Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
multi-class-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import csv | |
import json | |
import os | |
from pathlib import Path | |
import datasets | |
# TODO: Add BibTeX citation | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
_DESCRIPTION = """Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants? | |
[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models: | |
- across multiple domains (lit review, tweets, customer interaction, etc.) | |
- on economically valuable classification tasks (someone inherently cares about the task) | |
- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set) | |
""" | |
_HOMEPAGE = "https://raft.elicit.org" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
DATA_DIR = "data/" | |
TASKS = { | |
"ade_corpus_v2": { | |
"name": "ade_corpus_v2", | |
"description": "", | |
"data_columns": ["Sentence", "ID"], | |
"label_columns": {"Label": ["ADE-related", "not ADE-related"]}, | |
}, | |
"banking_77": { | |
"name": "banking_77", | |
"description": "", | |
"data_columns": ["Query", "ID"], | |
"label_columns": { | |
"Label": [ | |
"Refund_not_showing_up", | |
"activate_my_card", | |
"age_limit", | |
"apple_pay_or_google_pay", | |
"atm_support", | |
"automatic_top_up", | |
"balance_not_updated_after_bank_transfer", | |
"balance_not_updated_after_cheque_or_cash_deposit", | |
"beneficiary_not_allowed", | |
"cancel_transfer", | |
"card_about_to_expire", | |
"card_acceptance", | |
"card_arrival", | |
"card_delivery_estimate", | |
"card_linking", | |
"card_not_working", | |
"card_payment_fee_charged", | |
"card_payment_not_recognised", | |
"card_payment_wrong_exchange_rate", | |
"card_swallowed", | |
"cash_withdrawal_charge", | |
"cash_withdrawal_not_recognised", | |
"change_pin", | |
"compromised_card", | |
"contactless_not_working", | |
"country_support", | |
"declined_card_payment", | |
"declined_cash_withdrawal", | |
"declined_transfer", | |
"direct_debit_payment_not_recognised", | |
"disposable_card_limits", | |
"edit_personal_details", | |
"exchange_charge", | |
"exchange_rate", | |
"exchange_via_app", | |
"extra_charge_on_statement", | |
"failed_transfer", | |
"fiat_currency_support", | |
"get_disposable_virtual_card", | |
"get_physical_card", | |
"getting_spare_card", | |
"getting_virtual_card", | |
"lost_or_stolen_card", | |
"lost_or_stolen_phone", | |
"order_physical_card", | |
"passcode_forgotten", | |
"pending_card_payment", | |
"pending_cash_withdrawal", | |
"pending_top_up", | |
"pending_transfer", | |
"pin_blocked", | |
"receiving_money", | |
"request_refund", | |
"reverted_card_payment?", | |
"supported_cards_and_currencies", | |
"terminate_account", | |
"top_up_by_bank_transfer_charge", | |
"top_up_by_card_charge", | |
"top_up_by_cash_or_cheque", | |
"top_up_failed", | |
"top_up_limits", | |
"top_up_reverted", | |
"topping_up_by_card", | |
"transaction_charged_twice", | |
"transfer_fee_charged", | |
"transfer_into_account", | |
"transfer_not_received_by_recipient", | |
"transfer_timing", | |
"unable_to_verify_identity", | |
"verify_my_identity", | |
"verify_source_of_funds", | |
"verify_top_up", | |
"virtual_card_not_working", | |
"visa_or_mastercard", | |
"why_verify_identity", | |
"wrong_amount_of_cash_received", | |
"wrong_exchange_rate_for_cash_withdrawal", | |
] | |
}, | |
}, | |
"terms_of_service": { | |
"name": "terms_of_service", | |
"description": "", | |
"data_columns": ["Sentence", "ID"], | |
"label_columns": {"Label": ["not potentially unfair", "potentially unfair"]}, | |
}, | |
"tai_safety_research": { | |
"name": "tai_safety_research", | |
"description": "", | |
"data_columns": [ | |
"Title", | |
"Abstract Note", | |
"Url", | |
