|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class MLP(torch.nn.Sequential): |
|
"""MLP Module. |
|
|
|
Parameters |
|
---------- |
|
in_features: int |
|
Features (model input) dimension. |
|
out_features: int = 1 |
|
Prediction (model output) dimension. |
|
hidden: Optional[List[int]] = None |
|
Dimension of hidden layer(s). |
|
dropout: Optional[List[float]] = None |
|
Dropout rate(s). |
|
activation: Optional[torch.nn.Module] = torch.nn.Sigmoid |
|
MLP activation. |
|
bias: bool = True |
|
Add bias to MLP hidden layers. |
|
|
|
Raises |
|
------ |
|
ValueError |
|
If ``hidden`` and ``dropout`` do not share the same length. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
hidden: Optional[List[int]] = None, |
|
dropout: Optional[List[float]] = None, |
|
activation: Optional[torch.nn.Module] = torch.nn.Sigmoid(), |
|
bias: bool = True, |
|
): |
|
if dropout is not None: |
|
if hidden is not None: |
|
assert len(hidden) == len( |
|
dropout |
|
), "hidden and dropout must have the same length" |
|
else: |
|
raise ValueError( |
|
"hidden must have a value and have the same length as dropout if dropout is given." |
|
) |
|
|
|
d_model = in_features |
|
layers = [] |
|
|
|
if hidden is not None: |
|
for i, h in enumerate(hidden): |
|
seq = [torch.nn.Linear(d_model, h, bias=bias)] |
|
d_model = h |
|
|
|
if activation is not None: |
|
seq.append(activation) |
|
|
|
if dropout is not None: |
|
seq.append(torch.nn.Dropout(dropout[i])) |
|
|
|
layers.append(torch.nn.Sequential(*seq)) |
|
|
|
layers.append(torch.nn.Linear(d_model, out_features)) |
|
|
|
super(MLP, self).__init__(*layers) |
|
|
|
class MaskedLinear(torch.nn.Linear): |
|
""" |
|
Linear layer to be applied tile wise. |
|
This layer can be used in combination with a mask |
|
to prevent padding tiles from influencing the values of a subsequent |
|
activation. |
|
Example: |
|
>>> module = Linear(in_features=128, out_features=1) # With Linear |
|
>>> out = module(slide) |
|
>>> wrong_value = torch.sigmoid(out) # Value is influenced by padding |
|
>>> module = MaskedLinear(in_features=128, out_features=1, mask_value='-inf') # With MaskedLinear |
|
>>> out = module(slide, mask) # Padding now has the '-inf' value |
|
>>> correct_value = torch.sigmoid(out) # Value is not influenced by padding as sigmoid('-inf') = 0 |
|
Parameters |
|
---------- |
|
in_features: int |
|
size of each input sample |
|
out_features: int |
|
size of each output sample |
|
mask_value: Union[str, int] |
|
value to give to the mask |
|
bias: bool = True |
|
If set to ``False``, the layer will not learn an additive bias. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
mask_value: Union[str, float], |
|
bias: bool = True, |
|
): |
|
super(MaskedLinear, self).__init__( |
|
in_features=in_features, out_features=out_features, bias=bias |
|
) |
|
self.mask_value = mask_value |
|
|
|
def forward( |
|
self, x: torch.Tensor, mask: Optional[torch.BoolTensor] = None |
|
): |
|
"""Forward pass. |
|
|
|
Parameters |
|
---------- |
|
x: torch.Tensor |
|
Input tensor, shape (B, SEQ_LEN, IN_FEATURES). |
|
mask: Optional[torch.BoolTensor] = None |
|
True for values that were padded, shape (B, SEQ_LEN, 1), |
|
|
|
Returns |
|
------- |
|
x: torch.Tensor |
|
(B, SEQ_LEN, OUT_FEATURES) |
|
""" |
|
x = super(MaskedLinear, self).forward(x) |
|
if mask is not None: |
|
x = x.masked_fill(mask, float(self.mask_value)) |
|
return x |
|
|
|
def extra_repr(self): |
|
return ( |
|
f"in_features={self.in_features}, out_features={self.out_features}, " |
