missing values. Defaults to NaN, but can be any “compatible” value. method{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default NoneMethod to use for filling holes in reindexed Series: pad / ffill: propagate last valid observation forward to next valid. backfill / bfill: use NEXT valid observation to fill gap. limitint, default NoneIf method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis{0 or ‘index’}, default 0Filling axis, method and limit. broadcast_axis{0 or ‘index’}, default NoneBroadcast values along this axis, if aligning two objects of different dimensions. Returns (left, right)(Series, type of other)Aligned objects. Examples >>> df = pd.DataFrame( ... [[1, 2, 3, 4], [6, 7, 8, 9]], columns=["D", "B", "E", "A"], index=[1, 2] ... ) >>> other = pd.DataFrame( ... [[10, 20, 30, 40], [60, 70, 80, 90], [600, 700, 800, 900]], ... columns=["A", "B", "C", "D"], ... index=[2, 3, 4], ... ) >>> df D B E A 1 1 2 3 4 2 6 7 8 9 >>> other A B C D 2 10 20 30 40 3 60 70 80 90 4 600 700 800 900 Align on columns: >>> left, right = df.align(other, join="outer", axis=1) >>> left A B C D E 1 4 2 NaN 1 3 2 9 7 NaN 6 8 >>> right A B C D E 2 10 20 30 40 NaN 3 60 70 80 90 NaN 4 600 700 800 900 NaN We can also align on the index: >>> left, right = df.align(other, join="outer", axis=0) >>> left D B E A 1 1.0 2.0 3.0 4.0 2 6.0 7.0 8.0 9.0 3 NaN NaN NaN NaN 4 NaN NaN NaN NaN >>> right A B C D 1 NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 3 60.0 70.0 80.0 90.0 4 600.0 700.0 800.0 900.0 Finally, the default axis=None will align on both index and columns: >>> left, right = df.align(other, join="outer", axis=None) >>> left A B C D E 1 4.0 2.0 NaN 1.0 3.0 2 9.0 7.0 NaN 6.0 8.0 3 NaN NaN NaN NaN NaN 4 NaN NaN NaN NaN NaN >>> right A B C D E 1 NaN NaN NaN NaN NaN 2 10.0 20.0 30.0 40.0 NaN 3 60.0 70.0 80.0 90.0 NaN 4 600.0 700.0 800.0 900.0 NaN
reference/api/pandas.Series.align.html
pandas.DataFrame.boxplot
`pandas.DataFrame.boxplot` Make a box plot from DataFrame columns. Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box, ending at the farthest data point within that interval. Outliers are plotted as separate dots. ``` >>> np.random.seed(1234) >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['Col1', 'Col2', 'Col3', 'Col4']) >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) ```
DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs)[source]# Make a box plot from DataFrame columns. Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1) from the edges of the box, ending at the farthest data point within that interval. Outliers are plotted as separate dots. For further details see Wikipedia’s entry for boxplot. Parameters columnstr or list of str, optionalColumn name or list of names, or vector. Can be any valid input to pandas.DataFrame.groupby(). bystr or array-like, optionalColumn in the DataFrame to pandas.DataFrame.groupby(). One box-plot will be done per value of columns in by. axobject of class matplotlib.axes.Axes, optionalThe matplotlib axes to be used by boxplot. fontsizefloat or strTick label font size in points or as a string (e.g., large). rotint or float, default 0The rotation angle of labels (in degrees) with respect to the screen coordinate system. gridbool, default TrueSetting this to True will show the grid. figsizeA tuple (width, height) in inchesThe size of the figure to create in matplotlib. layouttuple (rows, columns), optionalFor example, (3, 5) will display the subplots using 3 columns and 5 rows, starting from the top-left. return_type{‘axes’, ‘dict’, ‘both’} or None, default ‘axes’The kind of object to return. The default is axes. ‘axes’ returns the matplotlib axes the boxplot is drawn on. ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot. ‘both’ returns a namedtuple with the axes and dict. when grouping with by, a Series mapping columns to return_type is returned. If return_type is None, a NumPy array of axes with the same shape as layout is returned. backendstr, default NoneBackend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend. New in version 1.0.0. **kwargsAll other plotting keyword arguments to be passed to matplotlib.pyplot.boxplot(). Returns resultSee Notes. See also Series.plot.histMake a histogram. matplotlib.pyplot.boxplotMatplotlib equivalent plot. Notes The return type depends on the return_type parameter: ‘axes’ : object of class matplotlib.axes.Axes ‘dict’ : dict of matplotlib.lines.Line2D objects ‘both’ : a namedtuple with structure (ax, lines) For data grouped with by, return a Series of the above or a numpy array: Series array (for return_type = None) Use return_type='dict' when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned. Examples Boxplots can be created for every column in the dataframe by df.boxplot() or indicating the columns to be used: >>> np.random.seed(1234) >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['Col1', 'Col2', 'Col3', 'Col4']) >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) Boxplots of variables distributions grouped by the values of a third variable can be created using the option by. For instance: >>> df = pd.DataFrame(np.random.randn(10, 2), ... columns=['Col1', 'Col2']) >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', ... 'B', 'B', 'B', 'B', 'B']) >>> boxplot = df.boxplot(by='X') A list of strings (i.e. ['X', 'Y']) can be passed to boxplot in order to group the data by combination of the variables in the x-axis: >>> df = pd.DataFrame(np.random.randn(10, 3), ... columns=['Col1', 'Col2', 'Col3']) >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', ... 'B', 'B', 'B', 'B', 'B']) >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A', ... 'B', 'A', 'B', 'A', 'B']) >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y']) The layout of boxplot can be adjusted giving a tuple to layout: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... layout=(2, 1)) Additional formatting can be done to the boxplot, like suppressing the grid (grid=False), rotating the labels in the x-axis (i.e. rot=45) or changing the fontsize (i.e. fontsize=15): >>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) The parameter return_type can be used to select the type of element returned by boxplot. When return_type='axes' is selected, the matplotlib axes on which the boxplot is drawn are returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes') >>> type(boxplot) <class 'matplotlib.axes._subplots.AxesSubplot'> When grouping with by, a Series mapping columns to return_type is returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type='axes') >>> type(boxplot) <class 'pandas.core.series.Series'> If return_type is None, a NumPy array of axes with the same shape as layout is returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type=None) >>> type(boxplot) <class 'numpy.ndarray'>
reference/api/pandas.DataFrame.boxplot.html
pandas.tseries.offsets.Week.is_on_offset
`pandas.tseries.offsets.Week.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
Week.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.Week.is_on_offset.html
Contributing to the documentation
Contributing to the documentation Contributing to the documentation benefits everyone who uses pandas. We encourage you to help us improve the documentation, and you don’t have to be an expert on pandas to do so! In fact, there are sections of the docs that are worse off after being written by experts. If something in the docs doesn’t make sense to you, updating the relevant section after you figure it out is a great way to ensure it will help the next person. Please visit the issues page for a full list of issues that are currently open regarding the Pandas documentation. Documentation: About the pandas documentation Updating a pandas docstring How to build the pandas documentation
Contributing to the documentation benefits everyone who uses pandas. We encourage you to help us improve the documentation, and you don’t have to be an expert on pandas to do so! In fact, there are sections of the docs that are worse off after being written by experts. If something in the docs doesn’t make sense to you, updating the relevant section after you figure it out is a great way to ensure it will help the next person. Please visit the issues page for a full list of issues that are currently open regarding the Pandas documentation. Documentation: About the pandas documentation Updating a pandas docstring How to build the pandas documentation Requirements Building the documentation Building main branch documentation Previewing changes About the pandas documentation# The documentation is written in reStructuredText, which is almost like writing in plain English, and built using Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more complex changes to the documentation as well. Some other important things to know about the docs: The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder doc/. The docstrings provide a clear explanation of the usage of the individual functions, while the documentation in this folder consists of tutorial-like overviews per topic together with some other information (what’s new, installation, etc). The docstrings follow a pandas convention, based on the Numpy Docstring Standard. Follow the pandas docstring guide for detailed instructions on how to write a correct docstring. pandas docstring guide About docstrings and standards Writing a docstring Sharing docstrings The tutorials make heavy use of the IPython directive sphinx extension. This directive lets you put code in the documentation which will be run during the doc build. For example: .. ipython:: python x = 2 x**3 will be rendered as: In [1]: x = 2 In [2]: x**3 Out[2]: 8 Almost all code examples in the docs are run (and the output saved) during the doc build. This approach means that code examples will always be up to date, but it does make the doc building a bit more complex. Our API documentation files in doc/source/reference house the auto-generated documentation from the docstrings. For classes, there are a few subtleties around controlling which methods and attributes have pages auto-generated. We have two autosummary templates for classes. _templates/autosummary/class.rst. Use this when you want to automatically generate a page for every public method and attribute on the class. The Attributes and Methods sections will be automatically added to the class’ rendered documentation by numpydoc. See DataFrame for an example. _templates/autosummary/class_without_autosummary. Use this when you want to pick a subset of methods / attributes to auto-generate pages for. When using this template, you should include an Attributes and Methods section in the class docstring. See CategoricalIndex for an example. Every method should be included in a toctree in one of the documentation files in doc/source/reference, else Sphinx will emit a warning. The utility script scripts/validate_docstrings.py can be used to get a csv summary of the API documentation. And also validate common errors in the docstring of a specific class, function or method. The summary also compares the list of methods documented in the files in doc/source/reference (which is used to generate the API Reference page) and the actual public methods. This will identify methods documented in doc/source/reference that are not actually class methods, and existing methods that are not documented in doc/source/reference. Updating a pandas docstring# When improving a single function or method’s docstring, it is not necessarily needed to build the full documentation (see next section). However, there is a script that checks a docstring (for example for the DataFrame.mean method): python scripts/validate_docstrings.py pandas.DataFrame.mean This script will indicate some formatting errors if present, and will also run and test the examples included in the docstring. Check the pandas docstring guide for a detailed guide on how to format the docstring. The examples in the docstring (‘doctests’) must be valid Python code, that in a deterministic way returns the presented output, and that can be copied and run by users. This can be checked with the script above, and is also tested on Travis. A failing doctest will be a blocker for merging a PR. Check the examples section in the docstring guide for some tips and tricks to get the doctests passing. When doing a PR with a docstring update, it is good to post the output of the validation script in a comment on github. How to build the pandas documentation# Requirements# First, you need to have a development environment to be able to build pandas (see the docs on creating a development environment). Building the documentation# So how do you build the docs? Navigate to your local doc/ directory in the console and run: python make.py html Then you can find the HTML output in the folder doc/build/html/. The first time you build the docs, it will take quite a while because it has to run all the code examples and build all the generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified. If you want to do a full clean build, do: python make.py clean python make.py html You can tell make.py to compile only a single section of the docs, greatly reducing the turn-around time for checking your changes. # omit autosummary and API section python make.py clean python make.py --no-api # compile the docs with only a single section, relative to the "source" folder. # For example, compiling only this guide (doc/source/development/contributing.rst) python make.py clean python make.py --single development/contributing.rst # compile the reference docs for a single function python make.py clean python make.py --single pandas.DataFrame.join # compile whatsnew and API section (to resolve links in the whatsnew) python make.py clean python make.py --whatsnew For comparison, a full documentation build may take 15 minutes, but a single section may take 15 seconds. Subsequent builds, which only process portions you have changed, will be faster. The build will automatically use the number of cores available on your machine to speed up the documentation build. You can override this: python make.py html --num-jobs 4 Open the following file in a web browser to see the full documentation you just built: doc/build/html/index.html And you’ll have the satisfaction of seeing your new and improved documentation! Building main branch documentation# When pull requests are merged into the pandas main branch, the main parts of the documentation are also built by Travis-CI. These docs are then hosted here, see also the Continuous Integration section. Previewing changes# Once, the pull request is submitted, GitHub Actions will automatically build the documentation. To view the built site: Wait for the CI / Web and docs check to complete. Click Details next to it. From the Artifacts drop-down, click docs or website to download the site as a ZIP file.
development/contributing_documentation.html
pandas.tseries.offsets.SemiMonthBegin.copy
`pandas.tseries.offsets.SemiMonthBegin.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
SemiMonthBegin.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.SemiMonthBegin.copy.html
pandas.tseries.offsets.FY5253.apply_index
`pandas.tseries.offsets.FY5253.apply_index` Vectorized apply of DateOffset to DatetimeIndex.
FY5253.apply_index()# Vectorized apply of DateOffset to DatetimeIndex. Deprecated since version 1.1.0: Use offset + dtindex instead. Parameters indexDatetimeIndex Returns DatetimeIndex Raises NotImplementedErrorWhen the specific offset subclass does not have a vectorized implementation.
reference/api/pandas.tseries.offsets.FY5253.apply_index.html
pandas.DataFrame.to_records
`pandas.DataFrame.to_records` Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. ``` >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) ```
DataFrame.to_records(index=True, column_dtypes=None, index_dtypes=None)[source]# Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters indexbool, default TrueInclude index in resulting record array, stored in ‘index’ field or using the index label, if set. column_dtypesstr, type, dict, default NoneIf a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypesstr, type, dict, default NoneIf a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if index=True. Returns numpy.recarrayNumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See also DataFrame.from_recordsConvert structured or record ndarray to DataFrame. numpy.recarrayAn ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to ‘index’. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')])
reference/api/pandas.DataFrame.to_records.html
pandas.core.groupby.DataFrameGroupBy.all
`pandas.core.groupby.DataFrameGroupBy.all` Return True if all values in the group are truthful, else False. Flag to ignore nan values during truth testing.
DataFrameGroupBy.all(skipna=True)[source]# Return True if all values in the group are truthful, else False. Parameters skipnabool, default TrueFlag to ignore nan values during truth testing. Returns Series or DataFrameDataFrame or Series of boolean values, where a value is True if all elements are True within its respective group, False otherwise. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.DataFrameGroupBy.all.html
pandas.core.groupby.DataFrameGroupBy.any
`pandas.core.groupby.DataFrameGroupBy.any` Return True if any value in the group is truthful, else False. Flag to ignore nan values during truth testing.
DataFrameGroupBy.any(skipna=True)[source]# Return True if any value in the group is truthful, else False. Parameters skipnabool, default TrueFlag to ignore nan values during truth testing. Returns Series or DataFrameDataFrame or Series of boolean values, where a value is True if any element is True within its respective group, False otherwise. See also Series.groupbyApply a function groupby to a Series. DataFrame.groupbyApply a function groupby to each row or column of a DataFrame.
reference/api/pandas.core.groupby.DataFrameGroupBy.any.html
pandas.Series.T
`pandas.Series.T` Return the transpose, which is by definition self.
property Series.T[source]# Return the transpose, which is by definition self.
reference/api/pandas.Series.T.html
pandas.api.types.is_named_tuple
`pandas.api.types.is_named_tuple` Check if the object is a named tuple. ``` >>> from collections import namedtuple >>> Point = namedtuple("Point", ["x", "y"]) >>> p = Point(1, 2) >>> >>> is_named_tuple(p) True >>> is_named_tuple((1, 2)) False ```
pandas.api.types.is_named_tuple(obj)[source]# Check if the object is a named tuple. Parameters objThe object to check Returns is_named_tupleboolWhether obj is a named tuple. Examples >>> from collections import namedtuple >>> Point = namedtuple("Point", ["x", "y"]) >>> p = Point(1, 2) >>> >>> is_named_tuple(p) True >>> is_named_tuple((1, 2)) False
reference/api/pandas.api.types.is_named_tuple.html
Resampling
Resampling
Resampler objects are returned by resample calls: pandas.DataFrame.resample(), pandas.Series.resample(). Indexing, iteration# Resampler.__iter__() Groupby iterator. Resampler.groups Dict {group name -> group labels}. Resampler.indices Dict {group name -> group indices}. Resampler.get_group(name[, obj]) Construct DataFrame from group with provided name. Function application# Resampler.apply([func]) Aggregate using one or more operations over the specified axis. Resampler.aggregate([func]) Aggregate using one or more operations over the specified axis. Resampler.transform(arg, *args, **kwargs) Call function producing a like-indexed Series on each group. Resampler.pipe(func, *args, **kwargs) Apply a func with arguments to this Resampler object and return its result. Upsampling# Resampler.ffill([limit]) Forward fill the values. Resampler.backfill([limit]) (DEPRECATED) Backward fill the values. Resampler.bfill([limit]) Backward fill the new missing values in the resampled data. Resampler.pad([limit]) (DEPRECATED) Forward fill the values. Resampler.nearest([limit]) Resample by using the nearest value. Resampler.fillna(method[, limit]) Fill missing values introduced by upsampling. Resampler.asfreq([fill_value]) Return the values at the new freq, essentially a reindex. Resampler.interpolate([method, axis, limit, ...]) Interpolate values according to different methods. Computations / descriptive stats# Resampler.count() Compute count of group, excluding missing values. Resampler.nunique(*args, **kwargs) Return number of unique elements in the group. Resampler.first([numeric_only, min_count]) Compute the first non-null entry of each column. Resampler.last([numeric_only, min_count]) Compute the last non-null entry of each column. Resampler.max([numeric_only, min_count]) Compute max of group values. Resampler.mean([numeric_only]) Compute mean of groups, excluding missing values. Resampler.median([numeric_only]) Compute median of groups, excluding missing values. Resampler.min([numeric_only, min_count]) Compute min of group values. Resampler.ohlc(*args, **kwargs) Compute open, high, low and close values of a group, excluding missing values. Resampler.prod([numeric_only, min_count]) Compute prod of group values. Resampler.size() Compute group sizes. Resampler.sem([ddof, numeric_only]) Compute standard error of the mean of groups, excluding missing values. Resampler.std([ddof, numeric_only]) Compute standard deviation of groups, excluding missing values. Resampler.sum([numeric_only, min_count]) Compute sum of group values. Resampler.var([ddof, numeric_only]) Compute variance of groups, excluding missing values. Resampler.quantile([q]) Return value at the given quantile.
reference/resampling.html
pandas.core.window.rolling.Rolling.min
`pandas.core.window.rolling.Rolling.min` Calculate the rolling minimum. ``` >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 ```
Rolling.min(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the rolling minimum. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.minAggregating min for Series. pandas.DataFrame.minAggregating min for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine. Examples Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64
reference/api/pandas.core.window.rolling.Rolling.min.html
pandas.tseries.offsets.CustomBusinessMonthBegin.rollback
`pandas.tseries.offsets.CustomBusinessMonthBegin.rollback` Roll provided date backward to next offset only if not on offset.
