Upload folder using huggingface_hub
Browse files- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json +18 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json +1426 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/.ipynb_checkpoints/progress-checkpoint.png +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_latest.pth +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_7_24_00_01_52.txt +1194 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/progress-checkpoint.png +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/Untitled.ipynb +101 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_best.pth +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json +52 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png +3 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_7_24_09_31_46.txt +342 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/debug.json +52 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_7_24_11_56_27.txt +26 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2023_7_24_11_56_49.txt +21 -0
- nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json +342 -0
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Prostate158",
|
3 |
+
"description": "Prostate cancer segmentation dataset",
|
4 |
+
"channel_names": {
|
5 |
+
"0": "T2",
|
6 |
+
"1": "ADC",
|
7 |
+
"2": "DFI"
|
8 |
+
},
|
9 |
+
"labels": {
|
10 |
+
"background": 0,
|
11 |
+
"prostate_inner": 1,
|
12 |
+
"prostate_outer": 2,
|
13 |
+
"tumor": 3
|
14 |
+
},
|
15 |
+
"numTraining": 139,
|
16 |
+
"numTest": 19,
|
17 |
+
"file_ending": ".nii.gz"
|
18 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json
ADDED
@@ -0,0 +1,1426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"foreground_intensity_properties_per_channel": {
|
3 |
+
"0": {
|
4 |
+
"max": 1694.0,
|
5 |
+
"mean": 267.35308837890625,
|
6 |
+
"median": 242.0,
|
7 |
+
"min": 0.0,
|
8 |
+
"percentile_00_5": 36.0,
|
9 |
+
"percentile_99_5": 768.0,
|
10 |
+
"std": 136.11251831054688
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"max": 3557.286865234375,
|
14 |
+
"mean": 1215.81591796875,
|
15 |
+
"median": 1203.8331298828125,
|
16 |
+
"min": 0.0,
|
17 |
+
"percentile_00_5": 0.0,
|
18 |
+
"percentile_99_5": 2259.82861328125,
|
19 |
+
"std": 338.6748352050781
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"max": 198.95455932617188,
|
23 |
+
"mean": 72.26309204101562,
|
24 |
+
"median": 70.3214340209961,
|
25 |
+
"min": 0.0,
|
26 |
+
"percentile_00_5": 34.534385681152344,
|
27 |
+
"percentile_99_5": 132.71939086914062,
|
28 |
+
"std": 18.909290313720703
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"median_relative_size_after_cropping": 1.0,
|
32 |
+
"shapes_after_crop": [
|
33 |
+
[
|
34 |
+
26,
|
35 |
+
270,
|
36 |
+
270
|
37 |
+
],
|
38 |
+
[
|
39 |
+
26,
|
40 |
+
270,
|
41 |
+
270
|
42 |
+
],
|
43 |
+
[
|
44 |
+
24,
|
45 |
+
270,
|
46 |
+
270
|
47 |
+
],
|
48 |
+
[
|
49 |
+
25,
|
50 |
+
442,
|
51 |
+
442
|
52 |
+
],
|
53 |
+
[
|
54 |
+
24,
|
55 |
+
270,
|
56 |
+
270
|
57 |
+
],
|
58 |
+
[
|
59 |
+
24,
|
60 |
+
270,
|
61 |
+
270
|
62 |
+
],
|
63 |
+
[
|
64 |
+
24,
|
65 |
+
270,
|
66 |
+
270
|
67 |
+
],
|
68 |
+
[
|
69 |
+
24,
|
70 |
+
270,
|
71 |
+
270
|
72 |
+
],
|
73 |
+
[
|
74 |
+
25,
|
75 |
+
442,
|
76 |
+
442
|
77 |
+
],
|
78 |
+
[
|
79 |
+
24,
|
80 |
+
270,
|
81 |
+
270
|
82 |
+
],
|
83 |
+
[
|
84 |
+
24,
|
85 |
+
270,
|
86 |
+
270
|
87 |
+
],
|
88 |
+
[
|
89 |
+
26,
|
90 |
+
270,
|
91 |
+
270
|
92 |
+
],
|
93 |
+
[
|
94 |
+
26,
|
95 |
+
270,
|
96 |
+
270
|
97 |
+
],
|
98 |
+
[
|
99 |
+
24,
|
100 |
+
270,
|
101 |
+
270
|
102 |
+
],
|
103 |
+
[
|
104 |
+
24,
|
105 |
+
270,
|
106 |
+
270
|
107 |
+
],
|
108 |
+
[
|
109 |
+
24,
|
110 |
+
270,
|
111 |
+
270
|
112 |
+
],
|
113 |
+
[
|
114 |
+
26,
|
115 |
+
270,
|
116 |
+
270
|
117 |
+
],
|
118 |
+
[
|
119 |
+
24,
|
120 |
+
270,
|
121 |
+
270
|
122 |
+
],
|
123 |
+
[
|
124 |
+
24,
|
125 |
+
270,
|
126 |
+
270
|
127 |
+
],
|
128 |
+
[
|
129 |
+
28,
|
130 |
+
270,
|
131 |
+
270
|
132 |
+
],
|
133 |
+
[
|
134 |
+
24,
|
135 |
+
270,
|
136 |
+
270
|
137 |
+
],
|
138 |
+
[
|
139 |
+
26,
|
140 |
+
270,
|
141 |
+
270
|
142 |
+
],
|
143 |
+
[
|
144 |
+
25,
|
145 |
+
442,
|
146 |
+
442
|
147 |
+
],
|
148 |
+
[
|
149 |
+
25,
|
150 |
+
442,
|
151 |
+
442
|
152 |
+
],
|
153 |
+
[
|
154 |
+
25,
|
155 |
+
442,
|
156 |
+
442
|
157 |
+
],
|
158 |
+
[
|
159 |
+
24,
|
160 |
+
270,
|
161 |
+
270
|
162 |
+
],
|
163 |
+
[
|
164 |
+
24,
|
165 |
+
270,
|
166 |
+
270
|
167 |
+
],
|
168 |
+
[
|
169 |
+
27,
|
170 |
+
232,
|
171 |
+
232
|
172 |
+
],
|
173 |
+
[
|
174 |
+
24,
|
175 |
+
270,
|
176 |
+
270
|
177 |
+
],
|
178 |
+
[
|
179 |
+
30,
|
180 |
+
232,
|
181 |
+
232
|
182 |
+
],
|
183 |
+
[
|
184 |
+
27,
|
185 |
+
232,
|
186 |
+
232
|
187 |
+
],
|
188 |
+
[
|
189 |
+
24,
|
190 |
+
270,
|
191 |
+
270
|
192 |
+
],
|
193 |
+
[
|
194 |
+
25,
|
195 |
+
442,
|
196 |
+
442
|
197 |
+
],
|
198 |
+
[
|
199 |
+
24,
|
200 |
+
270,
|
201 |
+
270
|
202 |
+
],
|
203 |
+
[
|
204 |
+
24,
|
205 |
+
270,
|
206 |
+
270
|
207 |
+
],
|
208 |
+
[
|
209 |
+
26,
|
210 |
+
270,
|
211 |
+
270
|
212 |
+
],
|
213 |
+
[
|
214 |
+
24,
|
215 |
+
270,
|
216 |
+
270
|
217 |
+
],
|
218 |
+
[
|
219 |
+
24,
|
220 |
+
270,
|
221 |
+
270
|
222 |
+
],
|
223 |
+
[
|
224 |
+
27,
|
225 |
+
442,
|
226 |
+
442
|
227 |
+
],
|
228 |
+
[
|
229 |
+
25,
|
230 |
+
442,
|
231 |
+
442
|
232 |
+
],
|
233 |
+
[
|
234 |
+
25,
|
235 |
+
442,
|
236 |
+
442
|
237 |
+
],
|
238 |
+
[
|
239 |
+
35,
|
240 |
+
270,
|
241 |
+
270
|
242 |
+
],
|
243 |
+
[
|
244 |
+
25,
|
245 |
+
442,
|
246 |
+
442
|
247 |
+
],
|
248 |
+
[
|
249 |
+
24,
|
250 |
+
270,
|
251 |
+
270
|
252 |
+
],
|
253 |
+
[
|
254 |
+
24,
|
255 |
+
270,
|
256 |
+
270
|
257 |
+
],
|
258 |
+
[
|
259 |
+
24,
|
260 |
+
270,
|
261 |
+
270
|
262 |
+
],
|
263 |
+
[
|
264 |
+
26,
|
265 |
+
270,
|
266 |
+
270
|
267 |
+
],
|
268 |
+
[
|
269 |
+
24,
|
270 |
+
270,
|
271 |
+
270
|
272 |
+
],
|
273 |
+
[
|
274 |
+
24,
|
275 |
+
270,
|
276 |
+
270
|
277 |
+
],
|
278 |
+
[
|
279 |
+
35,
|
280 |
+
442,
|
281 |
+
442
|
282 |
+
],
|
283 |
+
[
|
284 |
+
26,
|
285 |
+
270,
|
286 |
+
270
|
287 |
+
],
|
288 |
+
[
|
289 |
+
24,
|
290 |
+
270,
|
291 |
+
270
|
292 |
+
],
|
293 |
+
[
|
294 |
+
24,
|
295 |
+
270,
|
296 |
+
270
|
297 |
+
],
|
298 |
+
[
|
299 |
+
31,
|
300 |
+
442,
|
301 |
+
442
|
302 |
+
],
|
303 |
+
[
|
304 |
+
26,
|
305 |
+
270,
|
306 |
+
270
|
307 |
+
],
|
308 |
+
[
|
309 |
+
30,
|
310 |
+
442,
|
311 |
+
442
|
312 |
+
],
|
313 |
+
[
|
314 |
+
27,
|
315 |
+
232,
|
316 |
+
232
|
317 |
+
],
|
318 |
+
[
|
319 |
+
27,
|
320 |
+
232,
|
321 |
+
232
|
322 |
+
],
|
323 |
+
[
|
324 |
+
25,
|
325 |
+
442,
|
326 |
+
442
|
327 |
+
],
|
328 |
+
[
|
329 |
+
24,
|
330 |
+
270,
|
331 |
+
270
|
332 |
+
],
|
333 |
+
[
|
334 |
+
24,
|
335 |
+
270,
|
336 |
+
270
|
337 |
+
],
|
338 |
+
[
|
339 |
+
24,
|
340 |
+
270,
|
341 |
+
270
|
342 |
+
],
|
343 |
+
[
|
344 |
+
24,
|
345 |
+
270,
|
346 |
+
270
|
347 |
+
],
|
348 |
+
[
|
349 |
+
28,
|
350 |
+
270,
|
351 |
+
270
|
352 |
+
],
|
353 |
+
[
|
354 |
+
24,
|
355 |
+
270,
|
356 |
+
270
|
357 |
+
],
|
358 |
+
[
|
359 |
+
31,
|
360 |
+
442,
|
361 |
+
442
|
362 |
+
],
|
363 |
+
[
|
364 |
+
24,
|
365 |
+
270,
|
366 |
+
270
|
367 |
+
],
|
368 |
+
[
|
369 |
+
26,
|
370 |
+
270,
|
371 |
+
270
|
372 |
+
],
|
373 |
+
[
|
374 |
+
26,
|
375 |
+
270,
|
376 |
+
270
|
377 |
+
],
|
378 |
+
[
|
379 |
+
24,
|
380 |
+
270,
|
381 |
+
270
|
382 |
+
],
|
383 |
+
[
|
384 |
+
24,
|
385 |
+
270,
|
386 |
+
270
|
387 |
+
],
|
388 |
+
[
|
389 |
+
24,
|
390 |
+
270,
|
391 |
+
270
|
392 |
+
],
|
393 |
+
[
|
394 |
+
25,
|
395 |
+
442,
|
396 |
+
442
|
397 |
+
],
|
398 |
+
[
|
399 |
+
26,
|
400 |
+
270,
|
401 |
+
270
|
402 |
+
],
|
403 |
+
[
|
404 |
+
27,
|
405 |
+
232,
|
406 |
+
232
|
407 |
+
],
|
408 |
+
[
|
409 |
+
24,
|
410 |
+
270,
|
411 |
+
270
|
412 |
+
],
|
413 |
+
[
|
414 |
+
29,
|
415 |
+
270,
|
416 |
+
270
|
417 |
+
],
|
418 |
+
[
|
419 |
+
24,
|
420 |
+
270,
|
421 |
+
270
|
422 |
+
],
|
423 |
+
[
|
424 |
+
26,
|
425 |
+
270,
|
426 |
+
270
|
427 |
+
],
|
428 |
+
[
|
429 |
+
26,
|
430 |
+
232,
|
431 |
+
232
|
432 |
+
],
|
433 |
+
[
|
434 |
+
24,
|
435 |
+
270,
|
436 |
+
270
|
437 |
+
],
|
438 |
+
[
|
439 |
+
27,
|
440 |
+
232,
|
441 |
+
232
|
442 |
+
],
|
443 |
+
[
|
444 |
+
26,
|
445 |
+
270,
|
446 |
+
270
|
447 |
+
],
|
448 |
+
[
|
449 |
+
25,
|
450 |
+
442,
|
451 |
+
442
|
452 |
+
],
|
453 |
+
[
|
454 |
+
26,
|
455 |
+
270,
|
456 |
+
270
|
457 |
+
],
|
458 |
+
[
|
459 |
+
24,
|
460 |
+
270,
|
461 |
+
270
|
462 |
+
],
|
463 |
+
[
|
464 |
+
24,
|
465 |
+
270,
|
466 |
+
270
|
467 |
+
],
|
468 |
+
[
|
469 |
+
30,
|
470 |
+
442,
|
471 |
+
442
|
472 |
+
],
|
473 |
+
[
|
474 |
+
28,
|
475 |
+
270,
|
476 |
+
270
|
477 |
+
],
|
478 |
+
[
|
479 |
+
24,
|
480 |
+
270,
|
481 |
+
270
|
482 |
+
],
|
483 |
+
[
|
484 |
+
24,
|
485 |
+
270,
|
486 |
+
270
|
487 |
+
],
|
488 |
+
[
|
489 |
+
24,
|
490 |
+
270,
|
491 |
+
270
|
492 |
+
],
|
493 |
+
[
|
494 |
+
25,
|
495 |
+
442,
|
496 |
+
442
|
497 |
+
],
|
498 |
+
[
|
499 |
+
31,
|
500 |
+
442,
|
501 |
+
442
|
502 |
+
],
|
503 |
+
[
|
504 |
+
25,
|
505 |
+
442,
|
506 |
+
442
|
507 |
+
],
|
508 |
+
[
|
509 |
+
25,
|
510 |
+
442,
|
511 |
+
442
|
512 |
+
],
|
513 |
+
[
|
514 |
+
30,
|
515 |
+
232,
|
516 |
+
232
|
517 |
+
],
|
518 |
+
[
|
519 |
+
24,
|
520 |
+
270,
|
521 |
+
270
|
522 |
+
],
|
523 |
+
[
|
524 |
+
26,
|
525 |
+
270,
|
526 |
+
270
|
527 |
+
],
|
528 |
+
[
|
529 |
+
31,
|
530 |
+
442,
|
531 |
+
442
|
532 |
+
],
|
533 |
+
[
|
534 |
+
24,
|
535 |
+
270,
|
536 |
+
270
|
537 |
+
],
|
538 |
+
[
|
539 |
+
26,
|
540 |
+
270,
|
541 |
+
270
|
542 |
+
],
|
543 |
+
[
|
544 |
+
26,
|
545 |
+
270,
|
546 |
+
270
|
547 |
+
],
|
548 |
+
[
|
549 |
+
24,
|
550 |
+
270,
|
551 |
+
270
|
552 |
+
],
|
553 |
+
[
|
554 |
+
25,
|
555 |
+
442,
|
556 |
+
442
|
557 |
+
],
|
558 |
+
[
|
559 |
+
24,
|
560 |
+
270,
|
561 |
+
270
|
562 |
+
],
|
563 |
+
[
|
564 |
+
26,
|
565 |
+
270,
|
566 |
+
270
|
567 |
+
],
|
568 |
+
[
|
569 |