|
f"mask_value={self.mask_value}, bias={self.bias is not None}" |
|
) |
|
|
|
class TilesMLP(torch.nn.Module): |
|
"""MLP to be applied to tiles to compute scores. |
|
This module can be used in combination of a mask |
|
to prevent padding from influencing the scores values. |
|
Parameters |
|
---------- |
|
in_features: int |
|
size of each input sample |
|
out_features: int |
|
size of each output sample |
|
hidden: Optional[List[int]] = None |
|
Number of hidden layers and their respective number of features. |
|
bias: bool = True |
|
If set to ``False``, the layer will not learn an additive bias. |
|
activation: torch.nn.Module = torch.nn.Sigmoid() |
|
MLP activation function |
|
dropout: Optional[torch.nn.Module] = None |
|
Optional dropout module. Will be interlaced with the linear layers. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int = 1, |
|
hidden: Optional[List[int]] = None, |
|
bias: bool = True, |
|
activation: torch.nn.Module = torch.nn.Sigmoid(), |
|
dropout: Optional[torch.nn.Module] = None, |
|
): |
|
super(TilesMLP, self).__init__() |
|
|
|
self.hidden_layers = torch.nn.ModuleList() |
|
if hidden is not None: |
|
for h in hidden: |
|
self.hidden_layers.append( |
|
MaskedLinear(in_features, h, bias=bias, mask_value="-inf") |
|
) |
|
self.hidden_layers.append(activation) |
|
if dropout: |
|
self.hidden_layers.append(dropout) |
|
in_features = h |
|
|
|
self.hidden_layers.append( |
|
torch.nn.Linear(in_features, out_features, bias=bias) |
|
) |
|
|
|
def forward( |
|
self, x: torch.Tensor, mask: Optional[torch.BoolTensor] = None |
|
): |
|
"""Forward pass. |
|
|
|
Parameters |
|
---------- |
|
x: torch.Tensor |
|
(B, N_TILES, IN_FEATURES) |
|
mask: Optional[torch.BoolTensor] = None |
|
(B, N_TILES), True for values that were padded. |
|
|
|
Returns |
|
------- |
|
x: torch.Tensor |
|
(B, N_TILES, OUT_FEATURES) |
|
""" |
|
for layer in self.hidden_layers: |
|
if isinstance(layer, MaskedLinear): |
|
x = layer(x, mask) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
class ExtremeLayer(torch.nn.Module): |
|
"""Extreme layer. |
|
Returns concatenation of n_top top tiles and n_bottom bottom tiles |
|
.. warning:: |
|
If top tiles or bottom tiles is superior to the true number of |
|
tiles in the input then padded tiles will be selected and their value |
|
will be 0. |
|
Parameters |
|
---------- |
|
n_top: Optional[int] = None |
|
Number of top tiles to select |
|
n_bottom: Optional[int] = None |
|
Number of bottom tiles to select |
|
dim: int = 1 |
|
Dimension to select top/bottom tiles from |
|
return_indices: bool = False |
|
Whether to return the indices of the extreme tiles |
|
|
|
Raises |
|
------ |
|
ValueError |
|
If ``n_top`` and ``n_bottom`` are set to ``None`` or both are 0. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_top: Optional[int] = None, |
|
n_bottom: Optional[int] = None, |
|
dim: int = 1, |
|
return_indices: bool = False, |
|
): |
|
super(ExtremeLayer, self).__init__() |
|
|
|
if not (n_top is not None or n_bottom is not None): |
|
raise ValueError("one of n_top or n_bottom must have a value.") |
|
|
|
if not ( |
|
(n_top is not None and n_top > 0) |
|
or (n_bottom is not None and n_bottom > 0) |
|
): |
|
raise ValueError("one of n_top or n_bottom must have a value > 0.") |
|
|
|
self.n_top = n_top |
|
self.n_bottom = n_bottom |
|
self.dim = dim |
|
self.return_indices = return_indices |
|
|
|
def forward( |
|
