Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Add 'twitter_complaints' config data files
Browse files- .gitattributes +1 -0
- README.md +28 -0
- dataset_infos.json +9 -108
- twitter_complaints/test-00000-of-00001.parquet +3 -0
- twitter_complaints/train-00000-of-00001.parquet +0 -0
.gitattributes
CHANGED
|
@@ -25,3 +25,4 @@ systematic_review_inclusion/test-00000-of-00001.parquet filter=lfs diff=lfs merg
|
|
| 25 |
one_stop_english/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 26 |
one_stop_english/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 27 |
tweet_eval_hate/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 25 |
one_stop_english/train-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 26 |
one_stop_english/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 27 |
tweet_eval_hate/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
twitter_complaints/test-00000-of-00001.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -320,6 +320,28 @@ dataset_info:
|
|
| 320 |
num_examples: 2966
|
| 321 |
download_size: 300542
|
| 322 |
dataset_size: 447536
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
configs:
|
| 324 |
- config_name: ade_corpus_v2
|
| 325 |
data_files:
|
|
@@ -376,6 +398,12 @@ configs:
|
|
| 376 |
path: tweet_eval_hate/train-*
|
| 377 |
- split: test
|
| 378 |
path: tweet_eval_hate/test-*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
---
|
| 380 |
|
| 381 |
# Dataset Card for RAFT
|
|
|
|
| 320 |
num_examples: 2966
|
| 321 |
download_size: 300542
|
| 322 |
dataset_size: 447536
|
| 323 |
+
- config_name: twitter_complaints
|
| 324 |
+
features:
|
| 325 |
+
- name: Tweet text
|
| 326 |
+
dtype: string
|
| 327 |
+
- name: ID
|
| 328 |
+
dtype: int32
|
| 329 |
+
- name: Label
|
| 330 |
+
dtype:
|
| 331 |
+
class_label:
|
| 332 |
+
names:
|
| 333 |
+
'0': Unlabeled
|
| 334 |
+
'1': complaint
|
| 335 |
+
'2': no complaint
|
| 336 |
+
splits:
|
| 337 |
+
- name: train
|
| 338 |
+
num_bytes: 5348
|
| 339 |
+
num_examples: 50
|
| 340 |
+
- name: test
|
| 341 |
+
num_bytes: 369564
|
| 342 |
+
num_examples: 3399
|
| 343 |
+
download_size: 270136
|
| 344 |
+
dataset_size: 374912
|
| 345 |
configs:
|
| 346 |
- config_name: ade_corpus_v2
|
| 347 |
data_files:
|
|
|
|
| 398 |
path: tweet_eval_hate/train-*
|
| 399 |
- split: test
|
| 400 |
path: tweet_eval_hate/test-*
|
| 401 |
+
- config_name: twitter_complaints
|
| 402 |
+
data_files:
|
| 403 |
+
- split: train
|
| 404 |
+
path: twitter_complaints/train-*
|
| 405 |
+
- split: test
|
| 406 |
+
path: twitter_complaints/test-*
|
| 407 |
---
|
| 408 |
|
| 409 |
# Dataset Card for RAFT
|
dataset_infos.json
CHANGED
|
@@ -577,34 +577,26 @@
|
|
| 577 |
"features": {
|
| 578 |
"Tweet text": {
|
| 579 |
"dtype": "string",
|
| 580 |
-
"id": null,
|
| 581 |
"_type": "Value"
|
| 582 |
},
|
| 583 |
"ID": {
|
| 584 |
"dtype": "int32",
|
| 585 |
-
"id": null,
|
| 586 |
"_type": "Value"
|
| 587 |
},
|
| 588 |
"Label": {
|
| 589 |
-
"num_classes": 3,
|
| 590 |
"names": [
|
| 591 |
"Unlabeled",
|
| 592 |
"complaint",
|
| 593 |
"no complaint"
|
| 594 |
],
|
| 595 |
-
"names_file": null,
|
| 596 |
-
"id": null,
|
| 597 |
"_type": "ClassLabel"
|
| 598 |
}
|
| 599 |
},
|
| 600 |
-
"
|
| 601 |
-
"
|
| 602 |
-
"task_templates": null,
|
| 603 |
-
"builder_name": "raft",
|
| 604 |
"config_name": "twitter_complaints",
|
| 605 |
"version": {
|
| 606 |
"version_str": "1.1.0",
|
| 607 |
-