+
27,
|
570 |
+
442,
|
571 |
+
442
|
572 |
+
],
|
573 |
+
[
|
574 |
+
24,
|
575 |
+
270,
|
576 |
+
270
|
577 |
+
],
|
578 |
+
[
|
579 |
+
24,
|
580 |
+
270,
|
581 |
+
270
|
582 |
+
],
|
583 |
+
[
|
584 |
+
24,
|
585 |
+
270,
|
586 |
+
270
|
587 |
+
],
|
588 |
+
[
|
589 |
+
28,
|
590 |
+
270,
|
591 |
+
270
|
592 |
+
],
|
593 |
+
[
|
594 |
+
24,
|
595 |
+
270,
|
596 |
+
270
|
597 |
+
],
|
598 |
+
[
|
599 |
+
30,
|
600 |
+
270,
|
601 |
+
270
|
602 |
+
],
|
603 |
+
[
|
604 |
+
24,
|
605 |
+
270,
|
606 |
+
270
|
607 |
+
],
|
608 |
+
[
|
609 |
+
24,
|
610 |
+
270,
|
611 |
+
270
|
612 |
+
],
|
613 |
+
[
|
614 |
+
25,
|
615 |
+
442,
|
616 |
+
442
|
617 |
+
],
|
618 |
+
[
|
619 |
+
24,
|
620 |
+
270,
|
621 |
+
270
|
622 |
+
],
|
623 |
+
[
|
624 |
+
24,
|
625 |
+
270,
|
626 |
+
270
|
627 |
+
],
|
628 |
+
[
|
629 |
+
24,
|
630 |
+
270,
|
631 |
+
270
|
632 |
+
],
|
633 |
+
[
|
634 |
+
28,
|
635 |
+
270,
|
636 |
+
270
|
637 |
+
],
|
638 |
+
[
|
639 |
+
24,
|
640 |
+
270,
|
641 |
+
270
|
642 |
+
],
|
643 |
+
[
|
644 |
+
40,
|
645 |
+
270,
|
646 |
+
270
|
647 |
+
],
|
648 |
+
[
|
649 |
+
24,
|
650 |
+
270,
|
651 |
+
270
|
652 |
+
],
|
653 |
+
[
|
654 |
+
24,
|
655 |
+
270,
|
656 |
+
270
|
657 |
+
],
|
658 |
+
[
|
659 |
+
27,
|
660 |
+
232,
|
661 |
+
232
|
662 |
+
],
|
663 |
+
[
|
664 |
+
24,
|
665 |
+
270,
|
666 |
+
270
|
667 |
+
],
|
668 |
+
[
|
669 |
+
26,
|
670 |
+
270,
|
671 |
+
270
|
672 |
+
],
|
673 |
+
[
|
674 |
+
25,
|
675 |
+
442,
|
676 |
+
442
|
677 |
+
],
|
678 |
+
[
|
679 |
+
27,
|
680 |
+
232,
|
681 |
+
232
|
682 |
+
],
|
683 |
+
[
|
684 |
+
26,
|
685 |
+
270,
|
686 |
+
270
|
687 |
+
],
|
688 |
+
[
|
689 |
+
24,
|
690 |
+
270,
|
691 |
+
270
|
692 |
+
],
|
693 |
+
[
|
694 |
+
25,
|
695 |
+
442,
|
696 |
+
442
|
697 |
+
],
|
698 |
+
[
|
699 |
+
24,
|
700 |
+
270,
|
701 |
+
270
|
702 |
+
],
|
703 |
+
[
|
704 |
+
24,
|
705 |
+
270,
|
706 |
+
270
|
707 |
+
],
|
708 |
+
[
|
709 |
+
24,
|
710 |
+
270,
|
711 |
+
270
|
712 |
+
],
|
713 |
+
[
|
714 |
+
24,
|
715 |
+
270,
|
716 |
+
270
|
717 |
+
],
|
718 |
+
[
|
719 |
+
25,
|
720 |
+
442,
|
721 |
+
442
|
722 |
+
],
|
723 |
+
[
|
724 |
+
24,
|
725 |
+
270,
|
726 |
+
270
|
727 |
+
]
|
728 |
+
],
|
729 |
+
"spacings": [
|
730 |
+
[
|
731 |
+
3.0,
|
732 |
+
0.4017857015132904,
|
733 |
+
0.4017857015132904
|
734 |
+
],
|
735 |
+
[
|
736 |
+
3.0,
|
737 |
+
0.4017857015132904,
|
738 |
+
0.4017857015132904
|
739 |
+
],
|
740 |
+
[
|
741 |
+
3.0,
|
742 |
+
0.4017857015132904,
|
743 |
+
0.4017857015132904
|
744 |
+
],
|
745 |
+
[
|
746 |
+
3.000002384185791,
|
747 |
+
0.27173900604248047,
|
748 |
+
0.27173900604248047
|
749 |
+
],
|
750 |
+
[
|
751 |
+
3.000000238418579,
|
752 |
+
0.4017857015132904,
|
753 |
+
0.4017857015132904
|
754 |
+
],
|
755 |
+
[
|
756 |
+
3.000000238418579,
|
757 |
+
0.4017857015132904,
|
758 |
+
0.4017857015132904
|
759 |
+
],
|
760 |
+
[
|
761 |
+
2.999999761581421,
|
762 |
+
0.4017857015132904,
|
763 |
+
0.4017857015132904
|
764 |
+
],
|
765 |
+
[
|
766 |
+
3.000000238418579,
|
767 |
+
0.4017857015132904,
|
768 |
+
0.4017857015132904
|
769 |
+
],
|
770 |
+
[
|
771 |
+
3.0000030994415283,
|
772 |
+
0.27173900604248047,
|
773 |
+
0.27173900604248047
|
774 |
+
],
|
775 |
+
[
|
776 |
+
3.0,
|
777 |
+
0.4017857015132904,
|
778 |
+
0.4017857015132904
|
779 |
+
],
|
780 |
+
[
|
781 |
+
2.999999761581421,
|
782 |
+
0.4017857015132904,
|
783 |
+
0.4017857015132904
|
784 |
+
],
|
785 |
+
[
|
786 |
+
3.0,
|
787 |
+
0.4464285671710968,
|
788 |
+
0.4464285671710968
|
789 |
+
],
|
790 |
+
[
|
791 |
+
3.0,
|
792 |
+
0.4017857015132904,
|
793 |
+
0.4017857015132904
|
794 |
+
],
|
795 |
+
[
|
796 |
+
3.0,
|
797 |
+
0.4017857015132904,
|
798 |
+
0.4017857015132904
|
799 |
+
],
|
800 |
+
[
|
801 |
+
3.000000238418579,
|
802 |
+
0.4017857015132904,
|
803 |
+
0.4017857015132904
|
804 |
+
],
|
805 |
+
[
|
806 |
+
3.0,
|
807 |
+
0.4017857015132904,
|
808 |
+
0.4017857015132904
|
809 |
+
],
|
810 |
+
[
|
811 |
+
3.0,
|
812 |
+
0.4017857015132904,
|
813 |
+
0.4017857015132904
|
814 |
+
],
|
815 |
+
[
|
816 |
+
3.0,
|
817 |
+
0.4017857015132904,
|
818 |
+
0.4017857015132904
|
819 |
+
],
|
820 |
+
[
|
821 |
+
3.0,
|
822 |
+
0.4017857015132904,
|
823 |
+
0.4017857015132904
|
824 |
+
],
|
825 |
+
[
|
826 |
+
3.0,
|
827 |
+
0.4017857015132904,
|
828 |
+
0.4017857015132904
|
829 |
+
],
|
830 |
+
[
|
831 |
+
3.0,
|
832 |
+
0.4017857015132904,
|
833 |
+
0.4017857015132904
|
834 |
+
],
|
835 |
+
[
|
836 |
+
3.000000238418579,
|
837 |
+
0.4017857015132904,
|
838 |
+
0.4017857015132904
|
839 |
+
],
|
840 |
+
[
|
841 |
+
2.999998092651367,
|
842 |
+
0.27173900604248047,
|
843 |
+
0.27173900604248047
|
844 |
+
],
|
845 |
+
[
|
846 |
+
2.9999985694885254,
|
847 |
+
0.27173900604248047,
|
848 |
+
0.27173900604248047
|
849 |
+
],
|
850 |
+
[
|
851 |
+
3.000016689300537,
|
852 |
+
0.27173900604248047,
|
853 |
+
0.27173900604248047
|
854 |
+
],
|
855 |
+
[
|
856 |
+
3.0,
|
857 |
+
0.4017857015132904,
|
858 |
+
0.4017857015132904
|
859 |
+
],
|
860 |
+
[
|
861 |
+
3.0,
|
862 |
+
0.4017857015132904,
|
863 |
+
0.4017857015132904
|
864 |
+
],
|
865 |
+
[
|
866 |
+
3.0000035762786865,
|
867 |
+
0.46875,
|
868 |
+
0.46875
|
869 |
+
],
|
870 |
+
[
|
871 |
+
3.0,
|
872 |
+
0.4017857015132904,
|
873 |
+
0.4017857015132904
|
874 |
+
],
|
875 |
+
[
|
876 |
+
2.9999992847442627,
|
877 |
+
0.46875,
|
878 |
+
0.46875
|
879 |
+
],
|
880 |
+
[
|
881 |
+
2.9999945163726807,
|
882 |
+
0.46875,
|
883 |
+
0.46875
|
884 |
+
],
|
885 |
+
[
|
886 |
+
3.000000238418579,
|
887 |
+
0.4017857015132904,
|
888 |
+
0.4017857015132904
|
889 |
+
],
|
890 |
+
[
|
891 |
+
3.0000016689300537,
|
892 |
+
0.27173900604248047,
|
893 |
+
0.27173900604248047
|
894 |
+
],
|
895 |
+
[
|
896 |
+
3.0,
|
897 |
+
0.4017857015132904,
|
898 |
+
0.4017857015132904
|
899 |
+
],
|
900 |
+
[
|
901 |
+
3.0,
|
902 |
+
0.4017857015132904,
|
903 |
+
0.4017857015132904
|
904 |
+
],
|
905 |
+
[
|
906 |
+
3.0,
|
907 |
+
0.4017857015132904,
|
908 |
+
0.4017857015132904
|
909 |
+
],
|
910 |
+
[
|
911 |
+
3.0,
|
912 |
+
0.4017857015132904,
|
913 |
+
0.4017857015132904
|
914 |
+
],
|
915 |
+
[
|
916 |
+
3.0,
|
917 |
+
0.4017857015132904,
|
918 |
+
0.4017857015132904
|
919 |
+
],
|
920 |
+
[
|
921 |
+
2.9999990463256836,
|
922 |
+
0.27173900604248047,
|
923 |
+
0.27173900604248047
|
924 |
+
],
|
925 |
+
[
|
926 |
+
2.9999988079071045,
|
927 |
+
0.27173900604248047,
|
928 |
+
0.27173900604248047
|
929 |
+
],
|
930 |
+
[
|
931 |
+
2.999993085861206,
|
932 |
+
0.27173900604248047,
|
933 |
+
0.27173900604248047
|
934 |
+
],
|
935 |
+
[
|
936 |
+
3.0,
|
937 |
+
0.4017857015132904,
|
938 |
+
0.4017857015132904
|
939 |
+
],
|
940 |
+
[
|
941 |
+
2.999997854232788,
|
942 |
+
0.27173900604248047,
|
943 |
+
0.27173900604248047
|
944 |
+
],
|
945 |
+
[
|
946 |
+
3.0,
|
947 |
+
0.4017857015132904,
|
948 |
+
0.4017857015132904
|
949 |
+
],
|
950 |
+
[
|
951 |
+
3.0,
|
952 |
+
0.4017857015132904,
|
953 |
+
0.4017857015132904
|
954 |
+
],
|
955 |
+
[
|
956 |
+
3.0,
|
957 |
+
0.4017857015132904,
|
958 |
+
0.4017857015132904
|
959 |
+
],
|
960 |
+
[
|
961 |
+
3.000000238418579,
|
962 |
+
0.4017857015132904,
|
963 |
+
0.4017857015132904
|
964 |
+
],
|
965 |
+
[
|
966 |
+
3.0,
|
967 |
+
0.4017857015132904,
|
968 |
+
0.4017857015132904
|
969 |
+
],
|
970 |
+
[
|
971 |
+
3.0,
|
972 |
+
0.4017857015132904,
|
973 |
+
0.4017857015132904
|
974 |
+
],
|
975 |
+
[
|
976 |
+
3.0000011920928955,
|
977 |
+
0.27173900604248047,
|
978 |
+
0.27173900604248047
|
979 |
+
],
|
980 |
+
[
|
981 |
+
3.0,
|
982 |
+
0.4017857015132904,
|
983 |
+
0.4017857015132904
|
984 |
+
],
|
985 |
+
[
|
986 |
+
3.0,
|
987 |
+
0.4017857015132904,
|
988 |
+
0.4017857015132904
|
989 |
+
],
|
990 |
+
[
|
991 |
+
3.0,
|
992 |
+
0.4017857015132904,
|
993 |
+
0.4017857015132904
|
994 |
+
],
|
995 |
+
[
|
996 |
+
3.000004768371582,
|
997 |
+
0.27173900604248047,
|
998 |
+
0.27173900604248047
|
999 |
+
],
|
1000 |
+
[
|
1001 |
+
3.0000159740448,
|
1002 |
+
0.4017859995365143,
|
1003 |
+
0.4017859995365143
|
1004 |
+
],
|
1005 |
+
[
|
1006 |
+
2.9999992847442627,
|
1007 |
+
0.27173900604248047,
|
1008 |
+
0.27173900604248047
|
1009 |
+
],
|
1010 |
+
[
|
1011 |
+
2.9999992847442627,
|
1012 |
+
0.46875,
|
1013 |
+
0.46875
|
1014 |
+
],
|
1015 |
+
[
|
1016 |
+
2.9999849796295166,
|
1017 |
+
0.46875,
|
1018 |
+
0.46875
|
1019 |
+
],
|
1020 |
+
[
|
1021 |
+
3.0000016689300537,
|
1022 |
+
0.27173900604248047,
|
1023 |
+
0.27173900604248047
|
1024 |
+
],
|
1025 |
+
[
|
1026 |
+
3.0,
|
1027 |
+
0.4017857015132904,
|
1028 |
+
0.4017857015132904
|
1029 |
+
],
|
1030 |
+
[
|
1031 |
+
3.000000238418579,
|
1032 |
+
0.4017857015132904,
|
1033 |
+
0.4017857015132904
|
1034 |
+
],
|
1035 |
+
[
|
1036 |
+
3.0,
|
1037 |
+
0.4017857015132904,
|
1038 |
+
0.4017857015132904
|
1039 |
+
],
|
1040 |
+
[
|
1041 |
+
3.0,
|
1042 |
+
0.4017857015132904,
|
1043 |
+
0.4017857015132904
|
1044 |
+
],
|
1045 |
+
[
|
1046 |
+
3.0,
|
1047 |
+
0.4017857015132904,
|
1048 |
+
0.4017857015132904
|
1049 |
+
],
|
1050 |
+
[
|
1051 |
+
3.0,
|
1052 |
+
0.4017857015132904,
|
1053 |
+
0.4017857015132904
|
1054 |
+
],
|
1055 |
+
[
|
1056 |
+
2.999997854232788,
|
1057 |
+
0.27173900604248047,
|
1058 |
+
0.27173900604248047
|
1059 |
+
],
|
1060 |
+
[
|
1061 |
+
3.0,
|
1062 |
+
0.4017857015132904,
|
1063 |
+
0.4017857015132904
|
1064 |
+
],
|
1065 |
+
[
|
1066 |
+
3.0,
|
1067 |
+
0.4017857015132904,
|
1068 |
+
0.4017857015132904
|
1069 |
+
],
|
1070 |
+
[
|
1071 |
+
3.0,
|
1072 |
+
0.4017857015132904,
|
1073 |
+
0.4017857015132904
|
1074 |
+
],
|
1075 |
+
[
|
1076 |
+
3.0,
|
1077 |
+
0.4017857015132904,
|
1078 |
+
0.4017857015132904
|
1079 |
+
],
|
1080 |
+
[
|
1081 |
+
3.0,
|
1082 |
+
0.4017857015132904,
|
1083 |
+
0.4017857015132904
|
1084 |
+
],
|
1085 |
+
[
|
1086 |
+
3.0,
|
1087 |
+
0.4017857015132904,
|
1088 |
+
0.4017857015132904
|
1089 |
+
],
|
1090 |
+
[
|
1091 |
+
3.0,
|
1092 |
+
0.27173900604248047,
|
1093 |
+
0.27173900604248047
|
1094 |
+
],
|
1095 |
+
[
|
1096 |
+
3.0,
|
1097 |
+
0.4017857015132904,