self, x: torch.Tensor, mask: Optional[torch.BoolTensor] = None |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
"""Forward pass. |
|
Parameters |
|
---------- |
|
x: torch.Tensor |
|
Input tensor, shape (B, N_TILES, IN_FEATURES). |
|
mask: Optional[torch.BoolTensor] |
|
True for values that were padded, shape (B, N_TILES, 1). |
|
|
|
Warnings |
|
-------- |
|
If top tiles or bottom tiles is superior to the true number of tiles in |
|
the input then padded tiles will be selected and their value will be 0. |
|
|
|
Returns |
|
------- |
|
values: torch.Tensor |
|
Extreme tiles, shape (B, N_TOP + N_BOTTOM). |
|
indices: torch.Tensor |
|
If ``self.return_indices=True``, return extreme tiles' indices. |
|
""" |
|
|
|
if ( |
|
self.n_top |
|
and self.n_bottom |
|
and ((self.n_top + self.n_bottom) > x.shape[self.dim]) |
|
): |
|
warnings.warn( |
|
f"Sum of tops is larger than the input tensor shape for dimension {self.dim}: " |
|
f"{self.n_top + self.n_bottom} > {x.shape[self.dim]}. " |
|
f"Values will appear twice (in top and in bottom)" |
|
) |
|
|
|
top, bottom = None, None |
|
top_idx, bottom_idx = None, None |
|
if mask is not None: |
|
if self.n_top: |
|
top, top_idx = x.masked_fill(mask, float("-inf")).topk( |
|
k=self.n_top, sorted=True, dim=self.dim |
|
) |
|
top_mask = top.eq(float("-inf")) |
|
if top_mask.any(): |
|
warnings.warn( |
|
"The top tiles contain masked values, they will be set to zero." |
|
) |
|
top[top_mask] = 0 |
|
|
|
if self.n_bottom: |
|
bottom, bottom_idx = x.masked_fill(mask, float("inf")).topk( |
|
k=self.n_bottom, largest=False, sorted=True, dim=self.dim |
|
) |
|
bottom_mask = bottom.eq(float("inf")) |
|
if bottom_mask.any(): |
|
warnings.warn( |
|
"The bottom tiles contain masked values, they will be set to zero." |
|
) |
|
bottom[bottom_mask] = 0 |
|
else: |
|
if self.n_top: |
|
top, top_idx = x.topk(k=self.n_top, sorted=True, dim=self.dim) |
|
if self.n_bottom: |
|
bottom, bottom_idx = x.topk( |
|
k=self.n_bottom, largest=False, sorted=True, dim=self.dim |
|
) |
|
|
|
if top is not None and bottom is not None: |
|
values = torch.cat([top, bottom], dim=self.dim) |
|
indices = torch.cat([top_idx, bottom_idx], dim=self.dim) |
|
elif top is not None: |
|
values = top |
|
indices = top_idx |
|
elif bottom is not None: |
|
values = bottom |
|
indices = bottom_idx |
|
else: |
|
raise ValueError |
|
|
|
if self.return_indices: |
|
return values, indices |
|
else: |
|
return values |
|
|
|
def extra_repr(self) -> str: |
|
"""Format representation.""" |
|
return f"n_top={self.n_top}, n_bottom={self.n_bottom}" |
|
|
|
|
|
class Chowder(nn.Module): |
|
"""Chowder MIL model (See [1]_). |
|
|
|
Example: |
|
>>> module = Chowder(in_features=128, out_features=1, n_top=5, n_bottom=5) |
|
>>> logits, extreme_scores = module(slide, mask=mask) |
|
>>> scores = module.score_model(slide, mask=mask) |
|
|
|
Parameters |
|
---------- |
|
in_features: int |
|
Features (model input) dimension. |
|
out_features: int |
|
Controls the number of scores and, by extension, the number of out_features. |
|
n_top: int |
|
Number of tiles with hightest scores that are selected and fed to the MLP. |
|
n_bottom: int |
|
Number of tiles with lowest scores that are selected and fed to the MLP. |
|
tiles_mlp_hidden: Optional[List[int]] = None |
|
Number of units for layers in the first MLP applied tile wise to compute |
|
a score for each tiles from the tile features. |
|
If `None`, a linear layer is used to compute tile scores. |
|
If e.g. `[128, 64]`, the tile scores are computed with a MLP of dimension |