CustomBusinessMonthBegin.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.CustomBusinessMonthBegin.rollback.html
pandas.Timestamp.is_quarter_end
`pandas.Timestamp.is_quarter_end` Return True if date is last day of the quarter. ``` >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.is_quarter_end False ```
Timestamp.is_quarter_end# Return True if date is last day of the quarter. Examples >>> ts = pd.Timestamp(2020, 3, 14) >>> ts.is_quarter_end False >>> ts = pd.Timestamp(2020, 3, 31) >>> ts.is_quarter_end True
reference/api/pandas.Timestamp.is_quarter_end.html
pandas.core.window.expanding.Expanding.max
`pandas.core.window.expanding.Expanding.max` Calculate the expanding maximum.
Expanding.max(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]# Calculate the expanding maximum. Parameters numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. *argsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. enginestr, default None 'cython' : Runs the operation through C-extensions from cython. 'numba' : Runs the operation through JIT compiled code from numba. None : Defaults to 'cython' or globally setting compute.use_numba New in version 1.3.0. engine_kwargsdict, default None For 'cython' engine, there are no accepted engine_kwargs For 'numba' engine, the engine can accept nopython, nogil and parallel dictionary keys. The values must either be True or False. The default engine_kwargs for the 'numba' engine is {'nopython': True, 'nogil': False, 'parallel': False} New in version 1.3.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also pandas.Series.expandingCalling expanding with Series data. pandas.DataFrame.expandingCalling expanding with DataFrames. pandas.Series.maxAggregating max for Series. pandas.DataFrame.maxAggregating max for DataFrame. Notes See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
reference/api/pandas.core.window.expanding.Expanding.max.html
pandas.tseries.offsets.Week.rollback
`pandas.tseries.offsets.Week.rollback` Roll provided date backward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
Week.rollback()# Roll provided date backward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.Week.rollback.html
pandas.tseries.offsets.QuarterBegin.isAnchored
pandas.tseries.offsets.QuarterBegin.isAnchored
QuarterBegin.isAnchored()#
reference/api/pandas.tseries.offsets.QuarterBegin.isAnchored.html
Date offsets
Date offsets
DateOffset# DateOffset Standard kind of date increment used for a date range. Properties# DateOffset.freqstr Return a string representing the frequency. DateOffset.kwds Return a dict of extra parameters for the offset. DateOffset.name Return a string representing the base frequency. DateOffset.nanos DateOffset.normalize DateOffset.rule_code DateOffset.n DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. Methods# DateOffset.apply DateOffset.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. DateOffset.copy Return a copy of the frequency. DateOffset.isAnchored DateOffset.onOffset DateOffset.is_anchored Return boolean whether the frequency is a unit frequency (n=1). DateOffset.is_on_offset Return boolean whether a timestamp intersects with this frequency. DateOffset.__call__(*args, **kwargs) Call self as a function. DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. DateOffset.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. DateOffset.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. DateOffset.is_year_start Return boolean whether a timestamp occurs on the year start. DateOffset.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessDay# BusinessDay DateOffset subclass representing possibly n business days. Alias: BDay alias of pandas._libs.tslibs.offsets.BusinessDay Properties# BusinessDay.freqstr Return a string representing the frequency. BusinessDay.kwds Return a dict of extra parameters for the offset. BusinessDay.name Return a string representing the base frequency. BusinessDay.nanos BusinessDay.normalize BusinessDay.rule_code BusinessDay.n BusinessDay.weekmask BusinessDay.holidays BusinessDay.calendar Methods# BusinessDay.apply BusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessDay.copy Return a copy of the frequency. BusinessDay.isAnchored BusinessDay.onOffset BusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessDay.__call__(*args, **kwargs) Call self as a function. BusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessHour# BusinessHour DateOffset subclass representing possibly n business hours. Properties# BusinessHour.freqstr Return a string representing the frequency. BusinessHour.kwds Return a dict of extra parameters for the offset. BusinessHour.name Return a string representing the base frequency. BusinessHour.nanos BusinessHour.normalize BusinessHour.rule_code BusinessHour.n BusinessHour.start BusinessHour.end BusinessHour.weekmask BusinessHour.holidays BusinessHour.calendar Methods# BusinessHour.apply BusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessHour.copy Return a copy of the frequency. BusinessHour.isAnchored BusinessHour.onOffset BusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessHour.__call__(*args, **kwargs) Call self as a function. BusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessDay# CustomBusinessDay DateOffset subclass representing custom business days excluding holidays. Alias: CDay alias of pandas._libs.tslibs.offsets.CustomBusinessDay Properties# CustomBusinessDay.freqstr Return a string representing the frequency. CustomBusinessDay.kwds Return a dict of extra parameters for the offset. CustomBusinessDay.name Return a string representing the base frequency. CustomBusinessDay.nanos CustomBusinessDay.normalize CustomBusinessDay.rule_code CustomBusinessDay.n CustomBusinessDay.weekmask CustomBusinessDay.calendar CustomBusinessDay.holidays Methods# CustomBusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessDay.apply CustomBusinessDay.copy Return a copy of the frequency. CustomBusinessDay.isAnchored CustomBusinessDay.onOffset CustomBusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessDay.__call__(*args, **kwargs) Call self as a function. CustomBusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessHour# CustomBusinessHour DateOffset subclass representing possibly n custom business days. Properties# CustomBusinessHour.freqstr Return a string representing the frequency. CustomBusinessHour.kwds Return a dict of extra parameters for the offset. CustomBusinessHour.name Return a string representing the base frequency. CustomBusinessHour.nanos CustomBusinessHour.normalize CustomBusinessHour.rule_code CustomBusinessHour.n CustomBusinessHour.weekmask CustomBusinessHour.calendar CustomBusinessHour.holidays CustomBusinessHour.start CustomBusinessHour.end Methods# CustomBusinessHour.apply CustomBusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessHour.copy Return a copy of the frequency. CustomBusinessHour.isAnchored CustomBusinessHour.onOffset CustomBusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessHour.__call__(*args, **kwargs) Call self as a function. CustomBusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. MonthEnd# MonthEnd DateOffset of one month end. Properties# MonthEnd.freqstr Return a string representing the frequency. MonthEnd.kwds Return a dict of extra parameters for the offset. MonthEnd.name Return a string representing the base frequency. MonthEnd.nanos MonthEnd.normalize MonthEnd.rule_code MonthEnd.n Methods# MonthEnd.apply MonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthEnd.copy Return a copy of the frequency. MonthEnd.isAnchored MonthEnd.onOffset MonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthEnd.__call__(*args, **kwargs) Call self as a function. MonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. MonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. MonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. MonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. MonthBegin# MonthBegin DateOffset of one month at beginning. Properties# MonthBegin.freqstr Return a string representing the frequency. MonthBegin.kwds Return a dict of extra parameters for the offset. MonthBegin.name Return a string representing the base frequency. MonthBegin.nanos MonthBegin.normalize MonthBegin.rule_code MonthBegin.n Methods# MonthBegin.apply MonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthBegin.copy Return a copy of the frequency. MonthBegin.isAnchored MonthBegin.onOffset MonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthBegin.__call__(*args, **kwargs) Call self as a function. MonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. MonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. MonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. MonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthEnd# BusinessMonthEnd DateOffset increments between the last business day of the month. Alias: BMonthEnd alias of pandas._libs.tslibs.offsets.BusinessMonthEnd Properties# BusinessMonthEnd.freqstr Return a string representing the frequency. BusinessMonthEnd.kwds Return a dict of extra parameters for the offset. BusinessMonthEnd.name Return a string representing the base frequency. BusinessMonthEnd.nanos BusinessMonthEnd.normalize BusinessMonthEnd.rule_code BusinessMonthEnd.n Methods# BusinessMonthEnd.apply BusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthEnd.copy Return a copy of the frequency. BusinessMonthEnd.isAnchored BusinessMonthEnd.onOffset BusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. BusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthBegin# BusinessMonthBegin DateOffset of one month at the first business day. Alias: BMonthBegin alias of pandas._libs.tslibs.offsets.BusinessMonthBegin Properties# BusinessMonthBegin.freqstr Return a string representing the frequency. BusinessMonthBegin.kwds Return a dict of extra parameters for the offset. BusinessMonthBegin.name Return a string representing the base frequency. BusinessMonthBegin.nanos BusinessMonthBegin.normalize BusinessMonthBegin.rule_code BusinessMonthBegin.n Methods# BusinessMonthBegin.apply BusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthBegin.copy Return a copy of the frequency. BusinessMonthBegin.isAnchored BusinessMonthBegin.onOffset BusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthBegin.__call__(*args, **kwargs) Call self as a function. BusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthEnd# CustomBusinessMonthEnd Attributes Alias: CBMonthEnd alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd Properties# CustomBusinessMonthEnd.freqstr Return a string representing the frequency. CustomBusinessMonthEnd.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthEnd.m_offset CustomBusinessMonthEnd.name Return a string representing the base frequency. CustomBusinessMonthEnd.nanos CustomBusinessMonthEnd.normalize CustomBusinessMonthEnd.rule_code CustomBusinessMonthEnd.n CustomBusinessMonthEnd.weekmask CustomBusinessMonthEnd.calendar CustomBusinessMonthEnd.holidays Methods# CustomBusinessMonthEnd.apply CustomBusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthEnd.copy Return a copy of the frequency. CustomBusinessMonthEnd.isAnchored CustomBusinessMonthEnd.onOffset CustomBusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. CustomBusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthBegin# CustomBusinessMonthBegin Attributes Alias: CBMonthBegin alias of pandas._libs.tslibs.offsets.CustomBusinessMonthBegin Properties# CustomBusinessMonthBegin.freqstr Return a string representing the frequency. CustomBusinessMonthBegin.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthBegin.m_offset CustomBusinessMonthBegin.name Return a string representing the base frequency. CustomBusinessMonthBegin.nanos CustomBusinessMonthBegin.normalize CustomBusinessMonthBegin.rule_code CustomBusinessMonthBegin.n CustomBusinessMonthBegin.weekmask CustomBusinessMonthBegin.calendar CustomBusinessMonthBegin.holidays Methods# CustomBusinessMonthBegin.apply CustomBusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthBegin.copy Return a copy of the frequency. CustomBusinessMonthBegin.isAnchored CustomBusinessMonthBegin.onOffset CustomBusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthBegin.__call__(*args, ...) Call self as a function. CustomBusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthEnd# SemiMonthEnd Two DateOffset's per month repeating on the last day of the month & day_of_month. Properties# SemiMonthEnd.freqstr Return a string representing the frequency. SemiMonthEnd.kwds Return a dict of extra parameters for the offset. SemiMonthEnd.name Return a string representing the base frequency. SemiMonthEnd.nanos SemiMonthEnd.normalize SemiMonthEnd.rule_code SemiMonthEnd.n SemiMonthEnd.day_of_month Methods# SemiMonthEnd.apply SemiMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthEnd.copy Return a copy of the frequency. SemiMonthEnd.isAnchored SemiMonthEnd.onOffset SemiMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthEnd.__call__(*args, **kwargs) Call self as a function. SemiMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthBegin# SemiMonthBegin Two DateOffset's per month repeating on the first day of the month & day_of_month. Properties# SemiMonthBegin.freqstr Return a string representing the frequency. SemiMonthBegin.kwds Return a dict of extra parameters for the offset. SemiMonthBegin.name Return a string representing the base frequency. SemiMonthBegin.nanos SemiMonthBegin.normalize SemiMonthBegin.rule_code SemiMonthBegin.n SemiMonthBegin.day_of_month Methods# SemiMonthBegin.apply SemiMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthBegin.copy Return a copy of the frequency. SemiMonthBegin.isAnchored SemiMonthBegin.onOffset SemiMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthBegin.__call__(*args, **kwargs) Call self as a function. SemiMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. Week# Week Weekly offset. Properties# Week.freqstr Return a string representing the frequency. Week.kwds Return a dict of extra parameters for the offset. Week.name Return a string representing the base frequency. Week.nanos Week.normalize Week.rule_code Week.n Week.weekday Methods# Week.apply Week.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Week.copy Return a copy of the frequency. Week.isAnchored Week.onOffset Week.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Week.is_on_offset Return boolean whether a timestamp intersects with this frequency. Week.__call__(*args, **kwargs) Call self as a function. Week.is_month_start Return boolean whether a timestamp occurs on the month start. Week.is_month_end Return boolean whether a timestamp occurs on the month end. Week.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Week.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Week.is_year_start Return boolean whether a timestamp occurs on the year start. Week.is_year_end Return boolean whether a timestamp occurs on the year end. WeekOfMonth# WeekOfMonth Describes monthly dates like "the Tuesday of the 2nd week of each month". Properties# WeekOfMonth.freqstr Return a string representing the frequency. WeekOfMonth.kwds Return a dict of extra parameters for the offset. WeekOfMonth.name Return a string representing the base frequency. WeekOfMonth.nanos WeekOfMonth.normalize WeekOfMonth.rule_code WeekOfMonth.n WeekOfMonth.week Methods# WeekOfMonth.apply WeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. WeekOfMonth.copy Return a copy of the frequency. WeekOfMonth.isAnchored WeekOfMonth.onOffset WeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). WeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. WeekOfMonth.__call__(*args, **kwargs) Call self as a function. WeekOfMonth.weekday WeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. WeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. WeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. WeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. WeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. WeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. LastWeekOfMonth# LastWeekOfMonth Describes monthly dates in last week of month. Properties# LastWeekOfMonth.freqstr Return a string representing the frequency. LastWeekOfMonth.kwds Return a dict of extra parameters for the offset. LastWeekOfMonth.name Return a string representing the base frequency. LastWeekOfMonth.nanos LastWeekOfMonth.normalize LastWeekOfMonth.rule_code LastWeekOfMonth.n LastWeekOfMonth.weekday LastWeekOfMonth.week Methods# LastWeekOfMonth.apply LastWeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. LastWeekOfMonth.copy Return a copy of the frequency. LastWeekOfMonth.isAnchored LastWeekOfMonth.onOffset LastWeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). LastWeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. LastWeekOfMonth.__call__(*args, **kwargs) Call self as a function. LastWeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. LastWeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. LastWeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. LastWeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. LastWeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. LastWeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterEnd# BQuarterEnd DateOffset increments between the last business day of each Quarter. Properties# BQuarterEnd.freqstr Return a string representing the frequency. BQuarterEnd.kwds Return a dict of extra parameters for the offset. BQuarterEnd.name Return a string representing the base frequency. BQuarterEnd.nanos BQuarterEnd.normalize BQuarterEnd.rule_code BQuarterEnd.n BQuarterEnd.startingMonth Methods# BQuarterEnd.apply BQuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterEnd.copy Return a copy of the frequency. BQuarterEnd.isAnchored BQuarterEnd.onOffset BQuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterEnd.__call__(*args, **kwargs) Call self as a function. BQuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterBegin# BQuarterBegin DateOffset increments between the first business day of each Quarter. Properties# BQuarterBegin.freqstr Return a string representing the frequency. BQuarterBegin.kwds Return a dict of extra parameters for the offset. BQuarterBegin.name Return a string representing the base frequency. BQuarterBegin.nanos BQuarterBegin.normalize BQuarterBegin.rule_code BQuarterBegin.n BQuarterBegin.startingMonth Methods# BQuarterBegin.apply BQuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterBegin.copy Return a copy of the frequency. BQuarterBegin.isAnchored BQuarterBegin.onOffset BQuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterBegin.__call__(*args, **kwargs) Call self as a function. BQuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterEnd# QuarterEnd DateOffset increments between Quarter end dates. Properties# QuarterEnd.freqstr Return a string representing the frequency. QuarterEnd.kwds Return a dict of extra parameters for the offset. QuarterEnd.name Return a string representing the base frequency. QuarterEnd.nanos QuarterEnd.normalize QuarterEnd.rule_code QuarterEnd.n QuarterEnd.startingMonth Methods# QuarterEnd.apply QuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterEnd.copy Return a copy of the frequency. QuarterEnd.isAnchored QuarterEnd.onOffset QuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterEnd.__call__(*args, **kwargs) Call self as a function. QuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterBegin# QuarterBegin DateOffset increments between Quarter start dates. Properties# QuarterBegin.freqstr Return a string representing the frequency. QuarterBegin.kwds Return a dict of extra parameters for the offset. QuarterBegin.name Return a string representing the base frequency. QuarterBegin.nanos QuarterBegin.normalize QuarterBegin.rule_code QuarterBegin.n QuarterBegin.startingMonth Methods# QuarterBegin.apply QuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterBegin.copy Return a copy of the frequency. QuarterBegin.isAnchored QuarterBegin.onOffset QuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterBegin.__call__(*args, **kwargs) Call self as a function. QuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BYearEnd# BYearEnd DateOffset increments between the last business day of the year. Properties# BYearEnd.freqstr Return a string representing the frequency. BYearEnd.kwds Return a dict of extra parameters for the offset. BYearEnd.name Return a string representing the base frequency. BYearEnd.nanos BYearEnd.normalize BYearEnd.rule_code BYearEnd.n BYearEnd.month Methods# BYearEnd.apply BYearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearEnd.copy Return a copy of the frequency. BYearEnd.isAnchored BYearEnd.onOffset BYearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearEnd.__call__(*args, **kwargs) Call self as a function. BYearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BYearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BYearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BYearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BYearBegin# BYearBegin DateOffset increments between the first business day of the year. Properties# BYearBegin.freqstr Return a string representing the frequency. BYearBegin.kwds Return a dict of extra parameters for the offset. BYearBegin.name Return a string representing the base frequency. BYearBegin.nanos BYearBegin.normalize BYearBegin.rule_code BYearBegin.n BYearBegin.month Methods# BYearBegin.apply BYearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearBegin.copy Return a copy of the frequency. BYearBegin.isAnchored BYearBegin.onOffset BYearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearBegin.__call__(*args, **kwargs) Call self as a function. BYearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BYearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BYearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BYearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. YearEnd# YearEnd DateOffset increments between calendar year ends. Properties# YearEnd.freqstr Return a string representing the frequency. YearEnd.kwds Return a dict of extra parameters for the offset. YearEnd.name Return a string representing the base frequency. YearEnd.nanos YearEnd.normalize YearEnd.rule_code YearEnd.n YearEnd.month Methods# YearEnd.apply YearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearEnd.copy Return a copy of the frequency. YearEnd.isAnchored YearEnd.onOffset YearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearEnd.__call__(*args, **kwargs) Call self as a function. YearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. YearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. YearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. YearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. YearBegin# YearBegin DateOffset increments between calendar year begin dates. Properties# YearBegin.freqstr Return a string representing the frequency. YearBegin.kwds Return a dict of extra parameters for the offset. YearBegin.name Return a string representing the base frequency. YearBegin.nanos YearBegin.normalize YearBegin.rule_code YearBegin.n YearBegin.month Methods# YearBegin.apply YearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearBegin.copy Return a copy of the frequency. YearBegin.isAnchored YearBegin.onOffset YearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearBegin.__call__(*args, **kwargs) Call self as a function. YearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. YearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. YearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. YearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253# FY5253 Describes 52-53 week fiscal year. Properties# FY5253.freqstr Return a string representing the frequency. FY5253.kwds Return a dict of extra parameters for the offset. FY5253.name Return a string representing the base frequency. FY5253.nanos FY5253.normalize FY5253.rule_code FY5253.n FY5253.startingMonth FY5253.variation FY5253.weekday Methods# FY5253.apply FY5253.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253.copy Return a copy of the frequency. FY5253.get_rule_code_suffix FY5253.get_year_end FY5253.isAnchored FY5253.onOffset FY5253.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253.__call__(*args, **kwargs) Call self as a function. FY5253.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253Quarter# FY5253Quarter DateOffset increments between business quarter dates for 52-53 week fiscal year. Properties# FY5253Quarter.freqstr Return a string representing the frequency. FY5253Quarter.kwds Return a dict of extra parameters for the offset. FY5253Quarter.name Return a string representing the base frequency. FY5253Quarter.nanos FY5253Quarter.normalize FY5253Quarter.rule_code FY5253Quarter.n FY5253Quarter.qtr_with_extra_week FY5253Quarter.startingMonth FY5253Quarter.variation FY5253Quarter.weekday Methods# FY5253Quarter.apply FY5253Quarter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253Quarter.copy Return a copy of the frequency. FY5253Quarter.get_rule_code_suffix FY5253Quarter.get_weeks FY5253Quarter.isAnchored FY5253Quarter.onOffset FY5253Quarter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253Quarter.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253Quarter.year_has_extra_week FY5253Quarter.__call__(*args, **kwargs) Call self as a function. FY5253Quarter.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253Quarter.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253Quarter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253Quarter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253Quarter.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253Quarter.is_year_end Return boolean whether a timestamp occurs on the year end. Easter# Easter DateOffset for the Easter holiday using logic defined in dateutil. Properties# Easter.freqstr Return a string representing the frequency. Easter.kwds Return a dict of extra parameters for the offset. Easter.name Return a string representing the base frequency. Easter.nanos Easter.normalize Easter.rule_code Easter.n Methods# Easter.apply Easter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Easter.copy Return a copy of the frequency. Easter.isAnchored Easter.onOffset Easter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Easter.is_on_offset Return boolean whether a timestamp intersects with this frequency. Easter.__call__(*args, **kwargs) Call self as a function. Easter.is_month_start Return boolean whether a timestamp occurs on the month start. Easter.is_month_end Return boolean whether a timestamp occurs on the month end. Easter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Easter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Easter.is_year_start Return boolean whether a timestamp occurs on the year start. Easter.is_year_end Return boolean whether a timestamp occurs on the year end. Tick# Tick Attributes Properties# Tick.delta Tick.freqstr Return a string representing the frequency. Tick.kwds Return a dict of extra parameters for the offset. Tick.name Return a string representing the base frequency. Tick.nanos Return an integer of the total number of nanoseconds. Tick.normalize Tick.rule_code Tick.n Methods# Tick.copy Return a copy of the frequency. Tick.isAnchored Tick.onOffset Tick.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Tick.is_on_offset Return boolean whether a timestamp intersects with this frequency. Tick.__call__(*args, **kwargs) Call self as a function. Tick.apply Tick.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Tick.is_month_start Return boolean whether a timestamp occurs on the month start. Tick.is_month_end Return boolean whether a timestamp occurs on the month end. Tick.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Tick.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Tick.is_year_start Return boolean whether a timestamp occurs on the year start. Tick.is_year_end Return boolean whether a timestamp occurs on the year end. Day# Day Attributes Properties# Day.delta Day.freqstr Return a string representing the frequency. Day.kwds Return a dict of extra parameters for the offset. Day.name Return a string representing the base frequency. Day.nanos Return an integer of the total number of nanoseconds. Day.normalize Day.rule_code Day.n Methods# Day.copy Return a copy of the frequency. Day.isAnchored Day.onOffset Day.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Day.is_on_offset Return boolean whether a timestamp intersects with this frequency. Day.__call__(*args, **kwargs) Call self as a function. Day.apply Day.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Day.is_month_start Return boolean whether a timestamp occurs on the month start. Day.is_month_end Return boolean whether a timestamp occurs on the month end. Day.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Day.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Day.is_year_start Return boolean whether a timestamp occurs on the year start. Day.is_year_end Return boolean whether a timestamp occurs on the year end. Hour# Hour Attributes Properties# Hour.delta Hour.freqstr Return a string representing the frequency. Hour.kwds Return a dict of extra parameters for the offset. Hour.name Return a string representing the base frequency. Hour.nanos Return an integer of the total number of nanoseconds. Hour.normalize Hour.rule_code Hour.n Methods# Hour.copy Return a copy of the frequency. Hour.isAnchored Hour.onOffset Hour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Hour.is_on_offset Return boolean whether a timestamp intersects with this frequency. Hour.__call__(*args, **kwargs) Call self as a function. Hour.apply Hour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Hour.is_month_start Return boolean whether a timestamp occurs on the month start. Hour.is_month_end Return boolean whether a timestamp occurs on the month end. Hour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Hour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Hour.is_year_start Return boolean whether a timestamp occurs on the year start. Hour.is_year_end Return boolean whether a timestamp occurs on the year end. Minute# Minute Attributes Properties# Minute.delta Minute.freqstr Return a string representing the frequency. Minute.kwds Return a dict of extra parameters for the offset. Minute.name Return a string representing the base frequency. Minute.nanos Return an integer of the total number of nanoseconds. Minute.normalize Minute.rule_code Minute.n Methods# Minute.copy Return a copy of the frequency. Minute.isAnchored Minute.onOffset Minute.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Minute.is_on_offset Return boolean whether a timestamp intersects with this frequency. Minute.__call__(*args, **kwargs) Call self as a function. Minute.apply Minute.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Minute.is_month_start Return boolean whether a timestamp occurs on the month start. Minute.is_month_end Return boolean whether a timestamp occurs on the month end. Minute.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Minute.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Minute.is_year_start Return boolean whether a timestamp occurs on the year start. Minute.is_year_end Return boolean whether a timestamp occurs on the year end. Second# Second Attributes Properties# Second.delta Second.freqstr Return a string representing the frequency. Second.kwds Return a dict of extra parameters for the offset. Second.name Return a string representing the base frequency. Second.nanos Return an integer of the total number of nanoseconds. Second.normalize Second.rule_code Second.n Methods# Second.copy Return a copy of the frequency. Second.isAnchored Second.onOffset Second.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Second.is_on_offset Return boolean whether a timestamp intersects with this frequency. Second.__call__(*args, **kwargs) Call self as a function. Second.apply Second.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Second.is_month_start Return boolean whether a timestamp occurs on the month start. Second.is_month_end Return boolean whether a timestamp occurs on the month end. Second.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Second.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Second.is_year_start Return boolean whether a timestamp occurs on the year start. Second.is_year_end Return boolean whether a timestamp occurs on the year end. Milli# Milli Attributes Properties# Milli.delta Milli.freqstr Return a string representing the frequency. Milli.kwds Return a dict of extra parameters for the offset. Milli.name Return a string representing the base frequency. Milli.nanos Return an integer of the total number of nanoseconds. Milli.normalize Milli.rule_code Milli.n Methods# Milli.copy Return a copy of the frequency. Milli.isAnchored Milli.onOffset Milli.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Milli.is_on_offset Return boolean whether a timestamp intersects with this frequency. Milli.__call__(*args, **kwargs) Call self as a function. Milli.apply Milli.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Milli.is_month_start Return boolean whether a timestamp occurs on the month start. Milli.is_month_end Return boolean whether a timestamp occurs on the month end. Milli.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Milli.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Milli.is_year_start Return boolean whether a timestamp occurs on the year start. Milli.is_year_end Return boolean whether a timestamp occurs on the year end. Micro# Micro Attributes Properties# Micro.delta Micro.freqstr Return a string representing the frequency. Micro.kwds Return a dict of extra parameters for the offset. Micro.name Return a string representing the base frequency. Micro.nanos Return an integer of the total number of nanoseconds. Micro.normalize Micro.rule_code Micro.n Methods# Micro.copy Return a copy of the frequency. Micro.isAnchored Micro.onOffset Micro.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Micro.is_on_offset Return boolean whether a timestamp intersects with this frequency. Micro.__call__(*args, **kwargs) Call self as a function. Micro.apply Micro.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Micro.is_month_start Return boolean whether a timestamp occurs on the month start. Micro.is_month_end Return boolean whether a timestamp occurs on the month end. Micro.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Micro.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Micro.is_year_start Return boolean whether a timestamp occurs on the year start. Micro.is_year_end Return boolean whether a timestamp occurs on the year end. Nano# Nano Attributes Properties# Nano.delta Nano.freqstr Return a string representing the frequency. Nano.kwds Return a dict of extra parameters for the offset. Nano.name Return a string representing the base frequency. Nano.nanos Return an integer of the total number of nanoseconds. Nano.normalize Nano.rule_code Nano.n Methods# Nano.copy Return a copy of the frequency. Nano.isAnchored Nano.onOffset Nano.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Nano.is_on_offset Return boolean whether a timestamp intersects with this frequency. Nano.__call__(*args, **kwargs) Call self as a function. Nano.apply Nano.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Nano.is_month_start Return boolean whether a timestamp occurs on the month start. Nano.is_month_end Return boolean whether a timestamp occurs on the month end. Nano.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Nano.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Nano.is_year_start Return boolean whether a timestamp occurs on the year start. Nano.is_year_end Return boolean whether a timestamp occurs on the year end. Frequencies# to_offset Return DateOffset object from string or datetime.timedelta object.
reference/offset_frequency.html
pandas.tseries.offsets.CustomBusinessDay.is_month_start
`pandas.tseries.offsets.CustomBusinessDay.is_month_start` Return boolean whether a timestamp occurs on the month start. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
CustomBusinessDay.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_month_start.html
pandas.Index.to_numpy
`pandas.Index.to_numpy` A NumPy ndarray representing the values in this Series or Index. ``` >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) ```
Index.to_numpy(dtype=None, copy=False, na_value=_NoDefault.no_default, **kwargs)[source]# A NumPy ndarray representing the values in this Series or Index. Parameters dtypestr or numpy.dtype, optionalThe dtype to pass to numpy.asarray(). copybool, default FalseWhether to ensure that the returned value is not a view on another array. Note that copy=False does not ensure that to_numpy() is no-copy. Rather, copy=True ensure that a copy is made, even if not strictly necessary. na_valueAny, optionalThe value to use for missing values. The default value depends on dtype and the type of the array. New in version 1.0.0. **kwargsAdditional keywords passed through to the to_numpy method of the underlying array (for extension arrays). New in version 1.0.0. Returns numpy.ndarray See also Series.arrayGet the actual data stored within. Index.arrayGet the actual data stored within. DataFrame.to_numpySimilar method for DataFrame. Notes The returned array will be the same up to equality (values equal in self will be equal in the returned array; likewise for values that are not equal). When self contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Series, to_numpy() will return a NumPy array and the categorical dtype will be lost. For NumPy dtypes, this will be a reference to the actual data stored in this Series or Index (assuming copy=False). Modifying the result in place will modify the data stored in the Series or Index (not that we recommend doing that). For extension types, to_numpy() may require copying data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-copy reference to the underlying data, Series.array should be used instead. This table lays out the different dtypes and default return types of to_numpy() for various dtypes within pandas. dtype array type category[T] ndarray[T] (same dtype as input) period ndarray[object] (Periods) interval ndarray[object] (Intervals) IntegerNA ndarray[object] datetime64[ns] datetime64[ns] datetime64[ns, tz] ndarray[object] (Timestamps) Examples >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a'])) >>> ser.to_numpy() array(['a', 'b', 'a'], dtype=object) Specify the dtype to control how datetime-aware data is represented. Use dtype=object to return an ndarray of pandas Timestamp objects, each with the correct tz. >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> ser.to_numpy(dtype=object) array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'), Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object) Or dtype='datetime64[ns]' to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is dropped. >>> ser.to_numpy(dtype="datetime64[ns]") ... array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'], dtype='datetime64[ns]')
reference/api/pandas.Index.to_numpy.html
pandas.Series.head
`pandas.Series.head` Return the first n rows. This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. ``` >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra ```
Series.head(n=5)[source]# Return the first n rows. This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of n, this function returns all rows except the last |n| rows, equivalent to df[:n]. If n is larger than the number of rows, this function returns all rows. Parameters nint, default 5Number of rows to select. Returns same type as callerThe first n rows of the caller object. See also DataFrame.tailReturns the last n rows. Examples >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first n lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon For negative values of n >>> df.head(-3) animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot
reference/api/pandas.Series.head.html
pandas.tseries.offsets.CustomBusinessMonthEnd
`pandas.tseries.offsets.CustomBusinessMonthEnd` Attributes
class pandas.tseries.offsets.CustomBusinessMonthEnd# Attributes base Returns a copy of the calling offset object with n=1 and all other attributes equal. cbday_roll Define default roll function to be called in apply method. freqstr Return a string representing the frequency. kwds Return a dict of extra parameters for the offset. month_roll Define default roll function to be called in apply method. name Return a string representing the base frequency. offset Alias for self._offset. calendar holidays m_offset n nanos normalize rule_code weekmask Methods __call__(*args, **kwargs) Call self as a function. apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. copy Return a copy of the frequency. is_anchored Return boolean whether the frequency is a unit frequency (n=1). is_month_end Return boolean whether a timestamp occurs on the month end. is_month_start Return boolean whether a timestamp occurs on the month start. is_on_offset Return boolean whether a timestamp intersects with this frequency. is_quarter_end Return boolean whether a timestamp occurs on the quarter end. is_quarter_start Return boolean whether a timestamp occurs on the quarter start. is_year_end Return boolean whether a timestamp occurs on the year end. is_year_start Return boolean whether a timestamp occurs on the year start. rollback Roll provided date backward to next offset only if not on offset. rollforward Roll provided date forward to next offset only if not on offset. apply isAnchored onOffset
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.html
pandas.Series.dt.is_quarter_start
`pandas.Series.dt.is_quarter_start` Indicator for whether the date is the first day of a quarter. The same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. ``` >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False ```
Series.dt.is_quarter_start[source]# Indicator for whether the date is the first day of a quarter. Returns is_quarter_startSeries or DatetimeIndexThe same type as the original data with boolean values. Series will have the same name and index. DatetimeIndex will have the same name. See also quarterReturn the quarter of the date. is_quarter_endSimilar property for indicating the quarter start. Examples This method is available on Series with datetime values under the .dt accessor, and directly on DatetimeIndex. >>> df = pd.DataFrame({'dates': pd.date_range("2017-03-30", ... periods=4)}) >>> df.assign(quarter=df.dates.dt.quarter, ... is_quarter_start=df.dates.dt.is_quarter_start) dates quarter is_quarter_start 0 2017-03-30 1 False 1 2017-03-31 1 False 2 2017-04-01 2 True 3 2017-04-02 2 False >>> idx = pd.date_range('2017-03-30', periods=4) >>> idx DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'], dtype='datetime64[ns]', freq='D') >>> idx.is_quarter_start array([False, False, True, False])
reference/api/pandas.Series.dt.is_quarter_start.html
pandas.DataFrame.join
`pandas.DataFrame.join` Join columns of another DataFrame. ``` >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) ```
DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False, validate=None)[source]# Join columns of another DataFrame. Join columns with other DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters otherDataFrame, Series, or a list containing any combination of themIndex should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. onstr, list of str, or array-like, optionalColumn or index level name(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiple values given, the other DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’How to handle the operation of the two objects. left: use calling frame’s index (or column if on is specified) right: use other’s index. outer: form union of calling frame’s index (or column if on is specified) with other’s index, and sort it. lexicographically. inner: form intersection of calling frame’s index (or column if on is specified) with other’s index, preserving the order of the calling’s one. cross: creates the cartesian product from both frames, preserves the order of the left keys. New in version 1.2.0. lsuffixstr, default ‘’Suffix to use from left frame’s overlapping columns. rsuffixstr, default ‘’Suffix to use from right frame’s overlapping columns. sortbool, default FalseOrder result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). validatestr, optionalIf specified, checks if join is of specified type. * “one_to_one” or “1:1”: check if join keys are unique in both left and right datasets. * “one_to_many” or “1:m”: check if join keys are unique in left dataset. * “many_to_one” or “m:1”: check if join keys are unique in right dataset. * “many_to_many” or “m:m”: allowed, but does not result in checks. .. versionadded:: 1.5.0 Returns DataFrameA dataframe containing columns from both the caller and other. See also DataFrame.mergeFor column(s)-on-column(s) operations. Notes Parameters on, lsuffix, and rsuffix are not supported when passing a list of DataFrame objects. Support for specifying index levels as the on parameter was added in version 0.23.0. Examples >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both df and other. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in df. This method preserves the original DataFrame’s index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN Using non-unique key values shows how they are matched. >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K1', 'K3', 'K0', 'K1'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K1 A2 3 K3 A3 4 K0 A4 5 K1 A5 >>> df.join(other.set_index('key'), on='key', validate='m:1') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K1 A2 B1 3 K3 A3 NaN 4 K0 A4 B0 5 K1 A5 B1
reference/api/pandas.DataFrame.join.html
pandas.tseries.offsets.Milli.copy
`pandas.tseries.offsets.Milli.copy` Return a copy of the frequency. ``` >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False ```
Milli.copy()# Return a copy of the frequency. Examples >>> freq = pd.DateOffset(1) >>> freq_copy = freq.copy() >>> freq is freq_copy False
reference/api/pandas.tseries.offsets.Milli.copy.html
Input/output
Input/output read_pickle(filepath_or_buffer[, ...]) Load pickled pandas object (or any object) from file. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. read_table(filepath_or_buffer, *[, sep, ...])
