Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
SaylorTwift HF Staff commited on
Commit
57441a8
·
verified ·
1 Parent(s): deb8651

Add 'twitter_complaints' config data files

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ systematic_review_inclusion/test-00000-of-00001.parquet filter=lfs diff=lfs merg
25
  one_stop_english/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
26
  one_stop_english/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
27
  tweet_eval_hate/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
 
 
25
  one_stop_english/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
26
  one_stop_english/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
27
  tweet_eval_hate/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
28
+ twitter_complaints/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -320,6 +320,28 @@ dataset_info:
320
  num_examples: 2966
321
  download_size: 300542
322
  dataset_size: 447536
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
323
  configs:
324
  - config_name: ade_corpus_v2
325
  data_files:
@@ -376,6 +398,12 @@ configs:
376
  path: tweet_eval_hate/train-*
377
  - split: test
378
  path: tweet_eval_hate/test-*
 
 
 
 
 
 
379
  ---
380
 
381
  # Dataset Card for RAFT
 
320
  num_examples: 2966
321
  download_size: 300542
322
  dataset_size: 447536
323
+ - config_name: twitter_complaints
324
+ features:
325
+ - name: Tweet text
326
+ dtype: string
327
+ - name: ID
328
+ dtype: int32
329
+ - name: Label
330
+ dtype:
331
+ class_label:
332
+ names:
333
+ '0': Unlabeled
334
+ '1': complaint
335
+ '2': no complaint
336
+ splits:
337
+ - name: train
338
+ num_bytes: 5348
339
+ num_examples: 50
340
+ - name: test
341
+ num_bytes: 369564
342
+ num_examples: 3399
343
+ download_size: 270136
344
+ dataset_size: 374912
345
  configs:
346
  - config_name: ade_corpus_v2
347
  data_files:
 
398
  path: tweet_eval_hate/train-*
399
  - split: test
400
  path: tweet_eval_hate/test-*
401
+ - config_name: twitter_complaints
402
+ data_files:
403
+ - split: train
404
+ path: twitter_complaints/train-*
405
+ - split: test
406
+ path: twitter_complaints/test-*
407
  ---
408
 
