Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
raft / raft.py
lewtun's picture
lewtun HF staff
Convert ID type to int
3fe19b3
raw
history blame
11.9 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
from pathlib import Path
import datasets
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
_DESCRIPTION = """Large pre-trained language models have shown promise for few-shot learning, completing text-based tasks given only a few task-specific examples. Will models soon solve classification tasks that have so far been reserved for human research assistants?
[RAFT](https://raft.elicit.org) is a few-shot classification benchmark that tests language models:
- across multiple domains (lit review, tweets, customer interaction, etc.)
- on economically valuable classification tasks (someone inherently cares about the task)
- in a setting that mirrors deployment (50 examples per task, info retrieval allowed, hidden test set)
"""
_HOMEPAGE = "https://raft.elicit.org"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
DATA_DIR = "data/"
TASKS = {
"ade_corpus_v2": {
"name": "ade_corpus_v2",
"description": "",
"data_columns": ["Sentence", "ID"],
"label_columns": {"Label": ["ADE-related", "not ADE-related"]},
},
"banking_77": {
"name": "banking_77",
"description": "",
"data_columns": ["Query", "ID"],
"label_columns": {
"Label": [
"Refund_not_showing_up",
"activate_my_card",
"age_limit",
"apple_pay_or_google_pay",
"atm_support",
"automatic_top_up",
"balance_not_updated_after_bank_transfer",
"balance_not_updated_after_cheque_or_cash_deposit",
"beneficiary_not_allowed",
"cancel_transfer",
"card_about_to_expire",
"card_acceptance",
"card_arrival",
"card_delivery_estimate",
"card_linking",
"card_not_working",
"card_payment_fee_charged",
"card_payment_not_recognised",
"card_payment_wrong_exchange_rate",
"card_swallowed",
"cash_withdrawal_charge",
"cash_withdrawal_not_recognised",
"change_pin",
"compromised_card",
"contactless_not_working",
"country_support",
"declined_card_payment",
"declined_cash_withdrawal",
"declined_transfer",
"direct_debit_payment_not_recognised",
"disposable_card_limits",
"edit_personal_details",
"exchange_charge",
"exchange_rate",
"exchange_via_app",
"extra_charge_on_statement",
"failed_transfer",
"fiat_currency_support",
"get_disposable_virtual_card",
"get_physical_card",
"getting_spare_card",
"getting_virtual_card",
"lost_or_stolen_card",
"lost_or_stolen_phone",
"order_physical_card",
"passcode_forgotten",
"pending_card_payment",
"pending_cash_withdrawal",
"pending_top_up",
"pending_transfer",
"pin_blocked",
"receiving_money",
"request_refund",
"reverted_card_payment?",
"supported_cards_and_currencies",
"terminate_account",
"top_up_by_bank_transfer_charge",
"top_up_by_card_charge",
"top_up_by_cash_or_cheque",
"top_up_failed",
"top_up_limits",
"top_up_reverted",
"topping_up_by_card",
"transaction_charged_twice",
"transfer_fee_charged",
"transfer_into_account",
"transfer_not_received_by_recipient",
"transfer_timing",
"unable_to_verify_identity",
"verify_my_identity",
"verify_source_of_funds",
"verify_top_up",
"virtual_card_not_working",
"visa_or_mastercard",
"why_verify_identity",
"wrong_amount_of_cash_received",
"wrong_exchange_rate_for_cash_withdrawal",
]
},
},
"terms_of_service": {
"name": "terms_of_service",
"description": "",
"data_columns": ["Sentence", "ID"],
"label_columns": {"Label": ["not potentially unfair", "potentially unfair"]},
},
"tai_safety_research": {
"name": "tai_safety_research",
"description": "",
"data_columns": [
"Title",
"Abstract Note",
"Url",
"Publication Year",
"Item Type",
"Author",
"Publication Title",
"ID",
],
"label_columns": {"Label": ["TAI safety research", "not TAI safety research"]},
},
"neurips_impact_statement_risks": {
"name": "neurips_impact_statement_risks",
"description": "",
"data_columns": ["Paper title", "Paper link", "Impact statement", "ID"],
"label_columns": {"Label": ["doesn't mention a harmful application", "mentions a harmful application"]},
},
"overruling": {
"name": "overruling",
"description": "",
"data_columns": ["Sentence", "ID"],
"label_columns": {"Label": ["not overruling", "overruling"]},
},
"systematic_review_inclusion": {
"name": "systematic_review_inclusion",
"description": "",
"data_columns": ["Title", "Abstract", "Authors", "Journal", "ID"],
"label_columns": {"Label": ["included", "not included"]},
},
"one_stop_english": {
"name": "one_stop_english",
"description": "",
"data_columns": ["Article", "ID"],
"label_columns": {"Label": ["advanced", "elementary", "intermediate"]},
},
"tweet_eval_hate": {
"name": "tweet_eval_hate",
"description": "",
"data_columns": ["Tweet", "ID"],
"label_columns": {"Label": ["hate speech", "not hate speech"]},
},
"twitter_complaints": {
"name": "twitter_complaints",
"description": "",
"data_columns": ["Tweet text", "ID"],
"label_columns": {"Label": ["complaint", "no complaint"]},
},
"semiconductor_org_types": {
"name": "semiconductor_org_types",
"description": "",
"data_columns": ["Paper title", "Organization name", "ID"],
"label_columns": {"Label": ["company", "research institute", "university"]},
},
}
_URLs = {s: {"train": f"{DATA_DIR}{s}/train.csv", "test": f"{DATA_DIR}{s}/test_unlabeled.csv"} for s in TASKS}
class Raft(datasets.GeneratorBasedBuilder):
"""RAFT Dataset"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = []
for key in TASKS:
td = TASKS[key]
name = td["name"]
description = td["description"]
BUILDER_CONFIGS.append(datasets.BuilderConfig(name=name, version=VERSION, description=description))
DEFAULT_CONFIG_NAME = (
"tai_safety_research" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
DEFAULT_LABEL_NAME = "Unlabeled"
task = TASKS[self.config.name]
data_columns = {col_name: (datasets.Value("string") if col_name != "ID" else datasets.Value("int32")) for col_name in task["data_columns"]}
label_columns = {}
for label_name in task["label_columns"]:
labels = [DEFAULT_LABEL_NAME] + task["label_columns"][label_name]
label_columns[label_name] = datasets.ClassLabel(len(labels), labels)
# Merge dicts
features = datasets.Features(**data_columns, **label_columns)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
data_dir = dl_manager.download_and_extract(_URLs)
dataset = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir[dataset]["train"], "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir[dataset]["test"], "split": "test"}
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
task = TASKS[self.config.name]
labels = list(task["label_columns"])
with open(filepath, encoding="utf-8") as f:
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True)
column_names = next(csv_reader)
# Test csvs don't have any label columns.
if split == "test":
column_names += labels
for id_, row in enumerate(csv_reader):
if split == "test":
row += ["Unlabeled"] * len(labels)
# dicts don't have inherent ordering in python, right??
yield id_, {name: value for name, value in zip(column_names, row)}