Pickling# read_pickle(filepath_or_buffer[, ...]) Load pickled pandas object (or any object) from file. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. Flat file# read_table(filepath_or_buffer, *[, sep, ...]) Read general delimited file into DataFrame. read_csv(filepath_or_buffer, *[, sep, ...]) Read a comma-separated values (csv) file into DataFrame. DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. read_fwf(filepath_or_buffer, *[, colspecs, ...]) Read a table of fixed-width formatted lines into DataFrame. Clipboard# read_clipboard([sep]) Read text from clipboard and pass to read_csv. DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard. Excel# read_excel(io[, sheet_name, header, names, ...]) Read an Excel file into a pandas DataFrame. DataFrame.to_excel(excel_writer[, ...]) Write object to an Excel sheet. ExcelFile.parse([sheet_name, header, names, ...]) Parse specified sheet(s) into a DataFrame. Styler.to_excel(excel_writer[, sheet_name, ...]) Write Styler to an Excel sheet. ExcelWriter(path[, engine, date_format, ...]) Class for writing DataFrame objects into excel sheets. JSON# read_json(path_or_buf, *[, orient, typ, ...]) Convert a JSON string to pandas object. json_normalize(data[, record_path, meta, ...]) Normalize semi-structured JSON data into a flat table. DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. build_table_schema(data[, index, ...]) Create a Table schema from data. HTML# read_html(io, *[, match, flavor, header, ...]) Read HTML tables into a list of DataFrame objects. DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table. Styler.to_html([buf, table_uuid, ...]) Write Styler to a file, buffer or string in HTML-CSS format. XML# read_xml(path_or_buffer, *[, xpath, ...]) Read XML document into a DataFrame object. DataFrame.to_xml([path_or_buffer, index, ...]) Render a DataFrame to an XML document. Latex# DataFrame.to_latex([buf, columns, ...]) Render object to a LaTeX tabular, longtable, or nested table. Styler.to_latex([buf, column_format, ...]) Write Styler to a file, buffer or string in LaTeX format. HDFStore: PyTables (HDF5)# read_hdf(path_or_buf[, key, mode, errors, ...]) Read from the store, close it if we opened it. HDFStore.put(key, value[, format, index, ...]) Store object in HDFStore. HDFStore.append(key, value[, format, axes, ...]) Append to Table in file. HDFStore.get(key) Retrieve pandas object stored in file. HDFStore.select(key[, where, start, stop, ...]) Retrieve pandas object stored in file, optionally based on where criteria. HDFStore.info() Print detailed information on the store. HDFStore.keys([include]) Return a list of keys corresponding to objects stored in HDFStore. HDFStore.groups() Return a list of all the top-level nodes. HDFStore.walk([where]) Walk the pytables group hierarchy for pandas objects. Warning One can store a subclass of DataFrame or Series to HDF5, but the type of the subclass is lost upon storing. Feather# read_feather(path[, columns, use_threads, ...]) Load a feather-format object from the file path. DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format. Parquet# read_parquet(path[, engine, columns, ...]) Load a parquet object from the file path, returning a DataFrame. DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format. ORC# read_orc(path[, columns]) Load an ORC object from the file path, returning a DataFrame. DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format. SAS# read_sas(filepath_or_buffer, *[, format, ...]) Read SAS files stored as either XPORT or SAS7BDAT format files. SPSS# read_spss(path[, usecols, convert_categoricals]) Load an SPSS file from the file path, returning a DataFrame. SQL# read_sql_table(table_name, con[, schema, ...]) Read SQL database table into a DataFrame. read_sql_query(sql, con[, index_col, ...]) Read SQL query into a DataFrame. read_sql(sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame. DataFrame.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. Google BigQuery# read_gbq(query[, project_id, index_col, ...]) Load data from Google BigQuery. STATA# read_stata(filepath_or_buffer, *[, ...]) Read Stata file into DataFrame. DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format. StataReader.data_label Return data label of Stata file. StataReader.value_labels() Return a nested dict associating each variable name to its value and label. StataReader.variable_labels() Return a dict associating each variable name with corresponding label. StataWriter.write_file() Export DataFrame object to Stata dta format.
reference/io.html
pandas.tseries.offsets.Week.is_month_start
`pandas.tseries.offsets.Week.is_month_start` Return boolean whether a timestamp occurs on the month start. Examples ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True ```
Week.is_month_start()# Return boolean whether a timestamp occurs on the month start. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Hour(5) >>> freq.is_month_start(ts) True
reference/api/pandas.tseries.offsets.Week.is_month_start.html
pandas.Timestamp.ceil
`pandas.Timestamp.ceil` Return a new Timestamp ceiled to this resolution. ``` >>> ts = pd.Timestamp('2020-03-14T15:32:52.192548651') ```
Timestamp.ceil(freq, ambiguous='raise', nonexistent='raise')# Return a new Timestamp ceiled to this resolution. Parameters freqstrFrequency string indicating the ceiling resolution. ambiguousbool or {‘raise’, ‘NaT’}, default ‘raise’The behavior is as follows: bool contains flags to determine if time is dst or not (note that this flag is only applicable for ambiguous fall dst dates). ‘NaT’ will return NaT for an ambiguous time. ‘raise’ will raise an AmbiguousTimeError for an ambiguous time. nonexistent{‘raise’, ‘shift_forward’, ‘shift_backward, ‘NaT’, timedelta}, default ‘raise’A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. ‘shift_forward’ will shift the nonexistent time forward to the closest existing time. ‘shift_backward’ will shift the nonexistent time backward to the closest existing time. ‘NaT’ will return NaT where there are nonexistent times. timedelta objects will shift nonexistent times by the timedelta. ‘raise’ will raise an NonExistentTimeError if there are nonexistent times. Raises ValueError if the freq cannot be converted. Notes If the Timestamp has a timezone, ceiling will take place relative to the local (“wall”) time and re-localized to the same timezone. When ceiling near daylight savings time, use nonexistent and ambiguous to control the re-localization behavior. Examples Create a timestamp object: >>> ts = pd.Timestamp('2020-03-14T15:32:52.192548651') A timestamp can be ceiled using multiple frequency units: >>> ts.ceil(freq='H') # hour Timestamp('2020-03-14 16:00:00') >>> ts.ceil(freq='T') # minute Timestamp('2020-03-14 15:33:00') >>> ts.ceil(freq='S') # seconds Timestamp('2020-03-14 15:32:53') >>> ts.ceil(freq='U') # microseconds Timestamp('2020-03-14 15:32:52.192549') freq can also be a multiple of a single unit, like ‘5T’ (i.e. 5 minutes): >>> ts.ceil(freq='5T') Timestamp('2020-03-14 15:35:00') or a combination of multiple units, like ‘1H30T’ (i.e. 1 hour and 30 minutes): >>> ts.ceil(freq='1H30T') Timestamp('2020-03-14 16:30:00') Analogous for pd.NaT: >>> pd.NaT.ceil() NaT When rounding near a daylight savings time transition, use ambiguous or nonexistent to control how the timestamp should be re-localized. >>> ts_tz = pd.Timestamp("2021-10-31 01:30:00").tz_localize("Europe/Amsterdam") >>> ts_tz.ceil("H", ambiguous=False) Timestamp('2021-10-31 02:00:00+0100', tz='Europe/Amsterdam') >>> ts_tz.ceil("H", ambiguous=True) Timestamp('2021-10-31 02:00:00+0200', tz='Europe/Amsterdam')
reference/api/pandas.Timestamp.ceil.html
pandas.core.groupby.DataFrameGroupBy.boxplot
`pandas.core.groupby.DataFrameGroupBy.boxplot` Make box plots from DataFrameGroupBy data. ``` >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> grouped = df.groupby(level='lvl1') >>> grouped.boxplot(rot=45, fontsize=12, figsize=(8,10)) ```
DataFrameGroupBy.boxplot(subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, backend=None, **kwargs)[source]# Make box plots from DataFrameGroupBy data. Parameters groupedGrouped DataFrame subplotsbool False - no subplots will be used True - create a subplot for each group. columncolumn name or list of names, or vectorCan be any valid input to groupby. fontsizeint or str rotlabel rotation angle gridSetting this to True will show the grid axMatplotlib axis object, default None figsizeA tuple (width, height) in inches layouttuple (optional)The layout of the plot: (rows, columns). sharexbool, default FalseWhether x-axes will be shared among subplots. shareybool, default TrueWhether y-axes will be shared among subplots. backendstr, default NoneBackend to use instead of the backend specified in the option plotting.backend. For instance, ‘matplotlib’. Alternatively, to specify the plotting.backend for the whole session, set pd.options.plotting.backend. New in version 1.0.0. **kwargsAll other plotting keyword arguments to be passed to matplotlib’s boxplot function. Returns dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples You can create boxplots for grouped data and show them as separate subplots: >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> grouped = df.groupby(level='lvl1') >>> grouped.boxplot(rot=45, fontsize=12, figsize=(8,10)) The subplots=False option shows the boxplots in a single figure. >>> grouped.boxplot(subplots=False, rot=45, fontsize=12)
reference/api/pandas.core.groupby.DataFrameGroupBy.boxplot.html
pandas.Series.abs
`pandas.Series.abs` Return a Series/DataFrame with absolute numeric value of each element. ``` >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 ```
Series.abs()[source]# Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns absSeries/DataFrame containing the absolute value of each element. See also numpy.absoluteCalculate the absolute value element-wise. Notes For complex inputs, 1.2 + 1j, the absolute value is \(\sqrt{ a^2 + b^2 }\). Examples Absolute numeric values in a Series. >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a Series with complex numbers. >>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64 Absolute numeric values in a Series with a Timedelta element. >>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns] Select rows with data closest to certain value using argsort (from StackOverflow). >>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50
reference/api/pandas.Series.abs.html
pandas.tseries.offsets.CustomBusinessMonthEnd.m_offset
pandas.tseries.offsets.CustomBusinessMonthEnd.m_offset
CustomBusinessMonthEnd.m_offset#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.m_offset.html
pandas documentation
pandas documentation
Date: Jan 19, 2023 Version: 1.5.3 Download documentation: Zipped HTML Previous versions: Documentation of previous pandas versions is available at pandas.pydata.org. Useful links: Binary Installers | Source Repository | Issues & Ideas | Q&A Support | Mailing List pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Getting started New to pandas? Check out the getting started guides. They contain an introduction to pandas’ main concepts and links to additional tutorials. To the getting started guides User guide The user guide provides in-depth information on the key concepts of pandas with useful background information and explanation. To the user guide API reference The reference guide contains a detailed description of the pandas API. The reference describes how the methods work and which parameters can be used. It assumes that you have an understanding of the key concepts. To the reference guide Developer guide Saw a typo in the documentation? Want to improve existing functionalities? The contributing guidelines will guide you through the process of improving pandas. To the development guide
index.html
pandas.Series.str.cat
`pandas.Series.str.cat` Concatenate strings in the Series/Index with given separator. If others is specified, this function concatenates the Series/Index and elements of others element-wise. If others is not passed, then all values in the Series/Index are concatenated into a single string with a given sep. ``` >>> s = pd.Series(['a', 'b', np.nan, 'd']) >>> s.str.cat(sep=' ') 'a b d' ```
Series.str.cat(others=None, sep=None, na_rep=None, join='left')[source]# Concatenate strings in the Series/Index with given separator. If others is specified, this function concatenates the Series/Index and elements of others element-wise. If others is not passed, then all values in the Series/Index are concatenated into a single string with a given sep. Parameters othersSeries, Index, DataFrame, np.ndarray or list-likeSeries, Index, DataFrame, np.ndarray (one- or two-dimensional) and other list-likes of strings must have the same length as the calling Series/Index, with the exception of indexed objects (i.e. Series/Index/DataFrame) if join is not None. If others is a list-like that contains a combination of Series, Index or np.ndarray (1-dim), then all elements will be unpacked and must satisfy the above criteria individually. If others is None, the method returns the concatenation of all strings in the calling Series/Index. sepstr, default ‘’The separator between the different elements/columns. By default the empty string ‘’ is used. na_repstr or None, default NoneRepresentation that is inserted for all missing values: If na_rep is None, and others is None, missing values in the Series/Index are omitted from the result. If na_rep is None, and others is not None, a row containing a missing value in any of the columns (before concatenation) will have a missing value in the result. join{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’Determines the join-style between the calling Series/Index and any Series/Index/DataFrame in others (objects without an index need to match the length of the calling Series/Index). To disable alignment, use .values on any Series/Index/DataFrame in others. New in version 0.23.0. Changed in version 1.0.0: Changed default of join from None to ‘left’. Returns str, Series or IndexIf others is None, str is returned, otherwise a Series/Index (same type as caller) of objects is returned. See also splitSplit each string in the Series/Index. joinJoin lists contained as elements in the Series/Index. Examples When not passing others, all values are concatenated into a single string: >>> s = pd.Series(['a', 'b', np.nan, 'd']) >>> s.str.cat(sep=' ') 'a b d' By default, NA values in the Series are ignored. Using na_rep, they can be given a representation: >>> s.str.cat(sep=' ', na_rep='?') 'a b ? d' If others is specified, corresponding values are concatenated with the separator. Result will be a Series of strings. >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',') 0 a,A 1 b,B 2 NaN 3 d,D dtype: object Missing values will remain missing in the result, but can again be represented using na_rep >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-') 0 a,A 1 b,B 2 -,C 3 d,D dtype: object If sep is not specified, the values are concatenated without separation. >>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-') 0 aA 1 bB 2 -C 3 dD dtype: object Series with different indexes can be aligned before concatenation. The join-keyword works as in other methods. >>> t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2]) >>> s.str.cat(t, join='left', na_rep='-') 0 aa 1 b- 2 -c 3 dd dtype: object >>> >>> s.str.cat(t, join='outer', na_rep='-') 0 aa 1 b- 2 -c 3 dd 4 -e dtype: object >>> >>> s.str.cat(t, join='inner', na_rep='-') 0 aa 2 -c 3 dd dtype: object >>> >>> s.str.cat(t, join='right', na_rep='-') 3 dd 0 aa 4 -e 2 -c dtype: object For more examples, see here.
reference/api/pandas.Series.str.cat.html
pandas.CategoricalIndex.rename_categories
`pandas.CategoricalIndex.rename_categories` Rename categories. ``` >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] ```
CategoricalIndex.rename_categories(*args, **kwargs)[source]# Rename categories. Parameters new_categorieslist-like, dict-like or callableNew categories which will replace old categories. list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. inplacebool, default FalseWhether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Deprecated since version 1.3.0. Returns catCategorical or NoneCategorical with removed categories or None if inplace=True. Raises ValueErrorIf new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See also reorder_categoriesReorder categories. add_categoriesAdd new categories. remove_categoriesRemove the specified categories. remove_unused_categoriesRemove categories which are not used. set_categoriesSet the categories to the specified ones. Examples >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like new_categories, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) ['A', 'A', 'b'] Categories (2, object): ['A', 'b'] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) ['A', 'A', 'B'] Categories (2, object): ['A', 'B']
reference/api/pandas.CategoricalIndex.rename_categories.html
pandas.notna
`pandas.notna` Detect non-missing values for an array-like object. ``` >>> pd.notna('dog') True ```
pandas.notna(obj)[source]# Detect non-missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are valid (not missing, which is NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike). Parameters objarray-like or object valueObject to check for not null or non-missing values. Returns bool or array-like of boolFor scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is valid. See also isnaBoolean inverse of pandas.notna. Series.notnaDetect valid values in a Series. DataFrame.notnaDetect valid values in a DataFrame. Index.notnaDetect valid values in an Index. Examples Scalar arguments (including strings) result in a scalar boolean. >>> pd.notna('dog') True >>> pd.notna(pd.NA) False >>> pd.notna(np.nan) False ndarrays result in an ndarray of booleans. >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pd.notna(array) array([[ True, False, True], [ True, True, False]]) For indexes, an ndarray of booleans is returned. >>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, ... "2017-07-08"]) >>> index DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None) >>> pd.notna(index) array([ True, True, False, True]) For Series and DataFrame, the same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.notna(df) 0 1 2 0 True True True 1 True False True >>> pd.notna(df[1]) 0 True 1 False Name: 1, dtype: bool
reference/api/pandas.notna.html
pandas.IntervalIndex.get_indexer
`pandas.IntervalIndex.get_indexer` Compute indexer and mask for new index given the current index. ``` >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) ```
IntervalIndex.get_indexer(target, method=None, limit=None, tolerance=None)[source]# Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters targetIndex method{None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional default: exact matches only. pad / ffill: find the PREVIOUS index value if no exact match. backfill / bfill: use NEXT index value if no exact match nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limitint, optionalMaximum number of consecutive labels in target to match for inexact matches. toleranceoptionalMaximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation abs(index[indexer] - target) <= tolerance. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type. Returns indexernp.ndarray[np.intp]Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. Notes Returns -1 for unmatched values, for further explanation see the example below. Examples >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in index and x is marked by -1, as it is not in index.