|
1098 |
+
0.4017857015132904
|
1099 |
+
],
|
1100 |
+
[
|
1101 |
+
3.0000014305114746,
|
1102 |
+
0.46875,
|
1103 |
+
0.46875
|
1104 |
+
],
|
1105 |
+
[
|
1106 |
+
2.999999761581421,
|
1107 |
+
0.4017857015132904,
|
1108 |
+
0.4017857015132904
|
1109 |
+
],
|
1110 |
+
[
|
1111 |
+
3.0,
|
1112 |
+
0.4017857015132904,
|
1113 |
+
0.4017857015132904
|
1114 |
+
],
|
1115 |
+
[
|
1116 |
+
3.0,
|
1117 |
+
0.4017857015132904,
|
1118 |
+
0.4017857015132904
|
1119 |
+
],
|
1120 |
+
[
|
1121 |
+
3.0,
|
1122 |
+
0.4017857015132904,
|
1123 |
+
0.4017857015132904
|
1124 |
+
],
|
1125 |
+
[
|
1126 |
+
3.0,
|
1127 |
+
0.46875,
|
1128 |
+
0.46875
|
1129 |
+
],
|
1130 |
+
[
|
1131 |
+
3.0,
|
1132 |
+
0.4017857015132904,
|
1133 |
+
0.4017857015132904
|
1134 |
+
],
|
1135 |
+
[
|
1136 |
+
3.00002121925354,
|
1137 |
+
0.46875,
|
1138 |
+
0.46875
|
1139 |
+
],
|
1140 |
+
[
|
1141 |
+
3.0,
|
1142 |
+
0.4017857015132904,
|
1143 |
+
0.4017857015132904
|
1144 |
+
],
|
1145 |
+
[
|
1146 |
+
3.0,
|
1147 |
+
0.27173900604248047,
|
1148 |
+
0.27173900604248047
|
1149 |
+
],
|
1150 |
+
[
|
1151 |
+
3.0,
|
1152 |
+
0.4017857015132904,
|
1153 |
+
0.4017857015132904
|
1154 |
+
],
|
1155 |
+
[
|
1156 |
+
3.0,
|
1157 |
+
0.4017857015132904,
|
1158 |
+
0.4017857015132904
|
1159 |
+
],
|
1160 |
+
[
|
1161 |
+
3.0,
|
1162 |
+
0.4017857015132904,
|
1163 |
+
0.4017857015132904
|
1164 |
+
],
|
1165 |
+
[
|
1166 |
+
3.000000476837158,
|
1167 |
+
0.27173900604248047,
|
1168 |
+
0.27173900604248047
|
1169 |
+
],
|
1170 |
+
[
|
1171 |
+
3.0,
|
1172 |
+
0.4017857015132904,
|
1173 |
+
0.4017857015132904
|
1174 |
+
],
|
1175 |
+
[
|
1176 |
+
3.0,
|
1177 |
+
0.4017857015132904,
|
1178 |
+
0.4017857015132904
|
1179 |
+
],
|
1180 |
+
[
|
1181 |
+
3.000000238418579,
|
1182 |
+
0.4017857015132904,
|
1183 |
+
0.4017857015132904
|
1184 |
+
],
|
1185 |
+
[
|
1186 |
+
3.0,
|
1187 |
+
0.4017857015132904,
|
1188 |
+
0.4017857015132904
|
1189 |
+
],
|
1190 |
+
[
|
1191 |
+
3.0,
|
1192 |
+
0.27173900604248047,
|
1193 |
+
0.27173900604248047
|
1194 |
+
],
|
1195 |
+
[
|
1196 |
+
3.0000033378601074,
|
1197 |
+
0.27173900604248047,
|
1198 |
+
0.27173900604248047
|
1199 |
+
],
|
1200 |
+
[
|
1201 |
+
2.9999983310699463,
|
1202 |
+
0.27173900604248047,
|
1203 |
+
0.27173900604248047
|
1204 |
+
],
|
1205 |
+
[
|
1206 |
+
3.0,
|
1207 |
+
0.27173900604248047,
|
1208 |
+
0.27173900604248047
|
1209 |
+
],
|
1210 |
+
[
|
1211 |
+
2.9999992847442627,
|
1212 |
+
0.46875,
|
1213 |
+
0.46875
|
1214 |
+
],
|
1215 |
+
[
|
1216 |
+
3.0,
|
1217 |
+
0.4017857015132904,
|
1218 |
+
0.4017857015132904
|
1219 |
+
],
|
1220 |
+
[
|
1221 |
+
3.0,
|
1222 |
+
0.4017857015132904,
|
1223 |
+
0.4017857015132904
|
1224 |
+
],
|
1225 |
+
[
|
1226 |
+
2.9999990463256836,
|
1227 |
+
0.27173900604248047,
|
1228 |
+
0.27173900604248047
|
1229 |
+
],
|
1230 |
+
[
|
1231 |
+
3.0,
|
1232 |
+
0.4017857015132904,
|
1233 |
+
0.4017857015132904
|
1234 |
+
],
|
1235 |
+
[
|
1236 |
+
3.0,
|
1237 |
+
0.4017857015132904,
|
1238 |
+
0.4017857015132904
|
1239 |
+
],
|
1240 |
+
[
|
1241 |
+
3.0,
|
1242 |
+
0.4017857015132904,
|
1243 |
+
0.4017857015132904
|
1244 |
+
],
|
1245 |
+
[
|
1246 |
+
3.0,
|
1247 |
+
0.4017857015132904,
|
1248 |
+
0.4017857015132904
|
1249 |
+
],
|
1250 |
+
[
|
1251 |
+
3.000020742416382,
|
1252 |
+
0.27173900604248047,
|
1253 |
+
0.27173900604248047
|
1254 |
+
],
|
1255 |
+
[
|
1256 |
+
2.999999761581421,
|
1257 |
+
0.4017857015132904,
|
1258 |
+
0.4017857015132904
|
1259 |
+
],
|
1260 |
+
[
|
1261 |
+
3.0,
|
1262 |
+
0.4017857015132904,
|
1263 |
+
0.4017857015132904
|
1264 |
+
],
|
1265 |
+
[
|
1266 |
+
2.9999923706054688,
|
1267 |
+
0.27173900604248047,
|
1268 |
+
0.27173900604248047
|
1269 |
+
],
|
1270 |
+
[
|
1271 |
+
3.0,
|
1272 |
+
0.4017857015132904,
|
1273 |
+
0.4017857015132904
|
1274 |
+
],
|
1275 |
+
[
|
1276 |
+
3.0,
|
1277 |
+
0.4017857015132904,
|
1278 |
+
0.4017857015132904
|
1279 |
+
],
|
1280 |
+
[
|
1281 |
+
3.0,
|
1282 |
+
0.4017857015132904,
|
1283 |
+
0.4017857015132904
|
1284 |
+
],
|
1285 |
+
[
|
1286 |
+
3.0,
|
1287 |
+
0.4017857015132904,
|
1288 |
+
0.4017857015132904
|
1289 |
+
],
|
1290 |
+
[
|
1291 |
+
3.0,
|
1292 |
+
0.4017857015132904,
|
1293 |
+
0.4017857015132904
|
1294 |
+
],
|
1295 |
+
[
|
1296 |
+
3.0,
|
1297 |
+
0.4017857015132904,
|
1298 |
+
0.4017857015132904
|
1299 |
+
],
|
1300 |
+
[
|
1301 |
+
3.0,
|
1302 |
+
0.4017857015132904,
|
1303 |
+
0.4017857015132904
|
1304 |
+
],
|
1305 |
+
[
|
1306 |
+
3.0,
|
1307 |
+
0.4017857015132904,
|
1308 |
+
0.4017857015132904
|
1309 |
+
],
|
1310 |
+
[
|
1311 |
+
2.999995470046997,
|
1312 |
+
0.27173900604248047,
|
1313 |
+
0.27173900604248047
|
1314 |
+
],
|
1315 |
+
[
|
1316 |
+
3.0,
|
1317 |
+
0.4017857015132904,
|
1318 |
+
0.4017857015132904
|
1319 |
+
],
|
1320 |
+
[
|
1321 |
+
3.0,
|
1322 |
+
0.4017857015132904,
|
1323 |
+
0.4017857015132904
|
1324 |
+
],
|
1325 |
+
[
|
1326 |
+
3.0,
|
1327 |
+
0.4017857015132904,
|
1328 |
+
0.4017857015132904
|
1329 |
+
],
|
1330 |
+
[
|
1331 |
+
3.0,
|
1332 |
+
0.4017857015132904,
|
1333 |
+
0.4017857015132904
|
1334 |
+
],
|
1335 |
+
[
|
1336 |
+
2.999999761581421,
|
1337 |
+
0.4017857015132904,
|
1338 |
+
0.4017857015132904
|
1339 |
+
],
|
1340 |
+
[
|
1341 |
+
3.0,
|
1342 |
+
0.4017857015132904,
|
1343 |
+
0.4017857015132904
|
1344 |
+
],
|
1345 |
+
[
|
1346 |
+
3.0,
|
1347 |
+
0.4017857015132904,
|
1348 |
+
0.4017857015132904
|
1349 |
+
],
|
1350 |
+
[
|
1351 |
+
3.0,
|
1352 |
+
0.4017857015132904,
|
1353 |
+
0.4017857015132904
|
1354 |
+
],
|
1355 |
+
[
|
1356 |
+
2.999994993209839,
|
1357 |
+
0.46875,
|
1358 |
+
0.46875
|
1359 |
+
],
|
1360 |
+
[
|
1361 |
+
3.0,
|
1362 |
+
0.4017857015132904,
|
1363 |
+
0.4017857015132904
|
1364 |
+
],
|
1365 |
+
[
|
1366 |
+
3.0,
|
1367 |
+
0.4017857015132904,
|
1368 |
+
0.4017857015132904
|
1369 |
+
],
|
1370 |
+
[
|
1371 |
+
3.0,
|
1372 |
+
0.27173900604248047,
|
1373 |
+
0.27173900604248047
|
1374 |
+
],
|
1375 |
+
[
|
1376 |
+
2.9999983310699463,
|
1377 |
+
0.46875,
|
1378 |
+
0.46875
|
1379 |
+
],
|
1380 |
+
[
|
1381 |
+
3.0,
|
1382 |
+
0.4017857015132904,
|
1383 |
+
0.4017857015132904
|
1384 |
+
],
|
1385 |
+
[
|
1386 |
+
3.0,
|
1387 |
+
0.4017857015132904,
|
1388 |
+
0.4017857015132904
|
1389 |
+
],
|
1390 |
+
[
|
1391 |
+
2.999985694885254,
|
1392 |
+
0.27173900604248047,
|
1393 |
+
0.27173900604248047
|
1394 |
+
],
|
1395 |
+
[
|
1396 |
+
3.000000238418579,
|
1397 |
+
0.4017857015132904,
|
1398 |
+
0.4017857015132904
|
1399 |
+
],
|
1400 |
+
[
|
1401 |
+
3.0,
|
1402 |
+
0.4017857015132904,
|
1403 |
+
0.4017857015132904
|
1404 |
+
],
|
1405 |
+
[
|
1406 |
+
3.0,
|
1407 |
+
0.4017857015132904,
|
1408 |
+
0.4017857015132904
|
1409 |
+
],
|
1410 |
+
[
|
1411 |
+
3.0,
|
1412 |
+
0.4464285671710968,
|
1413 |
+
0.4464285671710968
|
1414 |
+
],
|
1415 |
+
[
|
1416 |
+
3.0,
|
1417 |
+
0.27173900604248047,
|
1418 |
+
0.27173900604248047
|
1419 |
+
],
|
1420 |
+
[
|
1421 |
+
3.000000238418579,
|
1422 |
+
0.4017857015132904,
|
1423 |
+
0.4017857015132904
|
1424 |
+
]
|
1425 |
+
]
|
1426 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/.ipynb_checkpoints/progress-checkpoint.png
ADDED
Git LFS Details
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00ea40d5a8879983fd37b31da67b30e4af0746331e43f9557f00db4d0d9c1720
|
3 |
+
size 356831121
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_latest.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32c4e68fcceeded035c49c3e0530a70cd6c3d96f942d0d1e5a997ea23e6fffdc
|
3 |
+
size 356854997
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe17c7ca020>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe17c7c8c40>",
|
10 |
+
"dataloader_train.num_processes": "4",
|
11 |
+
"dataloader_train.transform": "Compose ( [Convert3DTo2DTransform( apply_to_keys = ('data', 'seg') ), SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [256, 256], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), Convert2DTo3DTransform( apply_to_keys = ('data', 'seg') ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = (0,) ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe17c7c90f0>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe17c7c90c0>",
|
14 |
+
"dataloader_val.num_processes": "2",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "0",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A10G",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe17d646560>",
|
23 |
+
"hostname": "s-osbm-jupyter-f0b83-8689bbb555-5t6kn",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe17d6464a0>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_7_24_00_01_52.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe17d646410>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe17d646470>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "3",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0",
|
42 |
+
"output_folder_base": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}",
|
45 |
+
"preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset001_Prostate158/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset001_Prostate158",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.1+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png
ADDED
Git LFS Details
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_7_24_00_01_52.txt
ADDED
@@ -0,0 +1,1194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#######################################################################
|
3 |
+
Please cite the following paper when using nnU-Net:
|
4 |
+
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
|
5 |
+
#######################################################################
|
6 |
+
|
7 |
+
|
8 |
+
This is the configuration used by this training:
|
9 |
+
Configuration name: 3d_fullres
|
10 |
+
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}
|
11 |
+
|
12 |
+
These are the global plan.json settings:
|
13 |
+
{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}
|
14 |
+
|
15 |
+
2023-07-24 00:01:53.902022: unpacking dataset...