409
  # Dataset Card for RAFT
dataset_infos.json CHANGED
@@ -577,34 +577,26 @@
577
  "features": {
578
  "Tweet text": {
579
  "dtype": "string",
580
- "id": null,
581
  "_type": "Value"
582
  },
583
  "ID": {
584
  "dtype": "int32",
585
- "id": null,
586
  "_type": "Value"
587
  },
588
  "Label": {
589
- "num_classes": 3,
590
  "names": [
591
  "Unlabeled",
592
  "complaint",
593
  "no complaint"
594
  ],
595
- "names_file": null,
596
- "id": null,
597
  "_type": "ClassLabel"
598
  }
599
  },
600
- "post_processed": null,
601
- "supervised_keys": null,
602
- "task_templates": null,
603
- "builder_name": "raft",
604
  "config_name": "twitter_complaints",
605
  "version": {
606
  "version_str": "1.1.0",
607
- "description": null,
608
  "major": 1,
609
  "minor": 1,
610
  "patch": 0
@@ -612,111 +604,20 @@
612
  "splits": {
613
  "train": {
614
  "name": "train",
615
- "num_bytes": 5352,
616
  "num_examples": 50,
617
- "dataset_name": "raft"
618
  },
619
  "test": {
620
  "name": "test",
621
- "num_bytes": 369568,
622
  "num_examples": 3399,
623
- "dataset_name": "raft"
624
- }
625
- },
626
- "download_checksums": {
627
- "data/ade_corpus_v2/train.csv": {
628
- "num_bytes": 7788,
629
- "checksum": "b6c1268b8ce0fbf4fcaa0ee88562354b65d7ebd2527c3c3cc875e3a47757ae36"
630
- },
631
- "data/ade_corpus_v2/test_unlabeled.csv": {
632
- "num_bytes": 661890,
633
- "checksum": "28981e898281755e1c2d460ab75cceb8f9d8ce0a88ff4636153cf8c393c6f99e"
634
- },
635
- "data/banking_77/train.csv": {
636
- "num_bytes": 3914,
637
- "checksum": "8c417cea66d12569cb3057b125a98358aea0642dda67cf6deea52d4ec1c28ae1"
638
- },
639
- "data/banking_77/test_unlabeled.csv": {
640
- "num_bytes": 327152,
641
- "checksum": "aebd62e56a3b8ebf618afa519cc261fedc7700d96053357ebff83fab44bbaeac"
642
- },
643
- "data/terms_of_service/train.csv": {
644
- "num_bytes": 11528,
645
- "checksum": "8b46784b1e601d753ad44ce33fced828ec3bea95b6b575a2195322ead807f6c7"
646
- },
647
- "data/terms_of_service/test_unlabeled.csv": {
648
- "num_bytes": 917272,
649
- "checksum": "491679e8c9303f825d341dcdfb0a5779a9d2f925744cc44c0039b219abf7d83f"
650
- },
651
- "data/tai_safety_research/train.csv": {
652
- "num_bytes": 54758,
653
- "checksum": "fac15dde8a9f5536424289aa707dcfe1fa3128a7ee2d813cf3251c53092f7dbc"
654
- },
655
- "data/tai_safety_research/test_unlabeled.csv": {
656
- "num_bytes": 1594375,
657
- "checksum": "e606d7858813490507d90d3d17830c6f1ebd8c777fc4a9f865699e375be355d0"
658
- },
659
- "data/neurips_impact_statement_risks/train.csv": {
660
- "num_bytes": 70008,
661
- "checksum": "76cd6aa2707cd99445ba69f8c392a89faa4bf718e967b07dc457f88529b3ff2e"
662
- },
663
- "data/neurips_impact_statement_risks/test_unlabeled.csv": {
664
- "num_bytes": 196429,
665
- "checksum": "5e4d1f313f92dad3e06e035eaff044f818b20ce1ed4d22fcd17e7756e54089a7"
666
- },
667
- "data/overruling/train.csv": {
668
- "num_bytes": 7585,
669
- "checksum": "617061ba0dbd501d74896ccf2f9ebed00c35c4c4057f74afdd94c96cb514130e"
670
- },
671
- "data/overruling/test_unlabeled.csv": {
672
- "num_bytes": 412483,
673
- "checksum": "c0a61fc8980b544611f8d662c752d88e2ed635146f2f3c72f16eec60e3ddb7fe"
674
- },
675
- "data/systematic_review_inclusion/train.csv": {
676
- "num_bytes": 52491,
677
- "checksum": "2d2acd76f6acf1fd1359cf07323586fa134bbe76689e112f5c213b63271e2318"
678
- },
679
- "data/systematic_review_inclusion/test_unlabeled.csv": {
680
- "num_bytes": 2309265,
681
- "checksum": "20710c15f7fda010a3a86a0eda52c5ceb6a709b626610d19e1fc353c42c2d955"
682
- },
683
- "data/one_stop_english/train.csv": {
684
- "num_bytes": 201489,
685
- "checksum": "8c0102ea703677c23c3525e3bc7504c4b734d9298c5d3a25403d274034cb9d89"
686
- },
687
- "data/one_stop_english/test_unlabeled.csv": {
688
- "num_bytes": 2085747,
689
- "checksum": "31e299f91925647744e998f221c0f66c2719df297a20d36d993c8892616a4a53"
690
- },
691
- "data/tweet_eval_hate/train.csv": {
692
- "num_bytes": 7642,
693
- "checksum": "ab091c90e8afbb0dabe17cc6be93b1b80fd914e00a12d66b2dd7b194f355ba65"
694
- },
695
- "data/tweet_eval_hate/test_unlabeled.csv": {
696
- "num_bytes": 412052,
697
- "checksum": "707e720c60f8beb359301994c691a609367cf3bf27d0c573d22f9e47ecc63204"
698
- },
699
- "data/twitter_complaints/train.csv": {
700
- "num_bytes": 5376,
701
- "checksum": "365b067c2d2a7f30128d766baf4901936e047295bb2a693878164dbb84d828fa"
702
- },
703
- "data/twitter_complaints/test_unlabeled.csv": {
704
- "num_bytes": 336272,
705
- "checksum": "7f6f975ec98a5b467b39c487bbc711b29e177119d12c49c79b31faba83609082"
706
- },
707
- "data/semiconductor_org_types/train.csv": {
708
- "num_bytes": 8120,
709
- "checksum": "b7e238cbfd0ed518c222b64e8656599ed13872de135c6e38d6f6123c355d2f64"
710
- },
711
- "data/semiconductor_org_types/test_unlabeled.csv": {
712
- "num_bytes": 68529,
713
- "checksum": "141d8b36685475310c98cdb16099acbf04498d80349f4434c2201deffd271f24"
714
  }
715
  },
716
- "download_size": 9752165,
717
- "post_processing_size": null,
718
- "dataset_size": 374920,
719
- "size_in_bytes": 10127085
720
  },
721
  "semiconductor_org_types": {
722
  "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
 
577
  "features": {
578
  "Tweet text": {
579
  "dtype": "string",
 
580
  "_type": "Value"
581
  },
582
  "ID": {
583
  "dtype": "int32",
 
584
  "_type": "Value"
585
  },
586
  "Label": {
 
587
  "names": [
588
  "Unlabeled",
589
  "complaint",
590
  "no complaint"
591
  ],
 
 
592
  "_type": "ClassLabel"
593
  }
594
  },
595
+ "builder_name": "parquet",
596
+ "dataset_name": "raft",
 
 
597
  "config_name": "twitter_complaints",
598
  "version": {
599
  "version_str": "1.1.0",
 
600
  "major": 1,
601
  "minor": 1,
602
  "patch": 0
 
604
  "splits": {
605
  "train": {
606
  "name": "train",
607
+ "num_bytes": 5348,
608
  "num_examples": 50,
609
+ "dataset_name": null
610
  },
611
  "test": {
612
  "name": "test",
613
+ "num_bytes": 369564,
614
  "num_examples": 3399,
615
+ "dataset_name": null
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616
  }
617
  },
618
+ "download_size": 270136,
619
+ "dataset_size": 374912,
620
+ "size_in_bytes": 645048
 
621
  },
622
  "semiconductor_org_types": {
623
  "description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
twitter_complaints/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6cc4232c541d850fcf7a2e71ca923f456508da49ee0db6a3733d21cd667cfab
3
+ size 263862
twitter_complaints/train-00000-of-00001.parquet ADDED
Binary file (6.27 kB). View file