reference/api/pandas.IntervalIndex.get_indexer.html
DataFrame
Constructor# DataFrame([data, index, columns, dtype, copy]) Two-dimensional, size-mutable, potentially heterogeneous tabular data. Attributes and underlying data# Axes DataFrame.index The index (row labels) of the DataFrame. DataFrame.columns The column labels of the DataFrame. DataFrame.dtypes Return the dtypes in the DataFrame. DataFrame.info([verbose, buf, max_cols, ...]) Print a concise summary of a DataFrame. DataFrame.select_dtypes([include, exclude]) Return a subset of the DataFrame's columns based on the column dtypes. DataFrame.values Return a Numpy representation of the DataFrame. DataFrame.axes Return a list representing the axes of the DataFrame. DataFrame.ndim Return an int representing the number of axes / array dimensions. DataFrame.size Return an int representing the number of elements in this object. DataFrame.shape Return a tuple representing the dimensionality of the DataFrame. DataFrame.memory_usage([index, deep]) Return the memory usage of each column in bytes. DataFrame.empty Indicator whether Series/DataFrame is empty. DataFrame.set_flags(*[, copy, ...]) Return a new object with updated flags. Conversion# DataFrame.astype(dtype[, copy, errors]) Cast a pandas object to a specified dtype dtype. DataFrame.convert_dtypes([infer_objects, ...]) Convert columns to best possible dtypes using dtypes supporting pd.NA. DataFrame.infer_objects() Attempt to infer better dtypes for object columns. DataFrame.copy([deep]) Make a copy of this object's indices and data. DataFrame.bool() Return the bool of a single element Series or DataFrame. Indexing, iteration# DataFrame.head([n]) Return the first n rows. DataFrame.at Access a single value for a row/column label pair. DataFrame.iat Access a single value for a row/column pair by integer position. DataFrame.loc Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc Purely integer-location based indexing for selection by position. DataFrame.insert(loc, column, value[, ...]) Insert column into DataFrame at specified location. DataFrame.__iter__() Iterate over info axis. DataFrame.items() Iterate over (column name, Series) pairs. DataFrame.iteritems() (DEPRECATED) Iterate over (column name, Series) pairs. DataFrame.keys() Get the 'info axis' (see Indexing for more). DataFrame.iterrows() Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples. DataFrame.lookup(row_labels, col_labels) (DEPRECATED) Label-based "fancy indexing" function for DataFrame. DataFrame.pop(item) Return item and drop from frame. DataFrame.tail([n]) Return the last n rows. DataFrame.xs(key[, axis, level, drop_level]) Return cross-section from the Series/DataFrame. DataFrame.get(key[, default]) Get item from object for given key (ex: DataFrame column). DataFrame.isin(values) Whether each element in the DataFrame is contained in values. DataFrame.where(cond[, other, inplace, ...]) Replace values where the condition is False. DataFrame.mask(cond[, other, inplace, axis, ...]) Replace values where the condition is True. DataFrame.query(expr, *[, inplace]) Query the columns of a DataFrame with a boolean expression. For more information on .at, .iat, .loc, and .iloc, see the indexing documentation. Binary operator functions# DataFrame.add(other[, axis, level, fill_value]) Get Addition of dataframe and other, element-wise (binary operator add). DataFrame.sub(other[, axis, level, fill_value]) Get Subtraction of dataframe and other, element-wise (binary operator sub). DataFrame.mul(other[, axis, level, fill_value]) Get Multiplication of dataframe and other, element-wise (binary operator mul). DataFrame.div(other[, axis, level, fill_value]) Get Floating division of dataframe and other, element-wise (binary operator truediv). DataFrame.truediv(other[, axis, level, ...]) Get Floating division of dataframe and other, element-wise (binary operator truediv). DataFrame.floordiv(other[, axis, level, ...]) Get Integer division of dataframe and other, element-wise (binary operator floordiv). DataFrame.mod(other[, axis, level, fill_value]) Get Modulo of dataframe and other, element-wise (binary operator mod). DataFrame.pow(other[, axis, level, fill_value]) Get Exponential power of dataframe and other, element-wise (binary operator pow). DataFrame.dot(other) Compute the matrix multiplication between the DataFrame and other. DataFrame.radd(other[, axis, level, fill_value]) Get Addition of dataframe and other, element-wise (binary operator radd). DataFrame.rsub(other[, axis, level, fill_value]) Get Subtraction of dataframe and other, element-wise (binary operator rsub). DataFrame.rmul(other[, axis, level, fill_value]) Get Multiplication of dataframe and other, element-wise (binary operator rmul). DataFrame.rdiv(other[, axis, level, fill_value]) Get Floating division of dataframe and other, element-wise (binary operator rtruediv). DataFrame.rtruediv(other[, axis, level, ...]) Get Floating division of dataframe and other, element-wise (binary operator rtruediv). DataFrame.rfloordiv(other[, axis, level, ...]) Get Integer division of dataframe and other, element-wise (binary operator rfloordiv). DataFrame.rmod(other[, axis, level, fill_value]) Get Modulo of dataframe and other, element-wise (binary operator rmod). DataFrame.rpow(other[, axis, level, fill_value]) Get Exponential power of dataframe and other, element-wise (binary operator rpow). DataFrame.lt(other[, axis, level]) Get Less than of dataframe and other, element-wise (binary operator lt). DataFrame.gt(other[, axis, level]) Get Greater than of dataframe and other, element-wise (binary operator gt). DataFrame.le(other[, axis, level]) Get Less than or equal to of dataframe and other, element-wise (binary operator le). DataFrame.ge(other[, axis, level]) Get Greater than or equal to of dataframe and other, element-wise (binary operator ge). DataFrame.ne(other[, axis, level]) Get Not equal to of dataframe and other, element-wise (binary operator ne). DataFrame.eq(other[, axis, level]) Get Equal to of dataframe and other, element-wise (binary operator eq). DataFrame.combine(other, func[, fill_value, ...]) Perform column-wise combine with another DataFrame. DataFrame.combine_first(other) Update null elements with value in the same location in other. Function application, GroupBy & window# DataFrame.apply(func[, axis, raw, ...]) Apply a function along an axis of the DataFrame. DataFrame.applymap(func[, na_action]) Apply a function to a Dataframe elementwise. DataFrame.pipe(func, *args, **kwargs) Apply chainable functions that expect Series or DataFrames. DataFrame.agg([func, axis]) Aggregate using one or more operations over the specified axis. DataFrame.aggregate([func, axis]) Aggregate using one or more operations over the specified axis. DataFrame.transform(func[, axis]) Call func on self producing a DataFrame with the same axis shape as self. DataFrame.groupby([by, axis, level, ...]) Group DataFrame using a mapper or by a Series of columns. DataFrame.rolling(window[, min_periods, ...]) Provide rolling window calculations. DataFrame.expanding([min_periods, center, ...]) Provide expanding window calculations. DataFrame.ewm([com, span, halflife, alpha, ...]) Provide exponentially weighted (EW) calculations. Computations / descriptive stats# DataFrame.abs() Return a Series/DataFrame with absolute numeric value of each element. DataFrame.all([axis, bool_only, skipna, level]) Return whether all elements are True, potentially over an axis. DataFrame.any(*[, axis, bool_only, skipna, ...]) Return whether any element is True, potentially over an axis. DataFrame.clip([lower, upper, axis, inplace]) Trim values at input threshold(s). DataFrame.corr([method, min_periods, ...]) Compute pairwise correlation of columns, excluding NA/null values. DataFrame.corrwith(other[, axis, drop, ...]) Compute pairwise correlation. DataFrame.count([axis, level, numeric_only]) Count non-NA cells for each column or row. DataFrame.cov([min_periods, ddof, numeric_only]) Compute pairwise covariance of columns, excluding NA/null values. DataFrame.cummax([axis, skipna]) Return cumulative maximum over a DataFrame or Series axis. DataFrame.cummin([axis, skipna]) Return cumulative minimum over a DataFrame or Series axis. DataFrame.cumprod([axis, skipna]) Return cumulative product over a DataFrame or Series axis. DataFrame.cumsum([axis, skipna]) Return cumulative sum over a DataFrame or Series axis. DataFrame.describe([percentiles, include, ...]) Generate descriptive statistics. DataFrame.diff([periods, axis]) First discrete difference of element. DataFrame.eval(expr, *[, inplace]) Evaluate a string describing operations on DataFrame columns. DataFrame.kurt([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. DataFrame.kurtosis([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis. DataFrame.mad([axis, skipna, level]) (DEPRECATED) Return the mean absolute deviation of the values over the requested axis. DataFrame.max([axis, skipna, level, ...]) Return the maximum of the values over the requested axis. DataFrame.mean([axis, skipna, level, ...]) Return the mean of the values over the requested axis. DataFrame.median([axis, skipna, level, ...]) Return the median of the values over the requested axis. DataFrame.min([axis, skipna, level, ...]) Return the minimum of the values over the requested axis. DataFrame.mode([axis, numeric_only, dropna]) Get the mode(s) of each element along the selected axis. DataFrame.pct_change([periods, fill_method, ...]) Percentage change between the current and a prior element. DataFrame.prod([axis, skipna, level, ...]) Return the product of the values over the requested axis. DataFrame.product([axis, skipna, level, ...]) Return the product of the values over the requested axis. DataFrame.quantile([q, axis, numeric_only, ...]) Return values at the given quantile over requested axis. DataFrame.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis. DataFrame.round([decimals]) Round a DataFrame to a variable number of decimal places. DataFrame.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis. DataFrame.skew([axis, skipna, level, ...]) Return unbiased skew over requested axis. DataFrame.sum([axis, skipna, level, ...]) Return the sum of the values over the requested axis. DataFrame.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis. DataFrame.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis. DataFrame.nunique([axis, dropna]) Count number of distinct elements in specified axis. DataFrame.value_counts([subset, normalize, ...]) Return a Series containing counts of unique rows in the DataFrame. Reindexing / selection / label manipulation# DataFrame.add_prefix(prefix) Prefix labels with string prefix. DataFrame.add_suffix(suffix) Suffix labels with string suffix. DataFrame.align(other[, join, axis, level, ...]) Align two objects on their axes with the specified join method. DataFrame.at_time(time[, asof, axis]) Select values at particular time of day (e.g., 9:30AM). DataFrame.between_time(start_time, end_time) Select values between particular times of the day (e.g., 9:00-9:30 AM). DataFrame.drop([labels, axis, index, ...]) Drop specified labels from rows or columns. DataFrame.drop_duplicates([subset, keep, ...]) Return DataFrame with duplicate rows removed. DataFrame.duplicated([subset, keep]) Return boolean Series denoting duplicate rows. DataFrame.equals(other) Test whether two objects contain the same elements. DataFrame.filter([items, like, regex, axis]) Subset the dataframe rows or columns according to the specified index labels. DataFrame.first(offset) Select initial periods of time series data based on a date offset. DataFrame.head([n]) Return the first n rows. DataFrame.idxmax([axis, skipna, numeric_only]) Return index of first occurrence of maximum over requested axis. DataFrame.idxmin([axis, skipna, numeric_only]) Return index of first occurrence of minimum over requested axis. DataFrame.last(offset) Select final periods of time series data based on a date offset. DataFrame.reindex([labels, index, columns, ...]) Conform Series/DataFrame to new index with optional filling logic. DataFrame.reindex_like(other[, method, ...]) Return an object with matching indices as other object. DataFrame.rename([mapper, index, columns, ...]) Alter axes labels. DataFrame.rename_axis([mapper, inplace]) Set the name of the axis for the index or columns. DataFrame.reset_index([level, drop, ...]) Reset the index, or a level of it. DataFrame.sample([n, frac, replace, ...]) Return a random sample of items from an axis of object. DataFrame.set_axis(labels, *[, axis, ...]) Assign desired index to given axis. DataFrame.set_index(keys, *[, drop, append, ...]) Set the DataFrame index using existing columns. DataFrame.tail([n]) Return the last n rows. DataFrame.take(indices[, axis, is_copy]) Return the elements in the given positional indices along an axis. DataFrame.truncate([before, after, axis, copy]) Truncate a Series or DataFrame before and after some index value. Missing data handling# DataFrame.backfill(*[, axis, inplace, ...]) Synonym for DataFrame.fillna() with method='bfill'. DataFrame.bfill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='bfill'. DataFrame.dropna(*[, axis, how, thresh, ...]) Remove missing values. DataFrame.ffill(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='ffill'. DataFrame.fillna([value, method, axis, ...]) Fill NA/NaN values using the specified method. DataFrame.interpolate([method, axis, limit, ...]) Fill NaN values using an interpolation method. DataFrame.isna() Detect missing values. DataFrame.isnull() DataFrame.isnull is an alias for DataFrame.isna. DataFrame.notna() Detect existing (non-missing) values. DataFrame.notnull() DataFrame.notnull is an alias for DataFrame.notna. DataFrame.pad(*[, axis, inplace, limit, ...]) Synonym for DataFrame.fillna() with method='ffill'. DataFrame.replace([to_replace, value, ...]) Replace values given in to_replace with value. Reshaping, sorting, transposing# DataFrame.droplevel(level[, axis]) Return Series/DataFrame with requested index / column level(s) removed. DataFrame.pivot(*[, index, columns, values]) Return reshaped DataFrame organized by given index / column values. DataFrame.pivot_table([values, index, ...]) Create a spreadsheet-style pivot table as a DataFrame. DataFrame.reorder_levels(order[, axis]) Rearrange index levels using input order. DataFrame.sort_values(by, *[, axis, ...]) Sort by the values along either axis. DataFrame.sort_index(*[, axis, level, ...]) Sort object by labels (along an axis). DataFrame.nlargest(n, columns[, keep]) Return the first n rows ordered by columns in descending order. DataFrame.nsmallest(n, columns[, keep]) Return the first n rows ordered by columns in ascending order. DataFrame.swaplevel([i, j, axis]) Swap levels i and j in a MultiIndex. DataFrame.stack([level, dropna]) Stack the prescribed level(s) from columns to index. DataFrame.unstack([level, fill_value]) Pivot a level of the (necessarily hierarchical) index labels. DataFrame.swapaxes(axis1, axis2[, copy]) Interchange axes and swap values axes appropriately. DataFrame.melt([id_vars, value_vars, ...]) Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. DataFrame.explode(column[, ignore_index]) Transform each element of a list-like to a row, replicating index values. DataFrame.squeeze([axis]) Squeeze 1 dimensional axis objects into scalars. DataFrame.to_xarray() Return an xarray object from the pandas object. DataFrame.T DataFrame.transpose(*args[, copy]) Transpose index and columns. Combining / comparing / joining / merging# DataFrame.append(other[, ignore_index, ...]) (DEPRECATED) Append rows of other to the end of caller, returning a new object. DataFrame.assign(**kwargs) Assign new columns to a DataFrame. DataFrame.compare(other[, align_axis, ...]) Compare to another DataFrame and show the differences. DataFrame.join(other[, on, how, lsuffix, ...]) Join columns of another DataFrame. DataFrame.merge(right[, how, on, left_on, ...]) Merge DataFrame or named Series objects with a database-style join. DataFrame.update(other[, join, overwrite, ...]) Modify in place using non-NA values from another DataFrame. Time Series-related# DataFrame.asfreq(freq[, method, how, ...]) Convert time series to specified frequency. DataFrame.asof(where[, subset]) Return the last row(s) without any NaNs before where. DataFrame.shift([periods, freq, axis, ...]) Shift index by desired number of periods with an optional time freq. DataFrame.slice_shift([periods, axis]) (DEPRECATED) Equivalent to shift without copying data. DataFrame.tshift([periods, freq, axis]) (DEPRECATED) Shift the time index, using the index's frequency if available. DataFrame.first_valid_index() Return index for first non-NA value or None, if no non-NA value is found. DataFrame.last_valid_index() Return index for last non-NA value or None, if no non-NA value is found. DataFrame.resample(rule[, axis, closed, ...]) Resample time-series data. DataFrame.to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to PeriodIndex. DataFrame.to_timestamp([freq, how, axis, copy]) Cast to DatetimeIndex of timestamps, at beginning of period. DataFrame.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone. DataFrame.tz_localize(tz[, axis, level, ...]) Localize tz-naive index of a Series or DataFrame to target time zone. Flags# Flags refer to attributes of the pandas object. Properties of the dataset (like the date is was recorded, the URL it was accessed from, etc.) should be stored in DataFrame.attrs. Flags(obj, *, allows_duplicate_labels) Flags that apply to pandas objects. Metadata# DataFrame.attrs is a dictionary for storing global metadata for this DataFrame. Warning DataFrame.attrs is considered experimental and may change without warning. DataFrame.attrs Dictionary of global attributes of this dataset. Plotting# DataFrame.plot is both a callable method and a namespace attribute for specific plotting methods of the form DataFrame.plot.<kind>. DataFrame.plot([x, y, kind, ax, ....]) DataFrame plotting accessor and method DataFrame.plot.area([x, y]) Draw a stacked area plot. DataFrame.plot.bar([x, y]) Vertical bar plot. DataFrame.plot.barh([x, y]) Make a horizontal bar plot. DataFrame.plot.box([by]) Make a box plot of the DataFrame columns. DataFrame.plot.density([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. DataFrame.plot.hexbin(x, y[, C, ...]) Generate a hexagonal binning plot. DataFrame.plot.hist([by, bins]) Draw one histogram of the DataFrame's columns. DataFrame.plot.kde([bw_method, ind]) Generate Kernel Density Estimate plot using Gaussian kernels. DataFrame.plot.line([x, y]) Plot Series or DataFrame as lines. DataFrame.plot.pie(**kwargs) Generate a pie plot. DataFrame.plot.scatter(x, y[, s, c]) Create a scatter plot with varying marker point size and color. DataFrame.boxplot([column, by, ax, ...]) Make a box plot from DataFrame columns. DataFrame.hist([column, by, grid, ...]) Make a histogram of the DataFrame's columns. Sparse accessor# Sparse-dtype specific methods and attributes are provided under the DataFrame.sparse accessor. DataFrame.sparse.density Ratio of non-sparse points to total (dense) data points. DataFrame.sparse.from_spmatrix(data[, ...]) Create a new DataFrame from a scipy sparse matrix. DataFrame.sparse.to_coo() Return the contents of the frame as a sparse SciPy COO matrix. DataFrame.sparse.to_dense() Convert a DataFrame with sparse values to dense. Serialization / IO / conversion# DataFrame.from_dict(data[, orient, dtype, ...]) Construct DataFrame from dict of array-like or dicts. DataFrame.from_records(data[, index, ...]) Convert structured or record ndarray to DataFrame. DataFrame.to_orc([path, engine, index, ...]) Write a DataFrame to the ORC format. DataFrame.to_parquet([path, engine, ...]) Write a DataFrame to the binary parquet format. DataFrame.to_pickle(path[, compression, ...]) Pickle (serialize) object to file. DataFrame.to_csv([path_or_buf, sep, na_rep, ...]) Write object to a comma-separated values (csv) file. DataFrame.to_hdf(path_or_buf, key[, mode, ...]) Write the contained data to an HDF5 file using HDFStore. DataFrame.to_sql(name, con[, schema, ...]) Write records stored in a DataFrame to a SQL database. DataFrame.to_dict([orient, into]) Convert the DataFrame to a dictionary. DataFrame.to_excel(excel_writer[, ...]) Write object to an Excel sheet. DataFrame.to_json([path_or_buf, orient, ...]) Convert the object to a JSON string. DataFrame.to_html([buf, columns, col_space, ...]) Render a DataFrame as an HTML table. DataFrame.to_feather(path, **kwargs) Write a DataFrame to the binary Feather format. DataFrame.to_latex([buf, columns, ...]) Render object to a LaTeX tabular, longtable, or nested table. DataFrame.to_stata(path, *[, convert_dates, ...]) Export DataFrame object to Stata dta format. DataFrame.to_gbq(destination_table[, ...]) Write a DataFrame to a Google BigQuery table. DataFrame.to_records([index, column_dtypes, ...]) Convert DataFrame to a NumPy record array. DataFrame.to_string([buf, columns, ...]) Render a DataFrame to a console-friendly tabular output. DataFrame.to_clipboard([excel, sep]) Copy object to the system clipboard. DataFrame.to_markdown([buf, mode, index, ...]) Print DataFrame in Markdown-friendly format. DataFrame.style Returns a Styler object. DataFrame.__dataframe__([nan_as_null, ...]) Return the dataframe interchange object implementing the interchange protocol.