|
16 |
+
2023-07-24 00:02:07.139120: unpacking done...
|
17 |
+
2023-07-24 00:02:07.196625: do_dummy_2d_data_aug: True
|
18 |
+
2023-07-24 00:02:07.197410: Creating new 5-fold cross-validation split...
|
19 |
+
2023-07-24 00:02:07.198499: Desired fold for training: 0
|
20 |
+
2023-07-24 00:02:07.198552: This split has 111 training and 28 validation cases.
|
21 |
+
2023-07-24 00:02:14.074938: Unable to plot network architecture:
|
22 |
+
2023-07-24 00:02:14.075182: module 'torch.onnx' has no attribute '_optimize_trace'
|
23 |
+
2023-07-24 00:02:14.123964:
|
24 |
+
2023-07-24 00:02:14.124048: Epoch 0
|
25 |
+
2023-07-24 00:02:14.124163: Current learning rate: 0.01
|
26 |
+
2023-07-24 00:06:16.568555: train_loss -0.0413
|
27 |
+
2023-07-24 00:06:16.568763: val_loss -0.1561
|
28 |
+
2023-07-24 00:06:16.568854: Pseudo dice [0.6633, 0.3715, 0.0]
|
29 |
+
2023-07-24 00:06:16.568946: Epoch time: 242.45 s
|
30 |
+
2023-07-24 00:06:16.569015: Yayy! New best EMA pseudo Dice: 0.3449
|
31 |
+
2023-07-24 00:06:19.487634:
|
32 |
+
2023-07-24 00:06:19.487758: Epoch 1
|
33 |
+
2023-07-24 00:06:19.487858: Current learning rate: 0.00999
|
34 |
+
2023-07-24 00:09:51.638274: train_loss -0.2546
|
35 |
+
2023-07-24 00:09:51.638539: val_loss -0.3228
|
36 |
+
2023-07-24 00:09:51.638626: Pseudo dice [0.7605, 0.5865, 0.0]
|
37 |
+
2023-07-24 00:09:51.638798: Epoch time: 212.15 s
|
38 |
+
2023-07-24 00:09:51.638938: Yayy! New best EMA pseudo Dice: 0.3553
|
39 |
+
2023-07-24 00:09:54.319529:
|
40 |
+
2023-07-24 00:09:54.319663: Epoch 2
|
41 |
+
2023-07-24 00:09:54.319769: Current learning rate: 0.00998
|
42 |
+
2023-07-24 00:13:25.194643: train_loss -0.324
|
43 |
+
2023-07-24 00:13:25.194925: val_loss -0.3233
|
44 |
+
2023-07-24 00:13:25.195090: Pseudo dice [0.7874, 0.5763, 0.0]
|
45 |
+
2023-07-24 00:13:25.195179: Epoch time: 210.88 s
|
46 |
+
2023-07-24 00:13:25.195318: Yayy! New best EMA pseudo Dice: 0.3652
|
47 |
+
2023-07-24 00:13:27.399833:
|
48 |
+
2023-07-24 00:13:27.399949: Epoch 3
|
49 |
+
2023-07-24 00:13:27.400062: Current learning rate: 0.00997
|
50 |
+
2023-07-24 00:17:09.770445: train_loss -0.3629
|
51 |
+
2023-07-24 00:17:09.770754: val_loss -0.3386
|
52 |
+
2023-07-24 00:17:09.771257: Pseudo dice [0.7865, 0.6213, 0.0]
|
53 |
+
2023-07-24 00:17:09.771582: Epoch time: 222.37 s
|
54 |
+
2023-07-24 00:17:09.771953: Yayy! New best EMA pseudo Dice: 0.3756
|
55 |
+
2023-07-24 00:17:13.443594:
|
56 |
+
2023-07-24 00:17:13.443887: Epoch 4
|
57 |
+
2023-07-24 00:17:13.444007: Current learning rate: 0.00996
|
58 |
+
2023-07-24 00:20:25.372916: train_loss -0.4038
|
59 |
+
2023-07-24 00:20:25.373092: val_loss -0.4029
|
60 |
+
2023-07-24 00:20:25.373185: Pseudo dice [0.821, 0.6488, 0.2694]
|
61 |
+
2023-07-24 00:20:25.373266: Epoch time: 191.93 s
|
62 |
+
2023-07-24 00:20:25.373332: Yayy! New best EMA pseudo Dice: 0.3961
|
63 |
+
2023-07-24 00:20:27.527769:
|
64 |
+
2023-07-24 00:20:27.527886: Epoch 5
|
65 |
+
2023-07-24 00:20:27.527997: Current learning rate: 0.00995
|
66 |
+
2023-07-24 00:23:59.957678: train_loss -0.4395
|
67 |
+
2023-07-24 00:23:59.957844: val_loss -0.4287
|
68 |
+
2023-07-24 00:23:59.957929: Pseudo dice [0.8103, 0.634, 0.4383]
|
69 |
+
2023-07-24 00:23:59.958011: Epoch time: 212.43 s
|
70 |
+
2023-07-24 00:23:59.958077: Yayy! New best EMA pseudo Dice: 0.4192
|
71 |
+
2023-07-24 00:24:01.987802:
|
72 |
+
2023-07-24 00:24:01.987912: Epoch 6
|
73 |
+
2023-07-24 00:24:01.988024: Current learning rate: 0.00995
|
74 |
+
2023-07-24 00:27:44.002411: train_loss -0.4486
|
75 |
+
2023-07-24 00:27:44.002615: val_loss -0.4226
|
76 |
+
2023-07-24 00:27:44.002702: Pseudo dice [0.8368, 0.6463, 0.3067]
|
77 |
+
2023-07-24 00:27:44.002805: Epoch time: 222.02 s
|
78 |
+
2023-07-24 00:27:44.002879: Yayy! New best EMA pseudo Dice: 0.4369
|
79 |
+
2023-07-24 00:27:46.502084:
|
80 |
+
2023-07-24 00:27:46.502206: Epoch 7
|
81 |
+
2023-07-24 00:27:46.502326: Current learning rate: 0.00994
|
82 |
+
2023-07-24 00:31:13.044165: train_loss -0.4879
|
83 |
+
2023-07-24 00:31:13.044357: val_loss -0.4522
|
84 |
+
2023-07-24 00:31:13.044453: Pseudo dice [0.8328, 0.6665, 0.389]
|
85 |
+
2023-07-24 00:31:13.044543: Epoch time: 206.54 s
|
86 |
+
2023-07-24 00:31:13.050315: Yayy! New best EMA pseudo Dice: 0.4562
|
87 |
+
2023-07-24 00:31:15.979445:
|
88 |
+
2023-07-24 00:31:15.979643: Epoch 8
|
89 |
+
2023-07-24 00:31:15.979780: Current learning rate: 0.00993
|
90 |
+
2023-07-24 00:34:55.354722: train_loss -0.5049
|
91 |
+
2023-07-24 00:34:55.355004: val_loss -0.4647
|
92 |
+
2023-07-24 00:34:55.355092: Pseudo dice [0.8501, 0.6851, 0.4456]
|
93 |
+
2023-07-24 00:34:55.355233: Epoch time: 219.38 s
|
94 |
+
2023-07-24 00:34:55.355299: Yayy! New best EMA pseudo Dice: 0.4766
|
95 |
+
2023-07-24 00:34:57.734633:
|
96 |
+
2023-07-24 00:34:57.734877: Epoch 9
|
97 |
+
2023-07-24 00:34:57.734988: Current learning rate: 0.00992
|
98 |
+
2023-07-24 00:38:36.038373: train_loss -0.5101
|
99 |
+
2023-07-24 00:38:36.038563: val_loss -0.4518
|
100 |
+
2023-07-24 00:38:36.038657: Pseudo dice [0.8332, 0.6664, 0.4652]
|
101 |
+
2023-07-24 00:38:36.038745: Epoch time: 218.3 s
|
102 |
+
2023-07-24 00:38:36.038840: Yayy! New best EMA pseudo Dice: 0.4944
|
103 |
+
2023-07-24 00:38:39.940725:
|
104 |
+
2023-07-24 00:38:39.941038: Epoch 10
|
105 |
+
2023-07-24 00:38:39.941158: Current learning rate: 0.00991
|
106 |
+
2023-07-24 00:42:04.394748: train_loss -0.5153
|
107 |
+
2023-07-24 00:42:04.398857: val_loss -0.4822
|
108 |
+
2023-07-24 00:42:04.399046: Pseudo dice [0.8432, 0.6794, 0.4922]
|
109 |
+
2023-07-24 00:42:04.399148: Epoch time: 204.46 s
|
110 |
+
2023-07-24 00:42:04.399216: Yayy! New best EMA pseudo Dice: 0.5121
|
111 |
+
2023-07-24 00:42:08.116886:
|
112 |
+
2023-07-24 00:42:08.117016: Epoch 11
|
113 |
+
2023-07-24 00:42:08.117131: Current learning rate: 0.0099
|
114 |
+
2023-07-24 00:45:37.933030: train_loss -0.5128
|
115 |
+
2023-07-24 00:45:37.933209: val_loss -0.4819
|
116 |
+
2023-07-24 00:45:37.933295: Pseudo dice [0.8511, 0.6729, 0.4875]
|
117 |
+
2023-07-24 00:45:37.933378: Epoch time: 209.82 s
|
118 |
+
2023-07-24 00:45:37.933442: Yayy! New best EMA pseudo Dice: 0.528
|
119 |
+
2023-07-24 00:45:41.223381:
|
120 |
+
2023-07-24 00:45:41.223522: Epoch 12
|
121 |
+
2023-07-24 00:45:41.223654: Current learning rate: 0.00989
|
122 |
+
2023-07-24 00:49:18.457412: train_loss -0.5139
|
123 |
+
2023-07-24 00:49:18.457591: val_loss -0.4663
|
124 |
+
2023-07-24 00:49:18.457679: Pseudo dice [0.8304, 0.6664, 0.4751]
|
125 |
+
2023-07-24 00:49:18.457762: Epoch time: 217.24 s
|
126 |
+
2023-07-24 00:49:18.457826: Yayy! New best EMA pseudo Dice: 0.5409
|
127 |
+
2023-07-24 00:49:21.452374:
|
128 |
+
2023-07-24 00:49:21.452548: Epoch 13
|
129 |
+
2023-07-24 00:49:21.452664: Current learning rate: 0.00988
|
130 |
+
2023-07-24 00:52:53.617019: train_loss -0.5306
|
131 |
+
2023-07-24 00:52:53.617260: val_loss -0.4947
|
132 |
+
2023-07-24 00:52:53.617345: Pseudo dice [0.8434, 0.6944, 0.4883]
|
133 |
+
2023-07-24 00:52:53.617487: Epoch time: 212.17 s
|
134 |
+
2023-07-24 00:52:53.617552: Yayy! New best EMA pseudo Dice: 0.5544
|
135 |
+
2023-07-24 00:52:55.726403:
|
136 |
+
2023-07-24 00:52:55.726518: Epoch 14
|
137 |
+
2023-07-24 00:52:55.726615: Current learning rate: 0.00987
|
138 |
+
2023-07-24 00:56:22.506680: train_loss -0.5446
|
139 |
+
2023-07-24 00:56:22.506907: val_loss -0.4714
|
140 |
+
2023-07-24 00:56:22.507013: Pseudo dice [0.8411, 0.671, 0.4914]
|
141 |
+
2023-07-24 00:56:22.507121: Epoch time: 206.78 s
|
142 |
+
2023-07-24 00:56:22.507219: Yayy! New best EMA pseudo Dice: 0.5657
|
143 |
+
2023-07-24 00:56:24.667025:
|
144 |
+
2023-07-24 00:56:24.667140: Epoch 15
|
145 |
+
2023-07-24 00:56:24.667252: Current learning rate: 0.00986
|
146 |
+
2023-07-24 00:59:50.747144: train_loss -0.5394
|
147 |
+
2023-07-24 00:59:50.747421: val_loss -0.4625
|
148 |
+
2023-07-24 00:59:50.747515: Pseudo dice [0.8447, 0.654, 0.5712]
|
149 |
+
2023-07-24 00:59:50.747690: Epoch time: 206.08 s
|
150 |
+
2023-07-24 00:59:50.747818: Yayy! New best EMA pseudo Dice: 0.5781
|
151 |
+
2023-07-24 00:59:53.732963:
|
152 |
+
2023-07-24 00:59:53.733104: Epoch 16
|
153 |
+
2023-07-24 00:59:53.733224: Current learning rate: 0.00986
|
154 |
+
2023-07-24 01:03:24.895722: train_loss -0.5551
|
155 |
+
2023-07-24 01:03:24.895922: val_loss -0.496
|
156 |
+
2023-07-24 01:03:24.896017: Pseudo dice [0.8705, 0.6946, 0.4975]
|
157 |
+
2023-07-24 01:03:24.896102: Epoch time: 211.16 s
|
158 |
+
2023-07-24 01:03:24.896200: Yayy! New best EMA pseudo Dice: 0.5891
|
159 |
+
2023-07-24 01:03:27.655639:
|
160 |
+
2023-07-24 01:03:27.655761: Epoch 17
|
161 |
+
2023-07-24 01:03:27.655877: Current learning rate: 0.00985
|
162 |
+
2023-07-24 01:07:09.366258: train_loss -0.5496
|
163 |
+
2023-07-24 01:07:09.371549: val_loss -0.4745
|
164 |
+
2023-07-24 01:07:09.371795: Pseudo dice [0.8679, 0.6897, 0.514]
|
165 |
+
2023-07-24 01:07:09.371953: Epoch time: 221.71 s
|
166 |
+
2023-07-24 01:07:09.372037: Yayy! New best EMA pseudo Dice: 0.5992
|
167 |
+
2023-07-24 01:07:12.715889:
|
168 |
+
2023-07-24 01:07:12.716015: Epoch 18
|
169 |
+
2023-07-24 01:07:12.716132: Current learning rate: 0.00984
|
170 |
+
2023-07-24 01:10:59.095254: train_loss -0.5406
|
171 |
+
2023-07-24 01:10:59.095483: val_loss -0.483
|
172 |
+
2023-07-24 01:10:59.095583: Pseudo dice [0.8634, 0.6795, 0.5385]
|
173 |
+
2023-07-24 01:10:59.095723: Epoch time: 226.38 s
|
174 |
+
2023-07-24 01:10:59.095788: Yayy! New best EMA pseudo Dice: 0.6087