"description": null,
|
| 608 |
"major": 1,
|
| 609 |
"minor": 1,
|
| 610 |
"patch": 0
|
|
@@ -612,111 +604,20 @@
|
|
| 612 |
"splits": {
|
| 613 |
"train": {
|
| 614 |
"name": "train",
|
| 615 |
-
"num_bytes":
|
| 616 |
"num_examples": 50,
|
| 617 |
-
"dataset_name":
|
| 618 |
},
|
| 619 |
"test": {
|
| 620 |
"name": "test",
|
| 621 |
-
"num_bytes":
|
| 622 |
"num_examples": 3399,
|
| 623 |
-
"dataset_name":
|
| 624 |
-
}
|
| 625 |
-
},
|
| 626 |
-
"download_checksums": {
|
| 627 |
-
"data/ade_corpus_v2/train.csv": {
|
| 628 |
-
"num_bytes": 7788,
|
| 629 |
-
"checksum": "b6c1268b8ce0fbf4fcaa0ee88562354b65d7ebd2527c3c3cc875e3a47757ae36"
|
| 630 |
-
},
|
| 631 |
-
"data/ade_corpus_v2/test_unlabeled.csv": {
|
| 632 |
-
"num_bytes": 661890,
|
| 633 |
-
"checksum": "28981e898281755e1c2d460ab75cceb8f9d8ce0a88ff4636153cf8c393c6f99e"
|
| 634 |
-
},
|
| 635 |
-
"data/banking_77/train.csv": {
|
| 636 |
-
"num_bytes": 3914,
|
| 637 |
-
"checksum": "8c417cea66d12569cb3057b125a98358aea0642dda67cf6deea52d4ec1c28ae1"
|
| 638 |
-
},
|
| 639 |
-
"data/banking_77/test_unlabeled.csv": {
|
| 640 |
-
"num_bytes": 327152,
|
| 641 |
-
"checksum": "aebd62e56a3b8ebf618afa519cc261fedc7700d96053357ebff83fab44bbaeac"
|
| 642 |
-
},
|
| 643 |
-
"data/terms_of_service/train.csv": {
|
| 644 |
-
"num_bytes": 11528,
|
| 645 |
-
"checksum": "8b46784b1e601d753ad44ce33fced828ec3bea95b6b575a2195322ead807f6c7"
|
| 646 |
-
},
|
| 647 |
-
"data/terms_of_service/test_unlabeled.csv": {
|
| 648 |
-
"num_bytes": 917272,
|
| 649 |
-
"checksum": "491679e8c9303f825d341dcdfb0a5779a9d2f925744cc44c0039b219abf7d83f"
|
| 650 |
-
},
|
| 651 |
-
"data/tai_safety_research/train.csv": {
|
| 652 |
-
"num_bytes": 54758,
|
| 653 |
-
"checksum": "fac15dde8a9f5536424289aa707dcfe1fa3128a7ee2d813cf3251c53092f7dbc"
|
| 654 |
-
},
|
| 655 |
-
"data/tai_safety_research/test_unlabeled.csv": {
|
| 656 |
-
"num_bytes": 1594375,
|
| 657 |
-
"checksum": "e606d7858813490507d90d3d17830c6f1ebd8c777fc4a9f865699e375be355d0"
|
| 658 |
-
},
|
| 659 |
-
"data/neurips_impact_statement_risks/train.csv": {
|
| 660 |
-
"num_bytes": 70008,
|
| 661 |
-
"checksum": "76cd6aa2707cd99445ba69f8c392a89faa4bf718e967b07dc457f88529b3ff2e"
|
| 662 |
-
},
|
| 663 |
-
"data/neurips_impact_statement_risks/test_unlabeled.csv": {
|
| 664 |
-
"num_bytes": 196429,
|
| 665 |
-
"checksum": "5e4d1f313f92dad3e06e035eaff044f818b20ce1ed4d22fcd17e7756e54089a7"
|
| 666 |
-
},
|
| 667 |
-
"data/overruling/train.csv": {
|
| 668 |
-
"num_bytes": 7585,
|
| 669 |
-
"checksum": "617061ba0dbd501d74896ccf2f9ebed00c35c4c4057f74afdd94c96cb514130e"
|
| 670 |
-
},
|
| 671 |
-
"data/overruling/test_unlabeled.csv": {
|
| 672 |
-
"num_bytes": 412483,
|
| 673 |
-
"checksum": "c0a61fc8980b544611f8d662c752d88e2ed635146f2f3c72f16eec60e3ddb7fe"
|
| 674 |
-
},
|
| 675 |
-
"data/systematic_review_inclusion/train.csv": {
|
| 676 |
-
"num_bytes": 52491,
|
| 677 |
-
"checksum": "2d2acd76f6acf1fd1359cf07323586fa134bbe76689e112f5c213b63271e2318"
|
| 678 |
-
},
|
| 679 |
-
"data/systematic_review_inclusion/test_unlabeled.csv": {
|
| 680 |
-
"num_bytes": 2309265,
|
| 681 |
-
"checksum": "20710c15f7fda010a3a86a0eda52c5ceb6a709b626610d19e1fc353c42c2d955"
|
| 682 |
-
},
|
| 683 |
-
"data/one_stop_english/train.csv": {
|
| 684 |
-
"num_bytes": 201489,
|
| 685 |
-
"checksum": "8c0102ea703677c23c3525e3bc7504c4b734d9298c5d3a25403d274034cb9d89"
|
| 686 |
-
},
|
| 687 |
-
"data/one_stop_english/test_unlabeled.csv": {