reference/frame.html
null
pandas.Series.cumsum
`pandas.Series.cumsum` Return cumulative sum over a DataFrame or Series axis. ``` >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 ```
Series.cumsum(axis=None, skipna=True, *args, **kwargs)[source]# Return cumulative sum over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative sum. Parameters axis{0 or ‘index’, 1 or ‘columns’}, default 0The index or the name of the axis. 0 is equivalent to None or ‘index’. For Series this parameter is unused and defaults to 0. skipnabool, default TrueExclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargsAdditional keywords have no effect but might be accepted for compatibility with NumPy. Returns scalar or SeriesReturn cumulative sum of scalar or Series. See also core.window.expanding.Expanding.sumSimilar functionality but ignores NaN values. Series.sumReturn the sum over Series axis. Series.cummaxReturn cumulative maximum over Series axis. Series.cumminReturn cumulative minimum over Series axis. Series.cumsumReturn cumulative sum over Series axis. Series.cumprodReturn cumulative product over Series axis. Examples Series >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 To include NA values in the operation, use skipna=False >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 DataFrame >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. This is equivalent to axis=None or axis='index'. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 To iterate over columns and find the sum in each row, use axis=1 >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0
reference/api/pandas.Series.cumsum.html
pandas.read_csv
`pandas.read_csv` Read a comma-separated values (csv) file into DataFrame. ``` >>> pd.read_csv('data.csv') ```
pandas.read_csv(filepath_or_buffer, *, sep=_NoDefault.no_default, delimiter=None, header='infer', names=_NoDefault.no_default, index_col=None, usecols=None, squeeze=None, prefix=_NoDefault.no_default, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=None, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, error_bad_lines=None, warn_bad_lines=None, on_bad_lines=None, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None)[source]# Read a comma-separated values (csv) file into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for IO Tools. Parameters filepath_or_bufferstr, path object or file-like objectAny valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a read() method, such as a file handle (e.g. via builtin open function) or StringIO. sepstr, default ‘,’Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python’s builtin sniffer tool, csv.Sniffer. In addition, separators longer than 1 character and different from '\s+' will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: '\r\t'. delimiterstr, default NoneAlias for sep. headerint, list of int, None, default ‘infer’Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to header=0 and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to header=None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file. namesarray-like, optionalList of column names to use. If the file contains a header row, then you should explicitly pass header=0 to override the column names. Duplicates in this list are not allowed. index_colint, str, sequence of int / str, or False, optional, default NoneColumn(s) to use as the row labels of the DataFrame, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: index_col=False can be used to force pandas to not use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecolslist-like or callable, optionalReturn a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). If names are given, the document header row(s) are not taken into account. For example, a valid list-like usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Element order is ignored, so usecols=[0, 1] is the same as [1, 0]. To instantiate a DataFrame from data with element order preserved use pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']] for columns in ['foo', 'bar'] order or pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']] for ['bar', 'foo'] order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be lambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage. squeezebool, default FalseIf the parsed data only contains one column then return a Series. Deprecated since version 1.4.0: Append .squeeze("columns") to the call to read_csv to squeeze the data. prefixstr, optionalPrefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, … Deprecated since version 1.4.0: Use a list comprehension on the DataFrame’s columns after calling read_csv. mangle_dupe_colsbool, default TrueDuplicate columns will be specified as ‘X’, ‘X.1’, …’X.N’, rather than ‘X’…’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Deprecated since version 1.5.0: Not implemented, and a new argument to specify the pattern for the names of duplicated columns will be added instead dtypeType name or dict of column -> type, optionalData type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32, ‘c’: ‘Int64’} Use str or object together with suitable na_values settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. New in version 1.5.0: Support for defaultdict was added. Specify a defaultdict as input where the default determines the dtype of the columns which are not explicitly listed. engine{‘c’, ‘python’, ‘pyarrow’}, optionalParser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine. New in version 1.4.0: The “pyarrow” engine was added as an experimental engine, and some features are unsupported, or may not work correctly, with this engine. convertersdict, optionalDict of functions for converting values in certain columns. Keys can either be integers or column labels. true_valueslist, optionalValues to consider as True. false_valueslist, optionalValues to consider as False. skipinitialspacebool, default FalseSkip spaces after delimiter. skiprowslist-like, int or callable, optionalLine numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be lambda x: x in [0, 2]. skipfooterint, default 0Number of lines at bottom of file to skip (Unsupported with engine=’c’). nrowsint, optionalNumber of rows of file to read. Useful for reading pieces of large files. na_valuesscalar, str, list-like, or dict, optionalAdditional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’. keep_default_nabool, default TrueWhether or not to include the default NaN values when parsing the data. Depending on whether na_values is passed in, the behavior is as follows: If keep_default_na is True, and na_values are specified, na_values is appended to the default NaN values used for parsing. If keep_default_na is True, and na_values are not specified, only the default NaN values are used for parsing. If keep_default_na is False, and na_values are specified, only the NaN values specified na_values are used for parsing. If keep_default_na is False, and na_values are not specified, no strings will be parsed as NaN. Note that if na_filter is passed in as False, the keep_default_na and na_values parameters will be ignored. na_filterbool, default TrueDetect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbosebool, default FalseIndicate number of NA values placed in non-numeric columns. skip_blank_linesbool, default TrueIf True, skip over blank lines rather than interpreting as NaN values. parse_datesbool or list of int or names or list of lists or dict, default FalseThe behavior is as follows: boolean. If True -> try parsing the index. list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use pd.to_datetime after pd.read_csv. To parse an index or column with a mixture of timezones, specify date_parser to be a partially-applied pandas.to_datetime() with utc=True. See Parsing a CSV with mixed timezones for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_formatbool, default FalseIf True and parse_dates is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_colbool, default FalseIf True and parse_dates specifies combining multiple columns then keep the original columns. date_parserfunction, optionalFunction to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirstbool, default FalseDD/MM format dates, international and European format. cache_datesbool, default TrueIf True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. New in version 0.25.0. iteratorbool, default FalseReturn TextFileReader object for iteration or getting chunks with get_chunk(). Changed in version 1.2: TextFileReader is a context manager. chunksizeint, optionalReturn TextFileReader object for iteration. See the IO Tools docs for more information on iterator and chunksize. Changed in version 1.2: TextFileReader is a context manager. compressionstr or dict, default ‘infer’For on-the-fly decompression of on-disk data. If ‘infer’ and ‘filepath_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to None for no decompression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdDecompressor or tarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary: compression={'method': 'zstd', 'dict_data': my_compression_dict}. New in version 1.5.0: Added support for .tar files. Changed in version 1.4.0: Zstandard support. thousandsstr, optionalThousands separator. decimalstr, default ‘.’Character to recognize as decimal point (e.g. use ‘,’ for European data). lineterminatorstr (length 1), optionalCharacter to break file into lines. Only valid with C parser. quotecharstr (length 1), optionalThe character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quotingint or csv.QUOTE_* instance, default 0Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequotebool, default TrueWhen quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element. escapecharstr (length 1), optionalOne-character string used to escape other characters. commentstr, optionalIndicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing #empty\na,b,c\n1,2,3 with header=0 will result in ‘a,b,c’ being treated as the header. encodingstr, optionalEncoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings . Changed in version 1.2: When encoding is None, errors="replace" is passed to open(). Otherwise, errors="strict" is passed to open(). This behavior was previously only the case for engine="python". Changed in version 1.3.0: encoding_errors is a new argument. encoding has no longer an influence on how encoding errors are handled. encoding_errorsstr, optional, default “strict”How encoding errors are treated. List of possible values . New in version 1.3.0. dialectstr or csv.Dialect, optionalIf provided, this parameter will override values (default or not) for the following parameters: delimiter, doublequote, escapechar, skipinitialspace, quotechar, and quoting. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. error_bad_linesbool, optional, default NoneLines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will be dropped from the DataFrame that is returned. Deprecated since version 1.3.0: The on_bad_lines parameter should be used instead to specify behavior upon encountering a bad line instead. warn_bad_linesbool, optional, default NoneIf error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. Deprecated since version 1.3.0: The on_bad_lines parameter should be used instead to specify behavior upon encountering a bad line instead. on_bad_lines{‘error’, ‘warn’, ‘skip’} or callable, default ‘error’Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are : ‘error’, raise an Exception when a bad line is encountered. ‘warn’, raise a warning when a bad line is encountered and skip that line. ‘skip’, skip bad lines without raising or warning when they are encountered. New in version 1.3.0. New in version 1.4.0: callable, function with signature (bad_line: list[str]) -> list[str] | None that will process a single bad line. bad_line is a list of strings split by the sep. If the function returns None, the bad line will be ignored. If the function returns a new list of strings with more elements than expected, a ParserWarning will be emitted while dropping extra elements. Only supported when engine="python" delim_whitespacebool, default FalseSpecifies whether or not whitespace (e.g. ' ' or '    ') will be used as the sep. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter. low_memorybool, default TrueInternally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser). memory_mapbool, default FalseIf a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precisionstr, optionalSpecifies which converter the C engine should use for floating-point values. The options are None or ‘high’ for the ordinary converter, ‘legacy’ for the original lower precision pandas converter, and ‘round_trip’ for the round-trip converter. Changed in version 1.2. storage_optionsdict, optionalExtra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. New in version 1.2. Returns DataFrame or TextParserA comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See also DataFrame.to_csvWrite DataFrame to a comma-separated values (csv) file. read_csvRead a comma-separated values (csv) file into DataFrame. read_fwfRead a table of fixed-width formatted lines into DataFrame. Examples >>> pd.read_csv('data.csv')
reference/api/pandas.read_csv.html
pandas.core.window.rolling.Rolling.corr
`pandas.core.window.rolling.Rolling.corr` Calculate the rolling correlation. If not supplied then will default to self and produce pairwise output. ``` >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(f"{np.corrcoef(v1[:-1], v2[:-1])[0][1]:.6f}") 0.333333 >>> print(f"{np.corrcoef(v1[1:], v2[1:])[0][1]:.6f}") 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 ```
Rolling.corr(other=None, pairwise=None, ddof=1, numeric_only=False, **kwargs)[source]# Calculate the rolling correlation. Parameters otherSeries or DataFrame, optionalIf not supplied then will default to self and produce pairwise output. pairwisebool, default NoneIf False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddofint, default 1Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_onlybool, default FalseInclude only float, int, boolean columns. New in version 1.5.0. **kwargsFor NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. Returns Series or DataFrameReturn type is the same as the original object with np.float64 dtype. See also covSimilar method to calculate covariance. numpy.corrcoefNumPy Pearson’s correlation calculation. pandas.Series.rollingCalling rolling with Series data. pandas.DataFrame.rollingCalling rolling with DataFrames. pandas.Series.corrAggregating corr for Series. pandas.DataFrame.corrAggregating corr for DataFrame. Notes This function uses Pearson’s definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). When other is not specified, the output will be self correlation (e.g. all 1’s), except for DataFrame inputs with pairwise set to True. Function will return NaN for correlations of equal valued sequences; this is the result of a 0/0 division error. When pairwise is set to False, only matching columns between self and other will be used. When pairwise is set to True, the output will be a MultiIndex DataFrame with the original index on the first level, and the other DataFrame columns on the second level. In the case of missing elements, only complete pairwise observations will be used. Examples The below example shows a rolling calculation with a window size of four matching the equivalent function call using numpy.corrcoef(). >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(f"{np.corrcoef(v1[:-1], v2[:-1])[0][1]:.6f}") 0.333333 >>> print(f"{np.corrcoef(v1[1:], v2[1:])[0][1]:.6f}") 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 The below example shows a similar rolling calculation on a DataFrame using the pairwise option. >>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.], [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000
reference/api/pandas.core.window.rolling.Rolling.corr.html
pandas.api.types.is_int64_dtype
`pandas.api.types.is_int64_dtype` Check whether the provided array or dtype is of the int64 dtype. ``` >>> is_int64_dtype(str) False >>> is_int64_dtype(np.int32) False >>> is_int64_dtype(np.int64) True >>> is_int64_dtype('int8') False >>> is_int64_dtype('Int8') False >>> is_int64_dtype(pd.Int64Dtype) True >>> is_int64_dtype(float) False >>> is_int64_dtype(np.uint64) # unsigned False >>> is_int64_dtype(np.array(['a', 'b'])) False >>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) True >>> is_int64_dtype(pd.Index([1, 2.])) # float False >>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False ```
pandas.api.types.is_int64_dtype(arr_or_dtype)[source]# Check whether the provided array or dtype is of the int64 dtype. Parameters arr_or_dtypearray-like or dtypeThe array or dtype to check. Returns booleanWhether or not the array or dtype is of the int64 dtype. Notes Depending on system architecture, the return value of is_int64_dtype( int) will be True if the OS uses 64-bit integers and False if the OS uses 32-bit integers. Examples >>> is_int64_dtype(str) False >>> is_int64_dtype(np.int32) False >>> is_int64_dtype(np.int64) True >>> is_int64_dtype('int8') False >>> is_int64_dtype('Int8') False >>> is_int64_dtype(pd.Int64Dtype) True >>> is_int64_dtype(float) False >>> is_int64_dtype(np.uint64) # unsigned False >>> is_int64_dtype(np.array(['a', 'b'])) False >>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) True >>> is_int64_dtype(pd.Index([1, 2.])) # float False >>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned False
reference/api/pandas.api.types.is_int64_dtype.html
pandas.DataFrame.to_dict
`pandas.DataFrame.to_dict` Convert the DataFrame to a dictionary. ``` >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} ```
DataFrame.to_dict(orient='dict', into=<class 'dict'>)[source]# Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘tight’, ‘records’, ‘index’}Determines the type of the values of the dictionary. ‘dict’ (default) : dict like {column -> {index -> value}} ‘list’ : dict like {column -> [values]} ‘series’ : dict like {column -> Series(values)} ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]} ‘tight’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values], ‘index_names’ -> [index.names], ‘column_names’ -> [column.names]} ‘records’ : list like [{column -> value}, … , {column -> value}] ‘index’ : dict like {index -> {column -> value}} Abbreviations are allowed. s indicates series and sp indicates split. New in version 1.4.0: ‘tight’ as an allowed value for the orient argument intoclass, default dictThe collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns dict, list or collections.abc.MappingReturn a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the orient parameter. See also DataFrame.from_dictCreate a DataFrame from a dictionary. DataFrame.to_jsonConvert a DataFrame to JSON format. Examples >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} >>> df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a defaultdict, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
reference/api/pandas.DataFrame.to_dict.html
pandas.api.extensions.ExtensionDtype.is_dtype
`pandas.api.extensions.ExtensionDtype.is_dtype` Check if we match ‘dtype’.
classmethod ExtensionDtype.is_dtype(dtype)[source]# Check if we match ‘dtype’. Parameters dtypeobjectThe object to check. Returns bool Notes The default implementation is True if cls.construct_from_string(dtype) is an instance of cls. dtype is an object and is an instance of cls dtype has a dtype attribute, and any of the above conditions is true for dtype.dtype.