|
features_dim -> 128 -> 64 -> 1. |
|
mlp_hidden: Optional[List[int]] = None |
|
Number of units for layers of the second MLP that combine top and bottom |
|
scores and outputs a final prediction at the slide-level. If `None`, a |
|
linear layer is used to compute the prediction from the extreme scores. |
|
If e.g. `[128, 64]`, the prediction is computed |
|
with a MLP n_top + n_bottom -> 128 -> 64 -> 1. |
|
mlp_dropout: Optional[List[float]] = None |
|
Dropout that is used for each layer of the MLP. If `None`, no dropout |
|
is used. |
|
mlp_activation: Optional[torch.nn.Module] = torch.nn.Sigmoid |
|
Activation that is used after each layer of the MLP. |
|
bias: bool = True |
|
Whether to add bias for layers of the tiles MLP. |
|
|
|
References |
|
---------- |
|
.. [1] Pierre Courtiol, Eric W. Tramel, Marc Sanselme, and Gilles Wainrib. Classification |
|
and disease localization in histopathology using only global labels: A weakly-supervised |
|
approach. CoRR, abs/1802.02212, 2018. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
n_top: Optional[int] = None, |
|
n_bottom: Optional[int] = None, |
|
tiles_mlp_hidden: Optional[List[int]] = None, |
|
mlp_hidden: Optional[List[int]] = None, |
|
mlp_dropout: Optional[List[float]] = None, |
|
mlp_activation: Optional[torch.nn.Module] = torch.nn.Sigmoid(), |
|
bias: bool = True, |
|
) -> None: |
|
super(Chowder, self).__init__() |
|
if n_top is None and n_bottom is None: |
|
raise ValueError( |
|
"At least one of `n_top` or `n_bottom` must not be None." |
|
) |
|
|
|
if mlp_dropout is not None: |
|
if mlp_hidden is not None: |
|
assert len(mlp_hidden) == len( |
|
mlp_dropout |
|
), "mlp_hidden and mlp_dropout must have the same length" |
|
else: |
|
raise ValueError( |
|
"mlp_hidden must have a value and have the same length as mlp_dropout if mlp_dropout is given." |
|
) |
|
|
|
self.score_model = TilesMLP( |
|
in_features, |
|
hidden=tiles_mlp_hidden, |
|
bias=bias, |
|
out_features=out_features, |
|
) |
|
self.score_model.apply(self.weight_initialization) |
|
|
|
self.extreme_layer = ExtremeLayer(n_top=n_top, n_bottom=n_bottom) |
|
|
|
mlp_in_features = n_top + n_bottom |
|
self.mlp = MLP( |
|
mlp_in_features, |
|
1, |
|
hidden=mlp_hidden, |
|
dropout=mlp_dropout, |
|
activation=mlp_activation, |
|
) |
|
self.mlp.apply(self.weight_initialization) |
|
|
|
@staticmethod |
|
def weight_initialization(module: torch.nn.Module) -> None: |
|
"""Initialize weights for the module using Xavier initialization method, |
|
"Understanding the difficulty of training deep feedforward neural networks", |
|
Glorot, X. & Bengio, Y. (2010).""" |
|
if isinstance(module, torch.nn.Linear): |
|
torch.nn.init.xavier_uniform_(module.weight) |
|
|
|
if module.bias is not None: |
|
module.bias.data.fill_(0.0) |
|
|
|
def forward( |
|
self, features: torch.Tensor, mask: Optional[torch.BoolTensor] = None |
|
) -> torch.Tensor: |
|
""" |
|
Parameters |
|
---------- |
|
features: torch.Tensor |
|
(B, N_TILES, IN_FEATURES) |
|
mask: Optional[torch.BoolTensor] = None |
|
(B, N_TILES, 1), True for values that were padded. |
|
|
|
Returns |
|
------- |
|
logits, extreme_scores: Tuple[torch.Tensor, torch.Tensor]: |
|
(B, OUT_FEATURES), (B, N_TOP + N_BOTTOM, OUT_FEATURES) |
|
""" |
|
scores = self.score_model(x=features[..., 3:], mask=mask) |
|
extreme_scores = self.extreme_layer( |
|
x=scores, mask=mask |
|
) |
|
|
|
|
|
y = self.mlp(extreme_scores.transpose(1, 2)) |
|
|
|
return y.squeeze(2) |
|
|