"Publication Year", | |
"Item Type", | |
"Author", | |
"Publication Title", | |
"ID", | |
], | |
"label_columns": {"Label": ["TAI safety research", "not TAI safety research"]}, | |
}, | |
"neurips_impact_statement_risks": { | |
"name": "neurips_impact_statement_risks", | |
"description": "", | |
"data_columns": ["Paper title", "Paper link", "Impact statement", "ID"], | |
"label_columns": {"Label": ["doesn't mention a harmful application", "mentions a harmful application"]}, | |
}, | |
"overruling": { | |
"name": "overruling", | |
"description": "", | |
"data_columns": ["Sentence", "ID"], | |
"label_columns": {"Label": ["not overruling", "overruling"]}, | |
}, | |
"systematic_review_inclusion": { | |
"name": "systematic_review_inclusion", | |
"description": "", | |
"data_columns": ["Title", "Abstract", "Authors", "Journal", "ID"], | |
"label_columns": {"Label": ["included", "not included"]}, | |
}, | |
"one_stop_english": { | |
"name": "one_stop_english", | |
"description": "", | |
"data_columns": ["Article", "ID"], | |
"label_columns": {"Label": ["advanced", "elementary", "intermediate"]}, | |
}, | |
"tweet_eval_hate": { | |
"name": "tweet_eval_hate", | |
"description": "", | |
"data_columns": ["Tweet", "ID"], | |
"label_columns": {"Label": ["hate speech", "not hate speech"]}, | |
}, | |
"twitter_complaints": { | |
"name": "twitter_complaints", | |
"description": "", | |
"data_columns": ["Tweet text", "ID"], | |
"label_columns": {"Label": ["complaint", "no complaint"]}, | |
}, | |
"semiconductor_org_types": { | |
"name": "semiconductor_org_types", | |
"description": "", | |
"data_columns": ["Paper title", "Organization name", "ID"], | |
"label_columns": {"Label": ["company", "research institute", "university"]}, | |
}, | |
} | |
_URLs = {s: {"train": f"{DATA_DIR}{s}/train.csv", "test": f"{DATA_DIR}{s}/test_unlabeled.csv"} for s in TASKS} | |
class Raft(datasets.GeneratorBasedBuilder): | |
"""RAFT Dataset""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [] | |
for key in TASKS: | |
td = TASKS[key] | |
name = td["name"] | |
description = td["description"] | |
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description)) | |
DEFAULT_CONFIG_NAME = ( | |
"tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
) | |
def _info(self): | |
DEFAULT_LABEL_NAME = "Unlabeled" | |
task = TASKS[self.config.name] | |
data_columns = {col_name: (datasets.Value("string") if col_name != "ID" else datasets.Value("int32")) for col_name in task["data_columns"]} | |
label_columns = {} | |
for label_name in task["label_columns"]: | |
labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name] | |
label_columns[label_name] = datasets.ClassLabel(len(labels), labels) | |
# Merge dicts | |
features = datasets.Features(**data_columns, **label_columns) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
data_dir = dl_manager.download_and_extract(_URLs) | |
dataset = self.config.name | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"} | |
), | |
] | |
def _generate_examples( | |
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
"""Yields examples as (key, example) tuples.""" | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
task = TASKS[self.config.name] | |
labels = list(task["label_columns"]) | |
with open(filepath, encoding="utf-8") as f: | |
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True) | |
column_names = next(csv_reader) | |
# Test csvs don't have any label columns. | |
if split == "test": | |
column_names += labels | |
for id_, row in enumerate(csv_reader): | |
if split == "test": | |
row += ["Unlabeled"] * len(labels) | |
# dicts don't have inherent ordering in python, right?? | |
yield id_, {name: value for name, value in zip(column_names, row)} | |