reference/api/pandas.api.extensions.ExtensionDtype.is_dtype.html
pandas.Series.rfloordiv
`pandas.Series.rfloordiv` Return Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // series, but with support to substitute a fill_value for missing data in either one of the inputs. ``` >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64 ```
Series.rfloordiv(other, level=None, fill_value=None, axis=0)[source]# Return Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // series, but with support to substitute a fill_value for missing data in either one of the inputs. Parameters otherSeries or scalar value levelint or nameBroadcast across a level, matching Index values on the passed MultiIndex level. fill_valueNone or float value, default None (NaN)Fill existing missing (NaN) values, and any new element needed for successful Series alignment, with this value before computation. If data in both corresponding Series locations is missing the result of filling (at that location) will be missing. axis{0 or ‘index’}Unused. Parameter needed for compatibility with DataFrame. Returns SeriesThe result of the operation. See also Series.floordivElement-wise Integer division, see Python documentation for more details. Examples >>> a = pd.Series([1, 1, 1, np.nan], index=['a', 'b', 'c', 'd']) >>> a a 1.0 b 1.0 c 1.0 d NaN dtype: float64 >>> b = pd.Series([1, np.nan, 1, np.nan], index=['a', 'b', 'd', 'e']) >>> b a 1.0 b NaN d 1.0 e NaN dtype: float64 >>> a.floordiv(b, fill_value=0) a 1.0 b NaN c NaN d 0.0 e NaN dtype: float64
reference/api/pandas.Series.rfloordiv.html
pandas.tseries.offsets.FY5253.n
pandas.tseries.offsets.FY5253.n
FY5253.n#
reference/api/pandas.tseries.offsets.FY5253.n.html
Date offsets
Date offsets
DateOffset# DateOffset Standard kind of date increment used for a date range. Properties# DateOffset.freqstr Return a string representing the frequency. DateOffset.kwds Return a dict of extra parameters for the offset. DateOffset.name Return a string representing the base frequency. DateOffset.nanos DateOffset.normalize DateOffset.rule_code DateOffset.n DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. Methods# DateOffset.apply DateOffset.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. DateOffset.copy Return a copy of the frequency. DateOffset.isAnchored DateOffset.onOffset DateOffset.is_anchored Return boolean whether the frequency is a unit frequency (n=1). DateOffset.is_on_offset Return boolean whether a timestamp intersects with this frequency. DateOffset.__call__(*args, **kwargs) Call self as a function. DateOffset.is_month_start Return boolean whether a timestamp occurs on the month start. DateOffset.is_month_end Return boolean whether a timestamp occurs on the month end. DateOffset.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. DateOffset.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. DateOffset.is_year_start Return boolean whether a timestamp occurs on the year start. DateOffset.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessDay# BusinessDay DateOffset subclass representing possibly n business days. Alias: BDay alias of pandas._libs.tslibs.offsets.BusinessDay Properties# BusinessDay.freqstr Return a string representing the frequency. BusinessDay.kwds Return a dict of extra parameters for the offset. BusinessDay.name Return a string representing the base frequency. BusinessDay.nanos BusinessDay.normalize BusinessDay.rule_code BusinessDay.n BusinessDay.weekmask BusinessDay.holidays BusinessDay.calendar Methods# BusinessDay.apply BusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessDay.copy Return a copy of the frequency. BusinessDay.isAnchored BusinessDay.onOffset BusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessDay.__call__(*args, **kwargs) Call self as a function. BusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessHour# BusinessHour DateOffset subclass representing possibly n business hours. Properties# BusinessHour.freqstr Return a string representing the frequency. BusinessHour.kwds Return a dict of extra parameters for the offset. BusinessHour.name Return a string representing the base frequency. BusinessHour.nanos BusinessHour.normalize BusinessHour.rule_code BusinessHour.n BusinessHour.start BusinessHour.end BusinessHour.weekmask BusinessHour.holidays BusinessHour.calendar Methods# BusinessHour.apply BusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessHour.copy Return a copy of the frequency. BusinessHour.isAnchored BusinessHour.onOffset BusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessHour.__call__(*args, **kwargs) Call self as a function. BusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessDay# CustomBusinessDay DateOffset subclass representing custom business days excluding holidays. Alias: CDay alias of pandas._libs.tslibs.offsets.CustomBusinessDay Properties# CustomBusinessDay.freqstr Return a string representing the frequency. CustomBusinessDay.kwds Return a dict of extra parameters for the offset. CustomBusinessDay.name Return a string representing the base frequency. CustomBusinessDay.nanos CustomBusinessDay.normalize CustomBusinessDay.rule_code CustomBusinessDay.n CustomBusinessDay.weekmask CustomBusinessDay.calendar CustomBusinessDay.holidays Methods# CustomBusinessDay.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessDay.apply CustomBusinessDay.copy Return a copy of the frequency. CustomBusinessDay.isAnchored CustomBusinessDay.onOffset CustomBusinessDay.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessDay.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessDay.__call__(*args, **kwargs) Call self as a function. CustomBusinessDay.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessDay.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessDay.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessDay.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessDay.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessDay.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessHour# CustomBusinessHour DateOffset subclass representing possibly n custom business days. Properties# CustomBusinessHour.freqstr Return a string representing the frequency. CustomBusinessHour.kwds Return a dict of extra parameters for the offset. CustomBusinessHour.name Return a string representing the base frequency. CustomBusinessHour.nanos CustomBusinessHour.normalize CustomBusinessHour.rule_code CustomBusinessHour.n CustomBusinessHour.weekmask CustomBusinessHour.calendar CustomBusinessHour.holidays CustomBusinessHour.start CustomBusinessHour.end Methods# CustomBusinessHour.apply CustomBusinessHour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessHour.copy Return a copy of the frequency. CustomBusinessHour.isAnchored CustomBusinessHour.onOffset CustomBusinessHour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessHour.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessHour.__call__(*args, **kwargs) Call self as a function. CustomBusinessHour.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessHour.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessHour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessHour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessHour.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessHour.is_year_end Return boolean whether a timestamp occurs on the year end. MonthEnd# MonthEnd DateOffset of one month end. Properties# MonthEnd.freqstr Return a string representing the frequency. MonthEnd.kwds Return a dict of extra parameters for the offset. MonthEnd.name Return a string representing the base frequency. MonthEnd.nanos MonthEnd.normalize MonthEnd.rule_code MonthEnd.n Methods# MonthEnd.apply MonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthEnd.copy Return a copy of the frequency. MonthEnd.isAnchored MonthEnd.onOffset MonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthEnd.__call__(*args, **kwargs) Call self as a function. MonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. MonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. MonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. MonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. MonthBegin# MonthBegin DateOffset of one month at beginning. Properties# MonthBegin.freqstr Return a string representing the frequency. MonthBegin.kwds Return a dict of extra parameters for the offset. MonthBegin.name Return a string representing the base frequency. MonthBegin.nanos MonthBegin.normalize MonthBegin.rule_code MonthBegin.n Methods# MonthBegin.apply MonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. MonthBegin.copy Return a copy of the frequency. MonthBegin.isAnchored MonthBegin.onOffset MonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). MonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. MonthBegin.__call__(*args, **kwargs) Call self as a function. MonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. MonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. MonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. MonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. MonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. MonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthEnd# BusinessMonthEnd DateOffset increments between the last business day of the month. Alias: BMonthEnd alias of pandas._libs.tslibs.offsets.BusinessMonthEnd Properties# BusinessMonthEnd.freqstr Return a string representing the frequency. BusinessMonthEnd.kwds Return a dict of extra parameters for the offset. BusinessMonthEnd.name Return a string representing the base frequency. BusinessMonthEnd.nanos BusinessMonthEnd.normalize BusinessMonthEnd.rule_code BusinessMonthEnd.n Methods# BusinessMonthEnd.apply BusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthEnd.copy Return a copy of the frequency. BusinessMonthEnd.isAnchored BusinessMonthEnd.onOffset BusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. BusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BusinessMonthBegin# BusinessMonthBegin DateOffset of one month at the first business day. Alias: BMonthBegin alias of pandas._libs.tslibs.offsets.BusinessMonthBegin Properties# BusinessMonthBegin.freqstr Return a string representing the frequency. BusinessMonthBegin.kwds Return a dict of extra parameters for the offset. BusinessMonthBegin.name Return a string representing the base frequency. BusinessMonthBegin.nanos BusinessMonthBegin.normalize BusinessMonthBegin.rule_code BusinessMonthBegin.n Methods# BusinessMonthBegin.apply BusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BusinessMonthBegin.copy Return a copy of the frequency. BusinessMonthBegin.isAnchored BusinessMonthBegin.onOffset BusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BusinessMonthBegin.__call__(*args, **kwargs) Call self as a function. BusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthEnd# CustomBusinessMonthEnd Attributes Alias: CBMonthEnd alias of pandas._libs.tslibs.offsets.CustomBusinessMonthEnd Properties# CustomBusinessMonthEnd.freqstr Return a string representing the frequency. CustomBusinessMonthEnd.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthEnd.m_offset CustomBusinessMonthEnd.name Return a string representing the base frequency. CustomBusinessMonthEnd.nanos CustomBusinessMonthEnd.normalize CustomBusinessMonthEnd.rule_code CustomBusinessMonthEnd.n CustomBusinessMonthEnd.weekmask CustomBusinessMonthEnd.calendar CustomBusinessMonthEnd.holidays Methods# CustomBusinessMonthEnd.apply CustomBusinessMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthEnd.copy Return a copy of the frequency. CustomBusinessMonthEnd.isAnchored CustomBusinessMonthEnd.onOffset CustomBusinessMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthEnd.__call__(*args, **kwargs) Call self as a function. CustomBusinessMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. CustomBusinessMonthBegin# CustomBusinessMonthBegin Attributes Alias: CBMonthBegin alias of pandas._libs.tslibs.offsets.CustomBusinessMonthBegin Properties# CustomBusinessMonthBegin.freqstr Return a string representing the frequency. CustomBusinessMonthBegin.kwds Return a dict of extra parameters for the offset. CustomBusinessMonthBegin.m_offset CustomBusinessMonthBegin.name Return a string representing the base frequency. CustomBusinessMonthBegin.nanos CustomBusinessMonthBegin.normalize CustomBusinessMonthBegin.rule_code CustomBusinessMonthBegin.n CustomBusinessMonthBegin.weekmask CustomBusinessMonthBegin.calendar CustomBusinessMonthBegin.holidays Methods# CustomBusinessMonthBegin.apply CustomBusinessMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. CustomBusinessMonthBegin.copy Return a copy of the frequency. CustomBusinessMonthBegin.isAnchored CustomBusinessMonthBegin.onOffset CustomBusinessMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). CustomBusinessMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. CustomBusinessMonthBegin.__call__(*args, ...) Call self as a function. CustomBusinessMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. CustomBusinessMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. CustomBusinessMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. CustomBusinessMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. CustomBusinessMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. CustomBusinessMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthEnd# SemiMonthEnd Two DateOffset's per month repeating on the last day of the month & day_of_month. Properties# SemiMonthEnd.freqstr Return a string representing the frequency. SemiMonthEnd.kwds Return a dict of extra parameters for the offset. SemiMonthEnd.name Return a string representing the base frequency. SemiMonthEnd.nanos SemiMonthEnd.normalize SemiMonthEnd.rule_code SemiMonthEnd.n SemiMonthEnd.day_of_month Methods# SemiMonthEnd.apply SemiMonthEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthEnd.copy Return a copy of the frequency. SemiMonthEnd.isAnchored SemiMonthEnd.onOffset SemiMonthEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthEnd.__call__(*args, **kwargs) Call self as a function. SemiMonthEnd.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthEnd.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthEnd.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthEnd.is_year_end Return boolean whether a timestamp occurs on the year end. SemiMonthBegin# SemiMonthBegin Two DateOffset's per month repeating on the first day of the month & day_of_month. Properties# SemiMonthBegin.freqstr Return a string representing the frequency. SemiMonthBegin.kwds Return a dict of extra parameters for the offset. SemiMonthBegin.name Return a string representing the base frequency. SemiMonthBegin.nanos SemiMonthBegin.normalize SemiMonthBegin.rule_code SemiMonthBegin.n SemiMonthBegin.day_of_month Methods# SemiMonthBegin.apply SemiMonthBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. SemiMonthBegin.copy Return a copy of the frequency. SemiMonthBegin.isAnchored SemiMonthBegin.onOffset SemiMonthBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). SemiMonthBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. SemiMonthBegin.__call__(*args, **kwargs) Call self as a function. SemiMonthBegin.is_month_start Return boolean whether a timestamp occurs on the month start. SemiMonthBegin.is_month_end Return boolean whether a timestamp occurs on the month end. SemiMonthBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. SemiMonthBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. SemiMonthBegin.is_year_start Return boolean whether a timestamp occurs on the year start. SemiMonthBegin.is_year_end Return boolean whether a timestamp occurs on the year end. Week# Week Weekly offset. Properties# Week.freqstr Return a string representing the frequency. Week.kwds Return a dict of extra parameters for the offset. Week.name Return a string representing the base frequency. Week.nanos Week.normalize Week.rule_code Week.n Week.weekday Methods# Week.apply Week.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Week.copy Return a copy of the frequency. Week.isAnchored Week.onOffset Week.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Week.is_on_offset Return boolean whether a timestamp intersects with this frequency. Week.__call__(*args, **kwargs) Call self as a function. Week.is_month_start Return boolean whether a timestamp occurs on the month start. Week.is_month_end Return boolean whether a timestamp occurs on the month end. Week.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Week.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Week.is_year_start Return boolean whether a timestamp occurs on the year start. Week.is_year_end Return boolean whether a timestamp occurs on the year end. WeekOfMonth# WeekOfMonth Describes monthly dates like "the Tuesday of the 2nd week of each month". Properties# WeekOfMonth.freqstr Return a string representing the frequency. WeekOfMonth.kwds Return a dict of extra parameters for the offset. WeekOfMonth.name Return a string representing the base frequency. WeekOfMonth.nanos WeekOfMonth.normalize WeekOfMonth.rule_code WeekOfMonth.n WeekOfMonth.week Methods# WeekOfMonth.apply WeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. WeekOfMonth.copy Return a copy of the frequency. WeekOfMonth.isAnchored WeekOfMonth.onOffset WeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). WeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. WeekOfMonth.__call__(*args, **kwargs) Call self as a function. WeekOfMonth.weekday WeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. WeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. WeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. WeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. WeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. WeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. LastWeekOfMonth# LastWeekOfMonth Describes monthly dates in last week of month. Properties# LastWeekOfMonth.freqstr Return a string representing the frequency. LastWeekOfMonth.kwds Return a dict of extra parameters for the offset. LastWeekOfMonth.name Return a string representing the base frequency. LastWeekOfMonth.nanos LastWeekOfMonth.normalize LastWeekOfMonth.rule_code LastWeekOfMonth.n LastWeekOfMonth.weekday LastWeekOfMonth.week Methods# LastWeekOfMonth.apply LastWeekOfMonth.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. LastWeekOfMonth.copy Return a copy of the frequency. LastWeekOfMonth.isAnchored LastWeekOfMonth.onOffset LastWeekOfMonth.is_anchored Return boolean whether the frequency is a unit frequency (n=1). LastWeekOfMonth.is_on_offset Return boolean whether a timestamp intersects with this frequency. LastWeekOfMonth.__call__(*args, **kwargs) Call self as a function. LastWeekOfMonth.is_month_start Return boolean whether a timestamp occurs on the month start. LastWeekOfMonth.is_month_end Return boolean whether a timestamp occurs on the month end. LastWeekOfMonth.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. LastWeekOfMonth.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. LastWeekOfMonth.is_year_start Return boolean whether a timestamp occurs on the year start. LastWeekOfMonth.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterEnd# BQuarterEnd DateOffset increments between the last business day of each Quarter. Properties# BQuarterEnd.freqstr Return a string representing the frequency. BQuarterEnd.kwds Return a dict of extra parameters for the offset. BQuarterEnd.name Return a string representing the base frequency. BQuarterEnd.nanos BQuarterEnd.normalize BQuarterEnd.rule_code BQuarterEnd.n BQuarterEnd.startingMonth Methods# BQuarterEnd.apply BQuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterEnd.copy Return a copy of the frequency. BQuarterEnd.isAnchored BQuarterEnd.onOffset BQuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterEnd.__call__(*args, **kwargs) Call self as a function. BQuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BQuarterBegin# BQuarterBegin DateOffset increments between the first business day of each Quarter. Properties# BQuarterBegin.freqstr Return a string representing the frequency. BQuarterBegin.kwds Return a dict of extra parameters for the offset. BQuarterBegin.name Return a string representing the base frequency. BQuarterBegin.nanos BQuarterBegin.normalize BQuarterBegin.rule_code BQuarterBegin.n BQuarterBegin.startingMonth Methods# BQuarterBegin.apply BQuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BQuarterBegin.copy Return a copy of the frequency. BQuarterBegin.isAnchored BQuarterBegin.onOffset BQuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BQuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BQuarterBegin.__call__(*args, **kwargs) Call self as a function. BQuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BQuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BQuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BQuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BQuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BQuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterEnd# QuarterEnd DateOffset increments between Quarter end dates. Properties# QuarterEnd.freqstr Return a string representing the frequency. QuarterEnd.kwds Return a dict of extra parameters for the offset. QuarterEnd.name Return a string representing the base frequency. QuarterEnd.nanos QuarterEnd.normalize QuarterEnd.rule_code QuarterEnd.n QuarterEnd.startingMonth Methods# QuarterEnd.apply QuarterEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterEnd.copy Return a copy of the frequency. QuarterEnd.isAnchored QuarterEnd.onOffset QuarterEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterEnd.__call__(*args, **kwargs) Call self as a function. QuarterEnd.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterEnd.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterEnd.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterEnd.is_year_end Return boolean whether a timestamp occurs on the year end. QuarterBegin# QuarterBegin DateOffset increments between Quarter start dates. Properties# QuarterBegin.freqstr Return a string representing the frequency. QuarterBegin.kwds Return a dict of extra parameters for the offset. QuarterBegin.name Return a string representing the base frequency. QuarterBegin.nanos QuarterBegin.normalize QuarterBegin.rule_code QuarterBegin.n QuarterBegin.startingMonth Methods# QuarterBegin.apply QuarterBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. QuarterBegin.copy Return a copy of the frequency. QuarterBegin.isAnchored QuarterBegin.onOffset QuarterBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). QuarterBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. QuarterBegin.