|
175 |
+
2023-07-24 01:11:01.356395:
|
176 |
+
2023-07-24 01:11:01.356525: Epoch 19
|
177 |
+
2023-07-24 01:11:01.356640: Current learning rate: 0.00983
|
178 |
+
2023-07-24 01:14:19.901330: train_loss -0.5567
|
179 |
+
2023-07-24 01:14:19.901525: val_loss -0.4783
|
180 |
+
2023-07-24 01:14:19.901613: Pseudo dice [0.8492, 0.6553, 0.535]
|
181 |
+
2023-07-24 01:14:19.901693: Epoch time: 198.55 s
|
182 |
+
2023-07-24 01:14:19.901747: Yayy! New best EMA pseudo Dice: 0.6158
|
183 |
+
2023-07-24 01:14:22.511663:
|
184 |
+
2023-07-24 01:14:22.511957: Epoch 20
|
185 |
+
2023-07-24 01:14:22.512064: Current learning rate: 0.00982
|
186 |
+
2023-07-24 01:17:55.925512: train_loss -0.5745
|
187 |
+
2023-07-24 01:17:55.925694: val_loss -0.4715
|
188 |
+
2023-07-24 01:17:55.925791: Pseudo dice [0.8548, 0.653, 0.5559]
|
189 |
+
2023-07-24 01:17:55.925879: Epoch time: 213.41 s
|
190 |
+
2023-07-24 01:17:55.925951: Yayy! New best EMA pseudo Dice: 0.623
|
191 |
+
2023-07-24 01:17:58.448946:
|
192 |
+
2023-07-24 01:17:58.449071: Epoch 21
|
193 |
+
2023-07-24 01:17:58.449180: Current learning rate: 0.00981
|
194 |
+
2023-07-24 01:21:29.617508: train_loss -0.5761
|
195 |
+
2023-07-24 01:21:29.617684: val_loss -0.4919
|
196 |
+
2023-07-24 01:21:29.617774: Pseudo dice [0.8628, 0.7072, 0.4682]
|
197 |
+
2023-07-24 01:21:29.617859: Epoch time: 211.17 s
|
198 |
+
2023-07-24 01:21:29.617927: Yayy! New best EMA pseudo Dice: 0.6286
|
199 |
+
2023-07-24 01:21:32.232873:
|
200 |
+
2023-07-24 01:21:32.232998: Epoch 22
|
201 |
+
2023-07-24 01:21:32.233115: Current learning rate: 0.0098
|
202 |
+
2023-07-24 01:24:54.282193: train_loss -0.5831
|
203 |
+
2023-07-24 01:24:54.282391: val_loss -0.5023
|
204 |
+
2023-07-24 01:24:54.282501: Pseudo dice [0.8587, 0.6942, 0.4825]
|
205 |
+
2023-07-24 01:24:54.282606: Epoch time: 202.05 s
|
206 |
+
2023-07-24 01:24:54.282692: Yayy! New best EMA pseudo Dice: 0.6336
|
207 |
+
2023-07-24 01:24:57.618637:
|
208 |
+
2023-07-24 01:24:57.618829: Epoch 23
|
209 |
+
2023-07-24 01:24:57.618946: Current learning rate: 0.00979
|
210 |
+
2023-07-24 01:28:25.124920: train_loss -0.5864
|
211 |
+
2023-07-24 01:28:25.125104: val_loss -0.5029
|
212 |
+
2023-07-24 01:28:25.125192: Pseudo dice [0.8623, 0.7014, 0.5049]
|
213 |
+
2023-07-24 01:28:25.125279: Epoch time: 207.51 s
|
214 |
+
2023-07-24 01:28:25.125346: Yayy! New best EMA pseudo Dice: 0.6392
|
215 |
+
2023-07-24 01:28:29.015366:
|
216 |
+
2023-07-24 01:28:29.015487: Epoch 24
|
217 |
+
2023-07-24 01:28:29.015594: Current learning rate: 0.00978
|
218 |
+
2023-07-24 01:32:03.197192: train_loss -0.5843
|
219 |
+
2023-07-24 01:32:03.197452: val_loss -0.478
|
220 |
+
2023-07-24 01:32:03.197542: Pseudo dice [0.8586, 0.6702, 0.5603]
|
221 |
+
2023-07-24 01:32:03.197691: Epoch time: 214.18 s
|
222 |
+
2023-07-24 01:32:03.197757: Yayy! New best EMA pseudo Dice: 0.6449
|
223 |
+
2023-07-24 01:32:05.726707:
|
224 |
+
2023-07-24 01:32:05.726868: Epoch 25
|
225 |
+
2023-07-24 01:32:05.726998: Current learning rate: 0.00977
|
226 |
+
2023-07-24 01:35:41.851906: train_loss -0.5882
|
227 |
+
2023-07-24 01:35:41.852082: val_loss -0.4719
|
228 |
+
2023-07-24 01:35:41.852175: Pseudo dice [0.862, 0.6743, 0.3966]
|
229 |
+
2023-07-24 01:35:41.852259: Epoch time: 216.13 s
|
230 |
+
2023-07-24 01:35:43.534244:
|
231 |
+
2023-07-24 01:35:43.534373: Epoch 26
|
232 |
+
2023-07-24 01:35:43.534485: Current learning rate: 0.00977
|
233 |
+
2023-07-24 01:39:02.738217: train_loss -0.6018
|
234 |
+
2023-07-24 01:39:02.743619: val_loss -0.4994
|
235 |
+
2023-07-24 01:39:02.743780: Pseudo dice [0.8766, 0.733, 0.4566]
|
236 |
+
2023-07-24 01:39:02.743932: Epoch time: 199.21 s
|
237 |
+
2023-07-24 01:39:02.744023: Yayy! New best EMA pseudo Dice: 0.6493
|
238 |
+
2023-07-24 01:39:05.142646:
|
239 |
+
2023-07-24 01:39:05.142778: Epoch 27
|
240 |
+
2023-07-24 01:39:05.142897: Current learning rate: 0.00976
|
241 |
+
2023-07-24 01:42:29.737434: train_loss -0.5995
|
242 |
+
2023-07-24 01:42:29.737619: val_loss -0.4867
|
243 |
+
2023-07-24 01:42:29.737704: Pseudo dice [0.8689, 0.689, 0.4957]
|
244 |
+
2023-07-24 01:42:29.737784: Epoch time: 204.6 s
|
245 |
+
2023-07-24 01:42:29.737848: Yayy! New best EMA pseudo Dice: 0.6528
|
246 |
+
2023-07-24 01:42:32.621387:
|
247 |
+
2023-07-24 01:42:32.621503: Epoch 28
|
248 |
+
2023-07-24 01:42:32.621617: Current learning rate: 0.00975
|
249 |
+
2023-07-24 01:46:07.936492: train_loss -0.5998
|
250 |
+
2023-07-24 01:46:07.936731: val_loss -0.4998
|
251 |
+
2023-07-24 01:46:07.943375: Pseudo dice [0.8649, 0.6936, 0.5489]
|
252 |
+
2023-07-24 01:46:07.943589: Epoch time: 215.32 s
|
253 |
+
2023-07-24 01:46:07.943666: Yayy! New best EMA pseudo Dice: 0.6578
|
254 |
+
2023-07-24 01:46:12.240499:
|
255 |
+
2023-07-24 01:46:12.240789: Epoch 29
|
256 |
+
2023-07-24 01:46:12.240907: Current learning rate: 0.00974
|
257 |
+
2023-07-24 01:49:49.765490: train_loss -0.6192
|
258 |
+
2023-07-24 01:49:49.765681: val_loss -0.4884
|
259 |
+
2023-07-24 01:49:49.765781: Pseudo dice [0.8677, 0.6745, 0.5335]
|
260 |
+
2023-07-24 01:49:49.765875: Epoch time: 217.53 s
|
261 |
+
2023-07-24 01:49:49.765948: Yayy! New best EMA pseudo Dice: 0.6612
|
262 |
+
2023-07-24 01:49:54.074142:
|
263 |
+
2023-07-24 01:49:54.074317: Epoch 30
|
264 |
+
2023-07-24 01:49:54.074434: Current learning rate: 0.00973
|
265 |
+
2023-07-24 01:53:33.757728: train_loss -0.6115
|
266 |
+
2023-07-24 01:53:33.758031: val_loss -0.4838
|
267 |
+
2023-07-24 01:53:33.758127: Pseudo dice [0.8786, 0.6666, 0.5728]
|
268 |
+
2023-07-24 01:53:33.758209: Epoch time: 219.69 s
|
269 |
+
2023-07-24 01:53:33.758281: Yayy! New best EMA pseudo Dice: 0.6656
|
270 |
+
2023-07-24 01:53:37.008034:
|
271 |
+
2023-07-24 01:53:37.008158: Epoch 31
|
272 |
+
2023-07-24 01:53:37.008272: Current learning rate: 0.00972
|
273 |
+
2023-07-24 01:57:03.417002: train_loss -0.625
|
274 |
+
2023-07-24 01:57:03.417286: val_loss -0.5044
|
275 |
+
2023-07-24 01:57:03.417374: Pseudo dice [0.8686, 0.7071, 0.5431]
|
276 |
+
2023-07-24 01:57:03.417525: Epoch time: 206.41 s
|
277 |
+
2023-07-24 01:57:03.417588: Yayy! New best EMA pseudo Dice: 0.6697
|
278 |
+
2023-07-24 01:57:05.575807:
|
279 |
+
2023-07-24 01:57:05.575927: Epoch 32
|
280 |
+
2023-07-24 01:57:05.576024: Current learning rate: 0.00971
|
281 |
+
2023-07-24 02:00:42.226546: train_loss -0.6184
|
282 |
+
2023-07-24 02:00:42.232471: val_loss -0.4894
|
283 |
+
2023-07-24 02:00:42.232700: Pseudo dice [0.8702, 0.7033, 0.4937]
|
284 |
+
2023-07-24 02:00:42.232790: Epoch time: 216.65 s
|
285 |
+
2023-07-24 02:00:42.232924: Yayy! New best EMA pseudo Dice: 0.6716
|
286 |
+
2023-07-24 02:00:45.014342:
|
287 |
+
2023-07-24 02:00:45.014468: Epoch 33
|
288 |
+
2023-07-24 02:00:45.014586: Current learning rate: 0.0097
|
289 |
+
2023-07-24 02:04:19.757532: train_loss -0.6217
|
290 |
+
2023-07-24 02:04:19.757771: val_loss -0.4804
|
291 |
+
2023-07-24 02:04:19.757856: Pseudo dice [0.8748, 0.693, 0.5362]
|
292 |
+
2023-07-24 02:04:19.758005: Epoch time: 214.74 s
|
293 |
+
2023-07-24 02:04:19.758069: Yayy! New best EMA pseudo Dice: 0.6746
|
294 |
+
2023-07-24 02:04:24.430918:
|
295 |
+
2023-07-24 02:04:24.431120: Epoch 34
|
296 |
+
2023-07-24 02:04:24.431232: Current learning rate: 0.00969
|
297 |
+
2023-07-24 02:08:00.604949: train_loss -0.6087
|
298 |
+
2023-07-24 02:08:00.605173: val_loss -0.4999
|
299 |
+
2023-07-24 02:08:00.605262: Pseudo dice [0.8614, 0.7024, 0.5684]
|
300 |
+
2023-07-24 02:08:00.605341: Epoch time: 216.18 s
|
301 |
+
2023-07-24 02:08:00.605400: Yayy! New best EMA pseudo Dice: 0.6782
|
302 |
+
2023-07-24 02:08:05.228923:
|
303 |
+
2023-07-24 02:08:05.229156: Epoch 35
|
304 |
+
2023-07-24 02:08:05.229259: Current learning rate: 0.00968
|
305 |
+
2023-07-24 02:11:46.128471: train_loss -0.6278
|
306 |
+
2023-07-24 02:11:46.128723: val_loss -0.4975
|
307 |
+
2023-07-24 02:11:46.128807: Pseudo dice [0.8697, 0.6883, 0.5635]
|
308 |
+
2023-07-24 02:11:46.128886: Epoch time: 220.9 s
|
309 |
+
2023-07-24 02:11:46.128947: Yayy! New best EMA pseudo Dice: 0.6811
|
310 |
+
2023-07-24 02:11:48.352022:
|
311 |
+
2023-07-24 02:11:48.352140: Epoch 36
|
312 |
+
2023-07-24 02:11:48.352254: Current learning rate: 0.00968
|
313 |
+
2023-07-24 02:15:18.130978: train_loss -0.6341
|
314 |
+
2023-07-24 02:15:18.131156: val_loss -0.514
|
315 |
+
2023-07-24 02:15:18.131239: Pseudo dice [0.8717, 0.7153, 0.5774]
|
316 |
+
2023-07-24 02:15:18.131315: Epoch time: 209.78 s
|
317 |
+
2023-07-24 02:15:18.131555: Yayy! New best EMA pseudo Dice: 0.6852
|
318 |
+
2023-07-24 02:15:20.282215:
|
319 |
+
2023-07-24 02:15:20.282343: Epoch 37
|
320 |
+
2023-07-24 02:15:20.282458: Current learning rate: 0.00967
|
321 |
+
2023-07-24 02:18:53.374968: train_loss -0.6275
|
322 |
+
2023-07-24 02:18:53.375212: val_loss -0.5119
|
323 |
+
2023-07-24 02:18:53.375304: Pseudo dice [0.867, 0.6981, 0.5894]
|
324 |
+
2023-07-24 02:18:53.375387: Epoch time: 213.09 s
|
325 |
+
2023-07-24 02:18:53.375454: Yayy! New best EMA pseudo Dice: 0.6885
|
326 |
+
2023-07-24 02:18:56.726088:
|
327 |
+
2023-07-24 02:18:56.726211: Epoch 38
|
328 |
+
2023-07-24 02:18:56.726327: Current learning rate: 0.00966
|
329 |
+
2023-07-24 02:22:22.025652: train_loss -0.6328
|
330 |
+
2023-07-24 02:22:22.031740: val_loss -0.503
|
331 |
+
2023-07-24 02:22:22.032003: Pseudo dice [0.8649, 0.7161, 0.5203]
|
332 |
+
2023-07-24 02:22:22.032098: Epoch time: 205.3 s
|
333 |
+
2023-07-24 02:22:22.032236: Yayy! New best EMA pseudo Dice: 0.6897