|
| 688 |
-
"num_bytes": 2085747,
|
| 689 |
-
"checksum": "31e299f91925647744e998f221c0f66c2719df297a20d36d993c8892616a4a53"
|
| 690 |
-
},
|
| 691 |
-
"data/tweet_eval_hate/train.csv": {
|
| 692 |
-
"num_bytes": 7642,
|
| 693 |
-
"checksum": "ab091c90e8afbb0dabe17cc6be93b1b80fd914e00a12d66b2dd7b194f355ba65"
|
| 694 |
-
},
|
| 695 |
-
"data/tweet_eval_hate/test_unlabeled.csv": {
|
| 696 |
-
"num_bytes": 412052,
|
| 697 |
-
"checksum": "707e720c60f8beb359301994c691a609367cf3bf27d0c573d22f9e47ecc63204"
|
| 698 |
-
},
|
| 699 |
-
"data/twitter_complaints/train.csv": {
|
| 700 |
-
"num_bytes": 5376,
|
| 701 |
-
"checksum": "365b067c2d2a7f30128d766baf4901936e047295bb2a693878164dbb84d828fa"
|
| 702 |
-
},
|
| 703 |
-
"data/twitter_complaints/test_unlabeled.csv": {
|
| 704 |
-
"num_bytes": 336272,
|
| 705 |
-
"checksum": "7f6f975ec98a5b467b39c487bbc711b29e177119d12c49c79b31faba83609082"
|
| 706 |
-
},
|
| 707 |
-
"data/semiconductor_org_types/train.csv": {
|
| 708 |
-
"num_bytes": 8120,
|
| 709 |
-
"checksum": "b7e238cbfd0ed518c222b64e8656599ed13872de135c6e38d6f6123c355d2f64"
|
| 710 |
-
},
|
| 711 |
-
"data/semiconductor_org_types/test_unlabeled.csv": {
|
| 712 |
-
"num_bytes": 68529,
|
| 713 |
-
"checksum": "141d8b36685475310c98cdb16099acbf04498d80349f4434c2201deffd271f24"
|
| 714 |
}
|
| 715 |
},
|
| 716 |
-
"download_size":
|
| 717 |
-
"
|
| 718 |
-
"
|
| 719 |
-
"size_in_bytes": 10127085
|
| 720 |
},
|
| 721 |
"semiconductor_org_types": {
|
| 722 |
"description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
|
|
|
|
| 577 |
"features": {
|
| 578 |
"Tweet text": {
|
| 579 |
"dtype": "string",
|
|
|
|
| 580 |
"_type": "Value"
|
| 581 |
},
|
| 582 |
"ID": {
|
| 583 |
"dtype": "int32",
|
|
|
|
| 584 |
"_type": "Value"
|
| 585 |
},
|
| 586 |
"Label": {
|
|
|
|
| 587 |
"names": [
|
| 588 |
"Unlabeled",
|
| 589 |
"complaint",
|
| 590 |
"no complaint"
|
| 591 |
],
|
|
|
|
|
|
|
| 592 |
"_type": "ClassLabel"
|
| 593 |
}
|
| 594 |
},
|
| 595 |
+
"builder_name": "parquet",
|
| 596 |
+
"dataset_name": "raft",
|
|
|
|
|
|
|
| 597 |
"config_name": "twitter_complaints",
|
| 598 |
"version": {
|
| 599 |
"version_str": "1.1.0",
|
|
|
|
| 600 |
"major": 1,
|
| 601 |
"minor": 1,
|
| 602 |
"patch": 0
|
|
|
|
| 604 |
"splits": {
|
| 605 |
"train": {
|
| 606 |
"name": "train",
|
| 607 |
+
"num_bytes": 5348,
|
| 608 |
"num_examples": 50,
|
| 609 |
+
"dataset_name": null
|
| 610 |
},
|
| 611 |
"test": {
|
| 612 |
"name": "test",
|
| 613 |
+
"num_bytes": 369564,
|
| 614 |
"num_examples": 3399,
|
| 615 |
+
"dataset_name": null
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 616 |
}
|
| 617 |
},
|
| 618 |
+
"download_size": 270136,
|
| 619 |
+
"dataset_size": 374912,
|
| 620 |
+
"size_in_bytes": 645048
|
|
|
|
| 621 |
},
|
| 622 |
"semiconductor_org_types": {
|
| 623 |
"description": "Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? \n\n[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:\n\n- across multiple domains (lit review, tweets, customer interaction, etc.)\n- on economically valuable classification tasks (someone inherently cares about the task)\n- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)\n",
|
twitter_complaints/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6cc4232c541d850fcf7a2e71ca923f456508da49ee0db6a3733d21cd667cfab
|
| 3 |
+
size 263862
|
twitter_complaints/train-00000-of-00001.parquet
ADDED
|
Binary file (6.27 kB). View file
|
|
|