__call__(*args, **kwargs) Call self as a function. QuarterBegin.is_month_start Return boolean whether a timestamp occurs on the month start. QuarterBegin.is_month_end Return boolean whether a timestamp occurs on the month end. QuarterBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. QuarterBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. QuarterBegin.is_year_start Return boolean whether a timestamp occurs on the year start. QuarterBegin.is_year_end Return boolean whether a timestamp occurs on the year end. BYearEnd# BYearEnd DateOffset increments between the last business day of the year. Properties# BYearEnd.freqstr Return a string representing the frequency. BYearEnd.kwds Return a dict of extra parameters for the offset. BYearEnd.name Return a string representing the base frequency. BYearEnd.nanos BYearEnd.normalize BYearEnd.rule_code BYearEnd.n BYearEnd.month Methods# BYearEnd.apply BYearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearEnd.copy Return a copy of the frequency. BYearEnd.isAnchored BYearEnd.onOffset BYearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearEnd.__call__(*args, **kwargs) Call self as a function. BYearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. BYearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. BYearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. BYearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. BYearBegin# BYearBegin DateOffset increments between the first business day of the year. Properties# BYearBegin.freqstr Return a string representing the frequency. BYearBegin.kwds Return a dict of extra parameters for the offset. BYearBegin.name Return a string representing the base frequency. BYearBegin.nanos BYearBegin.normalize BYearBegin.rule_code BYearBegin.n BYearBegin.month Methods# BYearBegin.apply BYearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. BYearBegin.copy Return a copy of the frequency. BYearBegin.isAnchored BYearBegin.onOffset BYearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). BYearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. BYearBegin.__call__(*args, **kwargs) Call self as a function. BYearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. BYearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. BYearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. BYearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. BYearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. BYearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. YearEnd# YearEnd DateOffset increments between calendar year ends. Properties# YearEnd.freqstr Return a string representing the frequency. YearEnd.kwds Return a dict of extra parameters for the offset. YearEnd.name Return a string representing the base frequency. YearEnd.nanos YearEnd.normalize YearEnd.rule_code YearEnd.n YearEnd.month Methods# YearEnd.apply YearEnd.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearEnd.copy Return a copy of the frequency. YearEnd.isAnchored YearEnd.onOffset YearEnd.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearEnd.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearEnd.__call__(*args, **kwargs) Call self as a function. YearEnd.is_month_start Return boolean whether a timestamp occurs on the month start. YearEnd.is_month_end Return boolean whether a timestamp occurs on the month end. YearEnd.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearEnd.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearEnd.is_year_start Return boolean whether a timestamp occurs on the year start. YearEnd.is_year_end Return boolean whether a timestamp occurs on the year end. YearBegin# YearBegin DateOffset increments between calendar year begin dates. Properties# YearBegin.freqstr Return a string representing the frequency. YearBegin.kwds Return a dict of extra parameters for the offset. YearBegin.name Return a string representing the base frequency. YearBegin.nanos YearBegin.normalize YearBegin.rule_code YearBegin.n YearBegin.month Methods# YearBegin.apply YearBegin.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. YearBegin.copy Return a copy of the frequency. YearBegin.isAnchored YearBegin.onOffset YearBegin.is_anchored Return boolean whether the frequency is a unit frequency (n=1). YearBegin.is_on_offset Return boolean whether a timestamp intersects with this frequency. YearBegin.__call__(*args, **kwargs) Call self as a function. YearBegin.is_month_start Return boolean whether a timestamp occurs on the month start. YearBegin.is_month_end Return boolean whether a timestamp occurs on the month end. YearBegin.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. YearBegin.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. YearBegin.is_year_start Return boolean whether a timestamp occurs on the year start. YearBegin.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253# FY5253 Describes 52-53 week fiscal year. Properties# FY5253.freqstr Return a string representing the frequency. FY5253.kwds Return a dict of extra parameters for the offset. FY5253.name Return a string representing the base frequency. FY5253.nanos FY5253.normalize FY5253.rule_code FY5253.n FY5253.startingMonth FY5253.variation FY5253.weekday Methods# FY5253.apply FY5253.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253.copy Return a copy of the frequency. FY5253.get_rule_code_suffix FY5253.get_year_end FY5253.isAnchored FY5253.onOffset FY5253.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253.__call__(*args, **kwargs) Call self as a function. FY5253.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253.is_year_end Return boolean whether a timestamp occurs on the year end. FY5253Quarter# FY5253Quarter DateOffset increments between business quarter dates for 52-53 week fiscal year. Properties# FY5253Quarter.freqstr Return a string representing the frequency. FY5253Quarter.kwds Return a dict of extra parameters for the offset. FY5253Quarter.name Return a string representing the base frequency. FY5253Quarter.nanos FY5253Quarter.normalize FY5253Quarter.rule_code FY5253Quarter.n FY5253Quarter.qtr_with_extra_week FY5253Quarter.startingMonth FY5253Quarter.variation FY5253Quarter.weekday Methods# FY5253Quarter.apply FY5253Quarter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. FY5253Quarter.copy Return a copy of the frequency. FY5253Quarter.get_rule_code_suffix FY5253Quarter.get_weeks FY5253Quarter.isAnchored FY5253Quarter.onOffset FY5253Quarter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). FY5253Quarter.is_on_offset Return boolean whether a timestamp intersects with this frequency. FY5253Quarter.year_has_extra_week FY5253Quarter.__call__(*args, **kwargs) Call self as a function. FY5253Quarter.is_month_start Return boolean whether a timestamp occurs on the month start. FY5253Quarter.is_month_end Return boolean whether a timestamp occurs on the month end. FY5253Quarter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. FY5253Quarter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. FY5253Quarter.is_year_start Return boolean whether a timestamp occurs on the year start. FY5253Quarter.is_year_end Return boolean whether a timestamp occurs on the year end. Easter# Easter DateOffset for the Easter holiday using logic defined in dateutil. Properties# Easter.freqstr Return a string representing the frequency. Easter.kwds Return a dict of extra parameters for the offset. Easter.name Return a string representing the base frequency. Easter.nanos Easter.normalize Easter.rule_code Easter.n Methods# Easter.apply Easter.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Easter.copy Return a copy of the frequency. Easter.isAnchored Easter.onOffset Easter.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Easter.is_on_offset Return boolean whether a timestamp intersects with this frequency. Easter.__call__(*args, **kwargs) Call self as a function. Easter.is_month_start Return boolean whether a timestamp occurs on the month start. Easter.is_month_end Return boolean whether a timestamp occurs on the month end. Easter.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Easter.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Easter.is_year_start Return boolean whether a timestamp occurs on the year start. Easter.is_year_end Return boolean whether a timestamp occurs on the year end. Tick# Tick Attributes Properties# Tick.delta Tick.freqstr Return a string representing the frequency. Tick.kwds Return a dict of extra parameters for the offset. Tick.name Return a string representing the base frequency. Tick.nanos Return an integer of the total number of nanoseconds. Tick.normalize Tick.rule_code Tick.n Methods# Tick.copy Return a copy of the frequency. Tick.isAnchored Tick.onOffset Tick.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Tick.is_on_offset Return boolean whether a timestamp intersects with this frequency. Tick.__call__(*args, **kwargs) Call self as a function. Tick.apply Tick.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Tick.is_month_start Return boolean whether a timestamp occurs on the month start. Tick.is_month_end Return boolean whether a timestamp occurs on the month end. Tick.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Tick.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Tick.is_year_start Return boolean whether a timestamp occurs on the year start. Tick.is_year_end Return boolean whether a timestamp occurs on the year end. Day# Day Attributes Properties# Day.delta Day.freqstr Return a string representing the frequency. Day.kwds Return a dict of extra parameters for the offset. Day.name Return a string representing the base frequency. Day.nanos Return an integer of the total number of nanoseconds. Day.normalize Day.rule_code Day.n Methods# Day.copy Return a copy of the frequency. Day.isAnchored Day.onOffset Day.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Day.is_on_offset Return boolean whether a timestamp intersects with this frequency. Day.__call__(*args, **kwargs) Call self as a function. Day.apply Day.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Day.is_month_start Return boolean whether a timestamp occurs on the month start. Day.is_month_end Return boolean whether a timestamp occurs on the month end. Day.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Day.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Day.is_year_start Return boolean whether a timestamp occurs on the year start. Day.is_year_end Return boolean whether a timestamp occurs on the year end. Hour# Hour Attributes Properties# Hour.delta Hour.freqstr Return a string representing the frequency. Hour.kwds Return a dict of extra parameters for the offset. Hour.name Return a string representing the base frequency. Hour.nanos Return an integer of the total number of nanoseconds. Hour.normalize Hour.rule_code Hour.n Methods# Hour.copy Return a copy of the frequency. Hour.isAnchored Hour.onOffset Hour.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Hour.is_on_offset Return boolean whether a timestamp intersects with this frequency. Hour.__call__(*args, **kwargs) Call self as a function. Hour.apply Hour.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Hour.is_month_start Return boolean whether a timestamp occurs on the month start. Hour.is_month_end Return boolean whether a timestamp occurs on the month end. Hour.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Hour.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Hour.is_year_start Return boolean whether a timestamp occurs on the year start. Hour.is_year_end Return boolean whether a timestamp occurs on the year end. Minute# Minute Attributes Properties# Minute.delta Minute.freqstr Return a string representing the frequency. Minute.kwds Return a dict of extra parameters for the offset. Minute.name Return a string representing the base frequency. Minute.nanos Return an integer of the total number of nanoseconds. Minute.normalize Minute.rule_code Minute.n Methods# Minute.copy Return a copy of the frequency. Minute.isAnchored Minute.onOffset Minute.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Minute.is_on_offset Return boolean whether a timestamp intersects with this frequency. Minute.__call__(*args, **kwargs) Call self as a function. Minute.apply Minute.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Minute.is_month_start Return boolean whether a timestamp occurs on the month start. Minute.is_month_end Return boolean whether a timestamp occurs on the month end. Minute.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Minute.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Minute.is_year_start Return boolean whether a timestamp occurs on the year start. Minute.is_year_end Return boolean whether a timestamp occurs on the year end. Second# Second Attributes Properties# Second.delta Second.freqstr Return a string representing the frequency. Second.kwds Return a dict of extra parameters for the offset. Second.name Return a string representing the base frequency. Second.nanos Return an integer of the total number of nanoseconds. Second.normalize Second.rule_code Second.n Methods# Second.copy Return a copy of the frequency. Second.isAnchored Second.onOffset Second.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Second.is_on_offset Return boolean whether a timestamp intersects with this frequency. Second.__call__(*args, **kwargs) Call self as a function. Second.apply Second.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Second.is_month_start Return boolean whether a timestamp occurs on the month start. Second.is_month_end Return boolean whether a timestamp occurs on the month end. Second.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Second.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Second.is_year_start Return boolean whether a timestamp occurs on the year start. Second.is_year_end Return boolean whether a timestamp occurs on the year end. Milli# Milli Attributes Properties# Milli.delta Milli.freqstr Return a string representing the frequency. Milli.kwds Return a dict of extra parameters for the offset. Milli.name Return a string representing the base frequency. Milli.nanos Return an integer of the total number of nanoseconds. Milli.normalize Milli.rule_code Milli.n Methods# Milli.copy Return a copy of the frequency. Milli.isAnchored Milli.onOffset Milli.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Milli.is_on_offset Return boolean whether a timestamp intersects with this frequency. Milli.__call__(*args, **kwargs) Call self as a function. Milli.apply Milli.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Milli.is_month_start Return boolean whether a timestamp occurs on the month start. Milli.is_month_end Return boolean whether a timestamp occurs on the month end. Milli.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Milli.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Milli.is_year_start Return boolean whether a timestamp occurs on the year start. Milli.is_year_end Return boolean whether a timestamp occurs on the year end. Micro# Micro Attributes Properties# Micro.delta Micro.freqstr Return a string representing the frequency. Micro.kwds Return a dict of extra parameters for the offset. Micro.name Return a string representing the base frequency. Micro.nanos Return an integer of the total number of nanoseconds. Micro.normalize Micro.rule_code Micro.n Methods# Micro.copy Return a copy of the frequency. Micro.isAnchored Micro.onOffset Micro.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Micro.is_on_offset Return boolean whether a timestamp intersects with this frequency. Micro.__call__(*args, **kwargs) Call self as a function. Micro.apply Micro.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Micro.is_month_start Return boolean whether a timestamp occurs on the month start. Micro.is_month_end Return boolean whether a timestamp occurs on the month end. Micro.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Micro.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Micro.is_year_start Return boolean whether a timestamp occurs on the year start. Micro.is_year_end Return boolean whether a timestamp occurs on the year end. Nano# Nano Attributes Properties# Nano.delta Nano.freqstr Return a string representing the frequency. Nano.kwds Return a dict of extra parameters for the offset. Nano.name Return a string representing the base frequency. Nano.nanos Return an integer of the total number of nanoseconds. Nano.normalize Nano.rule_code Nano.n Methods# Nano.copy Return a copy of the frequency. Nano.isAnchored Nano.onOffset Nano.is_anchored Return boolean whether the frequency is a unit frequency (n=1). Nano.is_on_offset Return boolean whether a timestamp intersects with this frequency. Nano.__call__(*args, **kwargs) Call self as a function. Nano.apply Nano.apply_index (DEPRECATED) Vectorized apply of DateOffset to DatetimeIndex. Nano.is_month_start Return boolean whether a timestamp occurs on the month start. Nano.is_month_end Return boolean whether a timestamp occurs on the month end. Nano.is_quarter_start Return boolean whether a timestamp occurs on the quarter start. Nano.is_quarter_end Return boolean whether a timestamp occurs on the quarter end. Nano.is_year_start Return boolean whether a timestamp occurs on the year start. Nano.is_year_end Return boolean whether a timestamp occurs on the year end. Frequencies# to_offset Return DateOffset object from string or datetime.timedelta object.
reference/offset_frequency.html
pandas.Index.is_monotonic_increasing
`pandas.Index.is_monotonic_increasing` Return a boolean if the values are equal or increasing. Examples ``` >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False ```
property Index.is_monotonic_increasing[source]# Return a boolean if the values are equal or increasing. Examples >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False
reference/api/pandas.Index.is_monotonic_increasing.html
pandas.MultiIndex.droplevel
`pandas.MultiIndex.droplevel` Return index with requested level(s) removed. ``` >>> mi = pd.MultiIndex.from_arrays( ... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z']) >>> mi MultiIndex([(1, 3, 5), (2, 4, 6)], names=['x', 'y', 'z']) ```
MultiIndex.droplevel(level=0)[source]# Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. Parameters levelint, str, or list-like, default 0If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns Index or MultiIndex Examples >>> mi = pd.MultiIndex.from_arrays( ... [[1, 2], [3, 4], [5, 6]], names=['x', 'y', 'z']) >>> mi MultiIndex([(1, 3, 5), (2, 4, 6)], names=['x', 'y', 'z']) >>> mi.droplevel() MultiIndex([(3, 5), (4, 6)], names=['y', 'z']) >>> mi.droplevel(2) MultiIndex([(1, 3), (2, 4)], names=['x', 'y']) >>> mi.droplevel('z') MultiIndex([(1, 3), (2, 4)], names=['x', 'y']) >>> mi.droplevel(['x', 'y']) Int64Index([5, 6], dtype='int64', name='z')
reference/api/pandas.MultiIndex.droplevel.html
pandas.Timestamp.max
pandas.Timestamp.max
Timestamp.max = Timestamp('2262-04-11 23:47:16.854775807')#
reference/api/pandas.Timestamp.max.html
pandas.tseries.offsets.CustomBusinessDay.is_on_offset
`pandas.tseries.offsets.CustomBusinessDay.is_on_offset` Return boolean whether a timestamp intersects with this frequency. ``` >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True ```
CustomBusinessDay.is_on_offset()# Return boolean whether a timestamp intersects with this frequency. Parameters dtdatetime.datetimeTimestamp to check intersections with frequency. Examples >>> ts = pd.Timestamp(2022, 1, 1) >>> freq = pd.offsets.Day(1) >>> freq.is_on_offset(ts) True >>> ts = pd.Timestamp(2022, 8, 6) >>> ts.day_name() 'Saturday' >>> freq = pd.offsets.BusinessDay(1) >>> freq.is_on_offset(ts) False
reference/api/pandas.tseries.offsets.CustomBusinessDay.is_on_offset.html
pandas.Period.is_leap_year
`pandas.Period.is_leap_year` Return True if the period’s year is in a leap year.
Period.is_leap_year# Return True if the period’s year is in a leap year.
reference/api/pandas.Period.is_leap_year.html
pandas.tseries.offsets.Nano.nanos
`pandas.tseries.offsets.Nano.nanos` Return an integer of the total number of nanoseconds. ``` >>> pd.offsets.Hour(5).nanos 18000000000000 ```
Nano.nanos# Return an integer of the total number of nanoseconds. Raises ValueErrorIf the frequency is non-fixed. Examples >>> pd.offsets.Hour(5).nanos 18000000000000
reference/api/pandas.tseries.offsets.Nano.nanos.html
pandas.tseries.offsets.CustomBusinessMonthEnd.weekmask
pandas.tseries.offsets.CustomBusinessMonthEnd.weekmask
CustomBusinessMonthEnd.weekmask#
reference/api/pandas.tseries.offsets.CustomBusinessMonthEnd.weekmask.html
pandas.tseries.offsets.FY5253Quarter.n
pandas.tseries.offsets.FY5253Quarter.n
FY5253Quarter.n#
reference/api/pandas.tseries.offsets.FY5253Quarter.n.html
pandas.tseries.offsets.CustomBusinessHour.rule_code
pandas.tseries.offsets.CustomBusinessHour.rule_code
CustomBusinessHour.rule_code#
reference/api/pandas.tseries.offsets.CustomBusinessHour.rule_code.html
Comparison with other tools
Comparison with other tools
Comparison with R / R libraries Quick reference Base R plyr reshape / reshape2 Comparison with SQL Copies vs. in place operations SELECT WHERE GROUP BY JOIN UNION LIMIT pandas equivalents for some SQL analytic and aggregate functions UPDATE DELETE Comparison with spreadsheets Data structures Data input / output Data operations String processing Merging Other considerations Comparison with SAS Data structures Data input / output Data operations String processing Merging Missing data GroupBy Other considerations Comparison with Stata Data structures Data input / output Data operations String processing Merging Missing data GroupBy Other considerations
getting_started/comparison/index.html
pandas.tseries.offsets.FY5253Quarter.year_has_extra_week
pandas.tseries.offsets.FY5253Quarter.year_has_extra_week
FY5253Quarter.year_has_extra_week()#
reference/api/pandas.tseries.offsets.FY5253Quarter.year_has_extra_week.html
pandas.tseries.offsets.LastWeekOfMonth.rollforward
`pandas.tseries.offsets.LastWeekOfMonth.rollforward` Roll provided date forward to next offset only if not on offset. Rolled timestamp if not on offset, otherwise unchanged timestamp.
LastWeekOfMonth.rollforward()# Roll provided date forward to next offset only if not on offset. Returns TimeStampRolled timestamp if not on offset, otherwise unchanged timestamp.
reference/api/pandas.tseries.offsets.LastWeekOfMonth.rollforward.html
pandas.tseries.offsets.BYearEnd.n
pandas.tseries.offsets.BYearEnd.n
BYearEnd.n#
reference/api/pandas.tseries.offsets.BYearEnd.n.html
pandas.tseries.offsets.SemiMonthEnd.day_of_month
pandas.tseries.offsets.SemiMonthEnd.day_of_month
SemiMonthEnd.day_of_month#
reference/api/pandas.tseries.offsets.SemiMonthEnd.day_of_month.html