|
334 |
+
2023-07-24 02:22:25.923321:
|
335 |
+
2023-07-24 02:22:25.923668: Epoch 39
|
336 |
+
2023-07-24 02:22:25.923775: Current learning rate: 0.00965
|
337 |
+
2023-07-24 02:25:55.050353: train_loss -0.6391
|
338 |
+
2023-07-24 02:25:55.050546: val_loss -0.5015
|
339 |
+
2023-07-24 02:25:55.050636: Pseudo dice [0.8618, 0.6972, 0.566]
|
340 |
+
2023-07-24 02:25:55.050725: Epoch time: 209.13 s
|
341 |
+
2023-07-24 02:25:55.050815: Yayy! New best EMA pseudo Dice: 0.6915
|
342 |
+
2023-07-24 02:25:57.131437:
|
343 |
+
2023-07-24 02:25:57.131554: Epoch 40
|
344 |
+
2023-07-24 02:25:57.131677: Current learning rate: 0.00964
|
345 |
+
2023-07-24 02:29:24.101611: train_loss -0.6453
|
346 |
+
2023-07-24 02:29:24.101807: val_loss -0.4857
|
347 |
+
2023-07-24 02:29:24.101905: Pseudo dice [0.8591, 0.6952, 0.5601]
|
348 |
+
2023-07-24 02:29:24.102006: Epoch time: 206.97 s
|
349 |
+
2023-07-24 02:29:24.102089: Yayy! New best EMA pseudo Dice: 0.6929
|
350 |
+
2023-07-24 02:29:26.722635:
|
351 |
+
2023-07-24 02:29:26.722777: Epoch 41
|
352 |
+
2023-07-24 02:29:26.722900: Current learning rate: 0.00963
|
353 |
+
2023-07-24 02:33:01.503387: train_loss -0.6384
|
354 |
+
2023-07-24 02:33:01.503580: val_loss -0.495
|
355 |
+
2023-07-24 02:33:01.503671: Pseudo dice [0.8646, 0.7111, 0.4851]
|
356 |
+
2023-07-24 02:33:01.503757: Epoch time: 214.78 s
|
357 |
+
2023-07-24 02:33:03.298025:
|
358 |
+
2023-07-24 02:33:03.298147: Epoch 42
|
359 |
+
2023-07-24 02:33:03.298252: Current learning rate: 0.00962
|
360 |
+
2023-07-24 02:36:28.531214: train_loss -0.6454
|
361 |
+
2023-07-24 02:36:28.531463: val_loss -0.4999
|
362 |
+
2023-07-24 02:36:28.531549: Pseudo dice [0.8693, 0.691, 0.6198]
|
363 |
+
2023-07-24 02:36:28.531719: Epoch time: 205.23 s
|
364 |
+
2023-07-24 02:36:28.531906: Yayy! New best EMA pseudo Dice: 0.6957
|
365 |
+
2023-07-24 02:36:30.675420:
|
366 |
+
2023-07-24 02:36:30.675563: Epoch 43
|
367 |
+
2023-07-24 02:36:30.675693: Current learning rate: 0.00961
|
368 |
+
2023-07-24 02:39:57.254115: train_loss -0.6449
|
369 |
+
2023-07-24 02:39:57.254383: val_loss -0.5029
|
370 |
+
2023-07-24 02:39:57.254475: Pseudo dice [0.8713, 0.6894, 0.6393]
|
371 |
+
2023-07-24 02:39:57.254557: Epoch time: 206.58 s
|
372 |
+
2023-07-24 02:39:57.254622: Yayy! New best EMA pseudo Dice: 0.6995
|
373 |
+
2023-07-24 02:39:59.978240:
|
374 |
+
2023-07-24 02:39:59.978516: Epoch 44
|
375 |
+
2023-07-24 02:39:59.978635: Current learning rate: 0.0096
|
376 |
+
2023-07-24 02:43:33.330351: train_loss -0.6418
|
377 |
+
2023-07-24 02:43:33.330585: val_loss -0.4937
|
378 |
+
2023-07-24 02:43:33.330672: Pseudo dice [0.8727, 0.6956, 0.5291]
|
379 |
+
2023-07-24 02:43:33.330842: Epoch time: 213.35 s
|
380 |
+
2023-07-24 02:43:35.411677:
|
381 |
+
2023-07-24 02:43:35.411899: Epoch 45
|
382 |
+
2023-07-24 02:43:35.412007: Current learning rate: 0.00959
|
383 |
+
2023-07-24 02:47:16.638136: train_loss -0.6484
|
384 |
+
2023-07-24 02:47:16.638322: val_loss -0.5065
|
385 |
+
2023-07-24 02:47:16.638409: Pseudo dice [0.8781, 0.7181, 0.5566]
|
386 |
+
2023-07-24 02:47:16.638503: Epoch time: 221.23 s
|
387 |
+
2023-07-24 02:47:16.638575: Yayy! New best EMA pseudo Dice: 0.7013
|
388 |
+
2023-07-24 02:47:18.875849:
|
389 |
+
2023-07-24 02:47:18.876126: Epoch 46
|
390 |
+
2023-07-24 02:47:18.876246: Current learning rate: 0.00959
|
391 |
+
2023-07-24 02:50:43.664102: train_loss -0.6594
|
392 |
+
2023-07-24 02:50:43.664368: val_loss -0.5021
|
393 |
+
2023-07-24 02:50:43.664471: Pseudo dice [0.8832, 0.7081, 0.5237]
|
394 |
+
2023-07-24 02:50:43.664641: Epoch time: 204.79 s
|
395 |
+
2023-07-24 02:50:43.664771: Yayy! New best EMA pseudo Dice: 0.7016
|
396 |
+
2023-07-24 02:50:45.913680:
|
397 |
+
2023-07-24 02:50:45.913988: Epoch 47
|
398 |
+
2023-07-24 02:50:45.914099: Current learning rate: 0.00958
|
399 |
+
2023-07-24 02:54:09.407397: train_loss -0.6559
|
400 |
+
2023-07-24 02:54:09.407646: val_loss -0.4876
|
401 |
+
2023-07-24 02:54:09.407736: Pseudo dice [0.8737, 0.6605, 0.6181]
|
402 |
+
2023-07-24 02:54:09.407889: Epoch time: 203.49 s
|
403 |
+
2023-07-24 02:54:09.407957: Yayy! New best EMA pseudo Dice: 0.7032
|
404 |
+
2023-07-24 02:54:12.936934:
|
405 |
+
2023-07-24 02:54:12.937068: Epoch 48
|
406 |
+
2023-07-24 02:54:12.937182: Current learning rate: 0.00957
|
407 |
+
2023-07-24 02:57:47.539666: train_loss -0.6583
|
408 |
+
2023-07-24 02:57:47.539865: val_loss -0.5048
|
409 |
+
2023-07-24 02:57:47.540035: Pseudo dice [0.8792, 0.7214, 0.4783]
|
410 |
+
2023-07-24 02:57:47.540195: Epoch time: 214.6 s
|
411 |
+
2023-07-24 02:57:49.232162:
|
412 |
+
2023-07-24 02:57:49.232288: Epoch 49
|
413 |
+
2023-07-24 02:57:49.232400: Current learning rate: 0.00956
|
414 |
+
2023-07-24 03:01:31.963185: train_loss -0.6562
|
415 |
+
2023-07-24 03:01:31.963373: val_loss -0.5071
|
416 |
+
2023-07-24 03:01:31.963463: Pseudo dice [0.8811, 0.7189, 0.5632]
|
417 |
+
2023-07-24 03:01:31.963546: Epoch time: 222.73 s
|
418 |
+
2023-07-24 03:01:32.441789: Yayy! New best EMA pseudo Dice: 0.7041
|
419 |
+
2023-07-24 03:01:34.494628:
|
420 |
+
2023-07-24 03:01:34.494856: Epoch 50
|
421 |
+
2023-07-24 03:01:34.494962: Current learning rate: 0.00955
|
422 |
+
2023-07-24 03:05:00.456790: train_loss -0.66
|
423 |
+
2023-07-24 03:05:00.457008: val_loss -0.4885
|
424 |
+
2023-07-24 03:05:00.457094: Pseudo dice [0.8722, 0.7199, 0.3882]
|
425 |
+
2023-07-24 03:05:00.457232: Epoch time: 205.96 s
|
426 |
+
2023-07-24 03:05:01.920852:
|
427 |
+
2023-07-24 03:05:01.921130: Epoch 51
|
428 |
+
2023-07-24 03:05:01.921252: Current learning rate: 0.00954
|
429 |
+
2023-07-24 03:08:21.863105: train_loss -0.6615
|
430 |
+
2023-07-24 03:08:21.863394: val_loss -0.5063
|
431 |
+
2023-07-24 03:08:21.863482: Pseudo dice [0.8652, 0.6923, 0.5877]
|
432 |
+
2023-07-24 03:08:21.863767: Epoch time: 199.94 s
|
433 |
+
2023-07-24 03:08:23.565506:
|
434 |
+
2023-07-24 03:08:23.565624: Epoch 52
|
435 |
+
2023-07-24 03:08:23.565736: Current learning rate: 0.00953
|
436 |
+
2023-07-24 03:11:58.618505: train_loss -0.6541
|
437 |
+
2023-07-24 03:11:58.618745: val_loss -0.5208
|
438 |
+
2023-07-24 03:11:58.618862: Pseudo dice [0.8769, 0.7111, 0.5391]
|
439 |
+
2023-07-24 03:11:58.619015: Epoch time: 215.05 s
|
440 |
+
2023-07-24 03:12:00.422971:
|
441 |
+
2023-07-24 03:12:00.423093: Epoch 53
|
442 |
+
2023-07-24 03:12:00.423211: Current learning rate: 0.00952
|
443 |
+
2023-07-24 03:15:34.016732: train_loss -0.6717
|
444 |
+
2023-07-24 03:15:34.016971: val_loss -0.4904
|
445 |
+
2023-07-24 03:15:34.017070: Pseudo dice [0.8808, 0.7097, 0.4256]
|
446 |
+
2023-07-24 03:15:34.017220: Epoch time: 213.59 s
|
447 |
+
2023-07-24 03:15:36.404579:
|
448 |
+
2023-07-24 03:15:36.404704: Epoch 54
|
449 |
+
2023-07-24 03:15:36.404819: Current learning rate: 0.00951
|
450 |
+
2023-07-24 03:19:13.253185: train_loss -0.677
|
451 |
+
2023-07-24 03:19:13.253387: val_loss -0.4902
|
452 |
+
2023-07-24 03:19:13.253475: Pseudo dice [0.8606, 0.7035, 0.5965]
|
453 |
+
2023-07-24 03:19:13.253560: Epoch time: 216.85 s
|
454 |
+
2023-07-24 03:19:14.880905:
|
455 |
+
2023-07-24 03:19:14.881205: Epoch 55
|
456 |
+
2023-07-24 03:19:14.881327: Current learning rate: 0.0095
|
457 |
+
2023-07-24 03:22:41.606614: train_loss -0.6675
|
458 |
+
2023-07-24 03:22:41.606848: val_loss -0.4941
|
459 |
+
2023-07-24 03:22:41.606937: Pseudo dice [0.873, 0.7194, 0.3798]
|
460 |
+
2023-07-24 03:22:41.607017: Epoch time: 206.73 s
|
461 |
+
2023-07-24 03:22:45.052177:
|
462 |
+
2023-07-24 03:22:45.052385: Epoch 56
|
463 |
+
2023-07-24 03:22:45.052505: Current learning rate: 0.00949
|
464 |
+
2023-07-24 03:26:17.637499: train_loss -0.6827
|
465 |
+
2023-07-24 03:26:17.637738: val_loss -0.5062
|
466 |
+
2023-07-24 03:26:17.637826: Pseudo dice [0.8737, 0.71, 0.6042]
|
467 |
+
2023-07-24 03:26:17.637978: Epoch time: 212.59 s
|
468 |
+
2023-07-24 03:26:21.340287:
|
469 |
+
2023-07-24 03:26:21.340517: Epoch 57
|
470 |
+
2023-07-24 03:26:21.340631: Current learning rate: 0.00949
|
471 |
+
2023-07-24 03:29:47.100365: train_loss -0.6838
|
472 |
+
2023-07-24 03:29:47.100567: val_loss -0.4964
|
473 |
+
2023-07-24 03:29:47.100666: Pseudo dice [0.8891, 0.7083, 0.4048]
|
474 |
+
2023-07-24 03:29:47.100763: Epoch time: 205.76 s
|
475 |
+
2023-07-24 03:29:48.555212:
|
476 |
+
2023-07-24 03:29:48.555346: Epoch 58
|
477 |
+
2023-07-24 03:29:48.555466: Current learning rate: 0.00948
|
478 |
+
2023-07-24 03:33:20.722145: train_loss -0.6697
|
479 |
+
2023-07-24 03:33:20.722324: val_loss -0.5062
|
480 |
+
2023-07-24 03:33:20.722407: Pseudo dice [0.8666, 0.6973, 0.5627]
|
481 |
+
2023-07-24 03:33:20.722488: Epoch time: 212.17 s
|
482 |
+
2023-07-24 03:33:23.647374:
|
483 |
+
2023-07-24 03:33:23.647504: Epoch 59
|
484 |
+
2023-07-24 03:33:23.647635: Current learning rate: 0.00947
|
485 |
+
2023-07-24 03:36:54.070232: train_loss -0.6887
|
486 |
+
2023-07-24 03:36:54.070504: val_loss -0.5134
|
487 |
+
2023-07-24 03:36:54.070593: Pseudo dice [0.8732, 0.7361, 0.4845]
|
488 |
+
2023-07-24 03:36:54.070743: Epoch time: 210.42 s
|
489 |
+
2023-07-24 03:36:56.444733:
|
490 |
+
2023-07-24 03:36:56.444867: Epoch 60
|
491 |
+
2023-07-24 03:36:56.444985: Current learning rate: 0.00946
|
492 |
+
2023-07-24 03:40:22.488861: train_loss -0.6985
|
493 |
+
2023-07-24 03:40:22.498857: val_loss -0.4992
|
494 |
+
2023-07-24 03:40:22.499064: Pseudo dice [0.8846, 0.7076, 0.5453]
|
495 |
+
2023-07-24 03:40:22.499147: Epoch time: 206.05 s
|
496 |
+
2023-07-24 03:40:25.415841:
|
497 |
+
2023-07-24 03:40:25.415988: Epoch 61
|
498 |
+
2023-07-24 03:40:25.416104: Current learning rate: 0.00945
|
499 |
+
2023-07-24 03:43:58.801075: train_loss -0.6876
|
500 |
+
2023-07-24 03:43:58.801260: val_loss -0.5122
|
501 |
+
2023-07-24 03:43:58.801349: Pseudo dice [0.8586, 0.716, 0.5498]
|
502 |
+
2023-07-24 03:43:58.801434: Epoch time: 213.39 s
|
503 |
+
2023-07-24 03:44:01.958030:
|
504 |
+
2023-07-24 03:44:01.970955: Epoch 62
|
505 |
+
2023-07-24 03:44:01.971086: Current learning rate: 0.00944
|
506 |
+
2023-07-24 03:47:44.738477: train_loss -0.6943
|
507 |
+
2023-07-24 03:47:44.738670: val_loss -0.5106
|
508 |
+
2023-07-24 03:47:44.738753: Pseudo dice [0.882, 0.7326, 0.544]
|
509 |
+
2023-07-24 03:47:44.738875: Epoch time: 222.78 s
|
510 |
+
2023-07-24 03:47:48.039309:
|
511 |
+
2023-07-24 03:47:48.039480: Epoch 63
|
512 |
+
2023-07-24 03:47:48.039597: Current learning rate: 0.00943
|
513 |
+
2023-07-24 03:51:16.951300: train_loss -0.6731
|
514 |
+
2023-07-24 03:51:16.951505: val_loss -0.4852
|
515 |
+
2023-07-24 03:51:16.951604: Pseudo dice [0.8708, 0.7122, 0.4841]
|
516 |
+
2023-07-24 03:51:16.951797: Epoch time: 208.91 s
|
517 |
+
2023-07-24 03:51:18.621170:
|
518 |
+
2023-07-24 03:51:18.621321: Epoch 64
|
519 |
+
2023-07-24 03:51:18.621441: Current learning rate: 0.00942
|
520 |
+
2023-07-24 03:54:44.957338: train_loss -0.6761
|
521 |
+
2023-07-24 03:54:44.957540: val_loss -0.4724
|
522 |
+
2023-07-24 03:54:44.957629: Pseudo dice [0.8598, 0.6921, 0.5167]
|
523 |
+
2023-07-24 03:54:44.957714: Epoch time: 206.34 s
|
524 |
+
2023-07-24 03:54:46.812274:
|
525 |
+
2023-07-24 03:54:46.812412: Epoch 65
|
526 |
+
2023-07-24 03:54:46.812517: Current learning rate: 0.00941
|
527 |
+
2023-07-24 03:58:23.950075: train_loss -0.6927
|
528 |
+
2023-07-24 03:58:23.950717: val_loss -0.5027
|
529 |
+
2023-07-24 03:58:23.951065: Pseudo dice [0.8701, 0.7152, 0.4785]
|
530 |
+
2023-07-24 03:58:23.951216: Epoch time: 217.14 s
|
531 |
+
2023-07-24 03:58:25.802012:
|
532 |
+
2023-07-24 03:58:25.802195: Epoch 66
|
533 |
+
2023-07-24 03:58:25.802299: Current learning rate: 0.0094
|
534 |
+
2023-07-24 04:01:56.722209: train_loss -0.6963
|
535 |
+
2023-07-24 04:01:56.722415: val_loss -0.5062
|
536 |
+
2023-07-24 04:01:56.722507: Pseudo dice [0.8726, 0.7042, 0.5969]
|
537 |
+
2023-07-24 04:01:56.722586: Epoch time: 210.92 s
|
538 |
+
2023-07-24 04:01:59.771096:
|
539 |
+
2023-07-24 04:01:59.771243: Epoch 67
|
540 |
+
2023-07-24 04:01:59.771358: Current learning rate: 0.00939
|
541 |
+
2023-07-24 04:05:40.925208: train_loss -0.6952
|
542 |
+
2023-07-24 04:05:40.925490: val_loss -0.5088
|
543 |
+
2023-07-24 04:05:40.925585: Pseudo dice [0.8802, 0.729, 0.5521]
|
544 |
+
2023-07-24 04:05:40.925745: Epoch time: 221.16 s
|
545 |
+
2023-07-24 04:05:43.897002:
|
546 |
+
2023-07-24 04:05:43.898616: Epoch 68
|
547 |
+
2023-07-24 04:05:43.898738: Current learning rate: 0.00939
|
548 |
+
2023-07-24 04:09:15.657769: train_loss -0.6889
|
549 |
+
2023-07-24 04:09:15.658007: val_loss -0.516
|
550 |
+
2023-07-24 04:09:15.658100: Pseudo dice [0.8782, 0.7278, 0.5643]
|
551 |
+
2023-07-24 04:09:15.658307: Epoch time: 211.76 s
|
552 |
+
2023-07-24 04:09:15.658453: Yayy! New best EMA pseudo Dice: 0.7051
|
553 |
+
2023-07-24 04:09:18.116199:
|
554 |
+
2023-07-24 04:09:18.116321: Epoch 69
|
555 |
+
2023-07-24 04:09:18.116441: Current learning rate: 0.00938
|
556 |
+
2023-07-24 04:12:42.753379: train_loss -0.6904
|
557 |
+
2023-07-24 04:12:42.753681: val_loss -0.4671
|
558 |
+
2023-07-24 04:12:42.753862: Pseudo dice [0.8749, 0.7138, 0.3681]
|
559 |
+
2023-07-24 04:12:42.753966: Epoch time: 204.64 s
|
560 |
+
2023-07-24 04:12:44.327600:
|
561 |
+
2023-07-24 04:12:44.327721: Epoch 70
|
562 |
+
2023-07-24 04:12:44.327840: Current learning rate: 0.00937
|
563 |
+
2023-07-24 04:16:22.761208: train_loss -0.6958
|
564 |
+
2023-07-24 04:16:22.761458: val_loss -0.5012
|
565 |
+
2023-07-24 04:16:22.761544: Pseudo dice [0.8879, 0.7126, 0.5304]
|
566 |
+
2023-07-24 04:16:22.761694: Epoch time: 218.43 s
|
567 |
+
2023-07-24 04:16:24.628846:
|
568 |
+
2023-07-24 04:16:24.629004: Epoch 71
|
569 |
+
2023-07-24 04:16:24.629131: Current learning rate: 0.00936
|
570 |
+
2023-07-24 04:19:50.557256: train_loss -0.6919
|
571 |
+
2023-07-24 04:19:50.557556: val_loss -0.4675
|
572 |
+
2023-07-24 04:19:50.557651: Pseudo dice [0.8698, 0.6855, 0.5056]
|
573 |
+
2023-07-24 04:19:50.557837: Epoch time: 205.93 s
|
574 |
+
2023-07-24 04:19:53.142438:
|
575 |
+
2023-07-24 04:19:53.142620: Epoch 72
|
576 |
+
2023-07-24 04:19:53.142735: Current learning rate: 0.00935
|
577 |
+
2023-07-24 04:23:22.464141: train_loss -0.6977
|
578 |
+
2023-07-24 04:23:22.464365: val_loss -0.5149
|
579 |
+
2023-07-24 04:23:22.464458: Pseudo dice [0.8859, 0.7116, 0.5175]
|
580 |
+
2023-07-24 04:23:22.464544: Epoch time: 209.32 s
|
581 |
+
2023-07-24 04:23:24.605744:
|
582 |
+
2023-07-24 04:23:24.605880: Epoch 73
|
583 |
+
2023-07-24 04:23:24.605996: Current learning rate: 0.00934
|
584 |
+
2023-07-24 04:26:50.364227: train_loss -0.6983
|
585 |
+
2023-07-24 04:26:50.364492: val_loss -0.4938
|
586 |
+
2023-07-24 04:26:50.364594: Pseudo dice [0.8637, 0.7213, 0.5451]
|
587 |
+
2023-07-24 04:26:50.364779: Epoch time: 205.76 s
|
588 |
+
2023-07-24 04:26:52.800122:
|
589 |
+
2023-07-24 04:26:52.800305: Epoch 74
|
590 |
+
2023-07-24 04:26:52.800421: Current learning rate: 0.00933
|
591 |
+
2023-07-24 04:30:26.828684: train_loss -0.6956
|
592 |
+
2023-07-24 04:30:26.828918: val_loss -0.4781
|
593 |
+
2023-07-24 04:30:26.829004: Pseudo dice [0.8634, 0.6982, 0.4993]
|
594 |
+
2023-07-24 04:30:26.829283: Epoch time: 214.03 s
|
595 |
+
2023-07-24 04:30:28.715835:
|
596 |
+
2023-07-24 04:30:28.716055: Epoch 75
|
597 |
+
2023-07-24 04:30:28.716175: Current learning rate: 0.00932
|
598 |
+
2023-07-24 04:33:56.996001: train_loss -0.6978
|
599 |
+
2023-07-24 04:33:56.996192: val_loss -0.5014
|
600 |
+
2023-07-24 04:33:56.996281: Pseudo dice [0.8721, 0.6953, 0.5428]
|
601 |
+
2023-07-24 04:33:56.996363: Epoch time: 208.28 s
|
602 |
+
2023-07-24 04:34:01.112788:
|
603 |
+
2023-07-24 04:34:01.112929: Epoch 76
|
604 |
+
2023-07-24 04:34:01.113038: Current learning rate: 0.00931
|
605 |
+
2023-07-24 04:37:36.118190: train_loss -0.6992
|
606 |
+
2023-07-24 04:37:36.118396: val_loss -0.5014
|
607 |
+
2023-07-24 04:37:36.118491: Pseudo dice [0.8768, 0.7055, 0.5652]
|
608 |
+
2023-07-24 04:37:36.118583: Epoch time: 215.01 s
|
609 |
+
2023-07-24 04:37:39.211814:
|
610 |
+
2023-07-24 04:37:39.211969: Epoch 77
|
611 |
+
2023-07-24 04:37:39.212115: Current learning rate: 0.0093
|
612 |
+
2023-07-24 04:41:10.694273: train_loss -0.7058
|
613 |
+
2023-07-24 04:41:10.694464: val_loss -0.4895
|
614 |
+
2023-07-24 04:41:10.694552: Pseudo dice [0.8602, 0.7049, 0.5613]
|
615 |
+
2023-07-24 04:41:10.694637: Epoch time: 211.48 s
|
616 |
+
2023-07-24 04:41:13.013998:
|
617 |
+
2023-07-24 04:41:13.014146: Epoch 78
|
618 |
+
2023-07-24 04:41:13.014262: Current learning rate: 0.0093
|
619 |
+
2023-07-24 04:44:39.537027: train_loss -0.7016
|
620 |
+
2023-07-24 04:44:39.537224: val_loss -0.4884
|
621 |
+
2023-07-24 04:44:39.537313: Pseudo dice [0.8797, 0.7206, 0.4807]
|
622 |
+
2023-07-24 04:44:39.537394: Epoch time: 206.52 s
|
623 |
+
2023-07-24 04:44:41.752397:
|
624 |
+
2023-07-24 04:44:41.752547: Epoch 79
|
625 |
+
2023-07-24 04:44:41.752668: Current learning rate: 0.00929
|
626 |
+
2023-07-24 04:48:09.494605: train_loss -0.6964
|
627 |
+
2023-07-24 04:48:09.494830: val_loss -0.5074
|
628 |
+
2023-07-24 04:48:09.494932: Pseudo dice [0.8874, 0.7203, 0.6069]
|
629 |
+
2023-07-24 04:48:09.495023: Epoch time: 207.74 s
|
630 |
+
2023-07-24 04:48:11.746876:
|
631 |
+
2023-07-24 04:48:11.747036: Epoch 80
|
632 |
+
2023-07-24 04:48:11.747147: Current learning rate: 0.00928
|
633 |
+
2023-07-24 04:51:42.348668: train_loss -0.7065
|
634 |
+
2023-07-24 04:51:42.348896: val_loss -0.4837
|
635 |
+
2023-07-24 04:51:42.348983: Pseudo dice [0.8784, 0.7032, 0.5621]
|
636 |
+
2023-07-24 04:51:42.349133: Epoch time: 210.6 s
|
637 |
+
2023-07-24 04:51:42.349199: Yayy! New best EMA pseudo Dice: 0.7061
|
638 |
+
2023-07-24 04:51:44.484021:
|
639 |
+
2023-07-24 04:51:44.484140: Epoch 81
|
640 |
+
2023-07-24 04:51:44.484257: Current learning rate: 0.00927
|
641 |
+
2023-07-24 04:55:09.696577: train_loss -0.714
|
642 |
+
2023-07-24 04:55:09.696886: val_loss -0.491
|
643 |
+
2023-07-24 04:55:09.696984: Pseudo dice [0.8814, 0.7251, 0.4554]
|
644 |
+
2023-07-24 04:55:09.697072: Epoch time: 205.21 s
|
645 |
+
2023-07-24 04:55:11.259889:
|
646 |
+
2023-07-24 04:55:11.260105: Epoch 82
|
647 |
+
2023-07-24 04:55:11.260218: Current learning rate: 0.00926
|
648 |
+
2023-07-24 04:58:42.167684: train_loss -0.7151
|
649 |
+
2023-07-24 04:58:42.167853: val_loss -0.5149
|
650 |
+
2023-07-24 04:58:42.167938: Pseudo dice [0.8747, 0.6999, 0.632]
|
651 |
+
2023-07-24 04:58:42.168024: Epoch time: 210.91 s
|
652 |
+
2023-07-24 04:58:42.168089: Yayy! New best EMA pseudo Dice: 0.7073
|
653 |
+
2023-07-24 04:58:46.756355:
|
654 |
+
2023-07-24 04:58:46.756490: Epoch 83
|
655 |
+
2023-07-24 04:58:46.756597: Current learning rate: 0.00925
|
656 |
+
2023-07-24 05:02:22.008022: train_loss -0.7232
|
657 |
+
2023-07-24 05:02:22.008212: val_loss -0.5229
|
658 |
+
2023-07-24 05:02:22.008301: Pseudo dice [0.8914, 0.7236, 0.6229]
|
659 |
+
2023-07-24 05:02:22.008386: Epoch time: 215.25 s
|
660 |
+
2023-07-24 05:02:22.008452: Yayy! New best EMA pseudo Dice: 0.7112
|
661 |
+
2023-07-24 05:02:24.066390:
|
662 |
+
2023-07-24 05:02:24.066524: Epoch 84
|
663 |
+
2023-07-24 05:02:24.066619: Current learning rate: 0.00924
|
664 |
+
2023-07-24 05:05:50.327326: train_loss -0.725
|
665 |
+
2023-07-24 05:05:50.327611: val_loss -0.5159
|
666 |
+
2023-07-24 05:05:50.327698: Pseudo dice [0.8756, 0.7106, 0.5817]
|
667 |
+
2023-07-24 05:05:50.327851: Epoch time: 206.26 s
|
668 |
+
2023-07-24 05:05:50.327918: Yayy! New best EMA pseudo Dice: 0.7123
|
669 |
+
2023-07-24 05:05:54.485906:
|
670 |
+
2023-07-24 05:05:54.486033: Epoch 85
|
671 |
+
2023-07-24 05:05:54.486146: Current learning rate: 0.00923
|
672 |
+
2023-07-24 05:09:37.322994: train_loss -0.723
|
673 |
+
2023-07-24 05:09:37.323187: val_loss -0.5029
|
674 |
+
2023-07-24 05:09:37.323277: Pseudo dice [0.8783, 0.7171, 0.4587]
|
675 |
+
2023-07-24 05:09:37.323362: Epoch time: 222.84 s
|
676 |
+
2023-07-24 05:09:38.723594:
|
677 |
+
2023-07-24 05:09:38.723815: Epoch 86
|
678 |
+
2023-07-24 05:09:38.723936: Current learning rate: 0.00922
|
679 |
+
2023-07-24 05:13:09.316705: train_loss -0.7182
|
680 |
+
2023-07-24 05:13:09.316886: val_loss -0.4834
|
681 |
+
2023-07-24 05:13:09.316982: Pseudo dice [0.8828, 0.7206, 0.4715]
|
682 |
+
2023-07-24 05:13:09.317072: Epoch time: 210.59 s
|
683 |
+
2023-07-24 05:13:12.422567:
|
684 |
+
2023-07-24 05:13:12.422688: Epoch 87
|
685 |
+
2023-07-24 05:13:12.422828: Current learning rate: 0.00921
|
686 |
+
2023-07-24 05:16:46.310607: train_loss -0.7222
|
687 |
+
2023-07-24 05:16:46.310821: val_loss -0.502
|
688 |
+
2023-07-24 05:16:46.310914: Pseudo dice [0.8901, 0.6998, 0.6513]
|
689 |
+
2023-07-24 05:16:46.310997: Epoch time: 213.89 s
|
690 |
+
2023-07-24 05:16:48.065801:
|
691 |
+
2023-07-24 05:16:48.065928: Epoch 88
|
692 |
+
2023-07-24 05:16:48.066038: Current learning rate: 0.0092
|
693 |
+
2023-07-24 05:20:26.412961: train_loss -0.7227
|
694 |
+
2023-07-24 05:20:26.413243: val_loss -0.5113
|
695 |
+
2023-07-24 05:20:26.413336: Pseudo dice [0.885, 0.7263, 0.6205]
|
696 |
+
2023-07-24 05:20:26.413419: Epoch time: 218.35 s
|
697 |
+
2023-07-24 05:20:26.413479: Yayy! New best EMA pseudo Dice: 0.7149
|
698 |
+
2023-07-24 05:20:28.466174:
|
699 |
+
2023-07-24 05:20:28.466462: Epoch 89
|
700 |
+
2023-07-24 05:20:28.466586: Current learning rate: 0.0092
|
701 |
+
2023-07-24 05:23:53.870799: train_loss -0.7281
|
702 |
+
2023-07-24 05:23:53.871042: val_loss -0.5177
|
703 |
+
2023-07-24 05:23:53.871127: Pseudo dice [0.8774, 0.7281, 0.5178]
|
704 |
+
2023-07-24 05:23:53.871280: Epoch time: 205.41 s
|
705 |
+
2023-07-24 05:23:56.666574:
|
706 |
+
2023-07-24 05:23:56.666709: Epoch 90
|
707 |
+
2023-07-24 05:23:56.666846: Current learning rate: 0.00919
|
708 |
+
2023-07-24 05:27:24.511108: train_loss -0.7268
|
709 |
+
2023-07-24 05:27:24.511282: val_loss -0.4883
|
710 |
+
2023-07-24 05:27:24.511378: Pseudo dice [0.8808, 0.7023, 0.5429]
|
711 |
+
2023-07-24 05:27:24.511463: Epoch time: 207.85 s
|
712 |
+
2023-07-24 05:27:26.253584:
|
713 |
+
2023-07-24 05:27:26.253713: Epoch 91
|
714 |
+
2023-07-24 05:27:26.253826: Current learning rate: 0.00918
|
715 |
+
2023-07-24 05:31:00.680078: train_loss -0.7187
|
716 |
+
2023-07-24 05:31:00.680262: val_loss -0.5126
|
717 |
+
2023-07-24 05:31:00.680357: Pseudo dice [0.8854, 0.734, 0.5313]
|
718 |
+
2023-07-24 05:31:00.680444: Epoch time: 214.43 s
|
719 |
+
2023-07-24 05:31:03.875111:
|
720 |
+
2023-07-24 05:31:03.875342: Epoch 92
|
721 |
+
2023-07-24 05:31:03.875453: Current learning rate: 0.00917
|
722 |
+
2023-07-24 05:34:36.700777: train_loss -0.7261
|
723 |
+
2023-07-24 05:34:36.701067: val_loss -0.4824
|
724 |
+
2023-07-24 05:34:36.701155: Pseudo dice [0.8677, 0.7068, 0.5625]
|
725 |
+
2023-07-24 05:34:36.701310: Epoch time: 212.83 s
|
726 |
+
2023-07-24 05:34:38.725615:
|
727 |
+
2023-07-24 05:34:38.725760: Epoch 93
|
728 |
+
2023-07-24 05:34:38.725878: Current learning rate: 0.00916
|
729 |
+
2023-07-24 05:38:14.723124: train_loss -0.7303
|
730 |
+
2023-07-24 05:38:14.723329: val_loss -0.4918
|
731 |
+
2023-07-24 05:38:14.723435: Pseudo dice [0.8725, 0.7201, 0.5379]
|
732 |
+
2023-07-24 05:38:14.723536: Epoch time: 216.0 s
|
733 |
+
2023-07-24 05:38:18.938028:
|
734 |
+
2023-07-24 05:38:18.938344: Epoch 94
|
735 |
+
2023-07-24 05:38:18.938459: Current learning rate: 0.00915
|
736 |
+
2023-07-24 05:41:49.722474: train_loss -0.7321
|
737 |
+
2023-07-24 05:41:49.722725: val_loss -0.5192
|
738 |
+
2023-07-24 05:41:49.722838: Pseudo dice [0.8869, 0.73, 0.5719]
|
739 |
+
2023-07-24 05:41:49.722987: Epoch time: 210.79 s
|
740 |
+
2023-07-24 05:41:49.723047: Yayy! New best EMA pseudo Dice: 0.7151
|
741 |
+
2023-07-24 05:41:52.238441:
|
742 |
+
2023-07-24 05:41:52.238770: Epoch 95
|
743 |
+
2023-07-24 05:41:52.238896: Current learning rate: 0.00914
|
744 |
+
2023-07-24 05:45:28.216917: train_loss -0.7294
|
745 |
+
2023-07-24 05:45:28.217144: val_loss -0.4859
|
746 |
+
2023-07-24 05:45:28.217231: Pseudo dice [0.8868, 0.7071, 0.502]
|
747 |
+
2023-07-24 05:45:28.217372: Epoch time: 215.98 s
|
748 |
+
2023-07-24 05:45:30.203134:
|
749 |
+
2023-07-24 05:45:30.203313: Epoch 96
|
750 |
+
2023-07-24 05:45:30.203428: Current learning rate: 0.00913
|
751 |
+
2023-07-24 05:49:07.118325: train_loss -0.7275
|
752 |
+
2023-07-24 05:49:07.130988: val_loss -0.4979
|
753 |
+
2023-07-24 05:49:07.131268: Pseudo dice [0.8742, 0.7169, 0.5796]
|
754 |
+
2023-07-24 05:49:07.131369: Epoch time: 216.92 s
|
755 |
+
2023-07-24 05:49:10.592634:
|
756 |
+
2023-07-24 05:49:10.592791: Epoch 97
|
757 |
+
2023-07-24 05:49:10.592889: Current learning rate: 0.00912
|
758 |
+
2023-07-24 05:52:37.449055: train_loss -0.7377
|
759 |
+
2023-07-24 05:52:37.449250: val_loss -0.4932
|
760 |
+
2023-07-24 05:52:37.449338: Pseudo dice [0.878, 0.7154, 0.5691]
|
761 |
+
2023-07-24 05:52:37.449421: Epoch time: 206.86 s
|
762 |
+
2023-07-24 05:52:37.449489: Yayy! New best EMA pseudo Dice: 0.7151
|
763 |
+
2023-07-24 05:52:39.613982:
|
764 |
+
2023-07-24 05:52:39.614139: Epoch 98
|
765 |
+
2023-07-24 05:52:39.614302: Current learning rate: 0.00911
|
766 |
+
2023-07-24 05:56:12.741833: train_loss -0.725
|
767 |
+
2023-07-24 05:56:12.742075: val_loss -0.5039
|
768 |
+
2023-07-24 05:56:12.742163: Pseudo dice [0.8862, 0.711, 0.6208]
|
769 |
+
2023-07-24 05:56:12.742243: Epoch time: 213.13 s
|
770 |
+
2023-07-24 05:56:12.742309: Yayy! New best EMA pseudo Dice: 0.7175
|
771 |
+
2023-07-24 05:56:16.737276:
|
772 |
+
2023-07-24 05:56:16.737576: Epoch 99
|
773 |
+
2023-07-24 05:56:16.737698: Current learning rate: 0.0091
|
774 |
+
2023-07-24 05:59:45.462096: train_loss -0.7306
|
775 |
+
2023-07-24 05:59:45.462285: val_loss -0.5266
|
776 |
+
2023-07-24 05:59:45.462388: Pseudo dice [0.8861, 0.7386, 0.513]
|
777 |
+
2023-07-24 05:59:45.462479: Epoch time: 208.73 s
|
778 |
+
2023-07-24 05:59:50.668950:
|
779 |
+
2023-07-24 05:59:50.669163: Epoch 100
|
780 |
+
2023-07-24 05:59:50.669280: Current learning rate: 0.0091
|
781 |
+
2023-07-24 06:03:33.285699: train_loss -0.7382
|
782 |
+
2023-07-24 06:03:33.285881: val_loss -0.5096
|
783 |
+
2023-07-24 06:03:33.285975: Pseudo dice [0.8703, 0.712, 0.5639]
|
784 |
+
2023-07-24 06:03:33.286058: Epoch time: 222.62 s
|
785 |
+
2023-07-24 06:03:35.851426:
|
786 |
+
2023-07-24 06:03:35.851692: Epoch 101
|
787 |
+
2023-07-24 06:03:35.851813: Current learning rate: 0.00909
|
788 |
+
2023-07-24 06:07:07.771703: train_loss -0.7398
|
789 |
+
2023-07-24 06:07:07.771932: val_loss -0.5006
|
790 |
+
2023-07-24 06:07:07.772034: Pseudo dice [0.8863, 0.723, 0.5644]
|
791 |
+
2023-07-24 06:07:07.772126: Epoch time: 211.92 s
|
792 |
+
2023-07-24 06:07:07.772207: Yayy! New best EMA pseudo Dice: 0.7176
|
793 |
+
2023-07-24 06:07:09.785565:
|
794 |
+
2023-07-24 06:07:09.785925: Epoch 102
|
795 |
+
2023-07-24 06:07:09.786036: Current learning rate: 0.00908
|
796 |
+
2023-07-24 06:10:43.597014: train_loss -0.7306
|
797 |
+
2023-07-24 06:10:43.597273: val_loss -0.5015
|
798 |
+
2023-07-24 06:10:43.599555: Pseudo dice [0.8817, 0.7251, 0.5061]
|
799 |
+
2023-07-24 06:10:43.599782: Epoch time: 213.81 s
|
800 |
+
2023-07-24 06:10:45.487350:
|
801 |
+
2023-07-24 06:10:45.487549: Epoch 103
|
802 |
+
2023-07-24 06:10:45.487668: Current learning rate: 0.00907
|
803 |
+
2023-07-24 06:14:14.858136: train_loss -0.7477
|
804 |
+
2023-07-24 06:14:14.858318: val_loss -0.4896
|
805 |
+
2023-07-24 06:14:14.858405: Pseudo dice [0.8898, 0.7226, 0.5152]
|
806 |
+
2023-07-24 06:14:14.858487: Epoch time: 209.37 s
|
807 |
+
2023-07-24 06:14:18.636439:
|
808 |
+
2023-07-24 06:14:18.636607: Epoch 104
|
809 |
+
2023-07-24 06:14:18.636723: Current learning rate: 0.00906
|
810 |
+
2023-07-24 06:17:56.407210: train_loss -0.7288
|
811 |
+
2023-07-24 06:17:56.407393: val_loss -0.4908
|
812 |
+
2023-07-24 06:17:56.407491: Pseudo dice [0.8777, 0.7242, 0.4401]
|
813 |
+
2023-07-24 06:17:56.407592: Epoch time: 217.77 s
|
814 |
+
2023-07-24 06:17:59.395841:
|
815 |
+
2023-07-24 06:17:59.406929: Epoch 105
|
816 |
+
2023-07-24 06:17:59.407068: Current learning rate: 0.00905
|
817 |
+
2023-07-24 06:21:34.379379: train_loss -0.7297
|
818 |
+
2023-07-24 06:21:34.379545: val_loss -0.5001
|
819 |
+
2023-07-24 06:21:34.379629: Pseudo dice [0.8812, 0.7174, 0.5466]
|
820 |
+
2023-07-24 06:21:34.379707: Epoch time: 215.0 s
|
821 |
+
2023-07-24 06:21:36.480978:
|
822 |
+
2023-07-24 06:21:36.481113: Epoch 106
|
823 |
+
2023-07-24 06:21:36.481229: Current learning rate: 0.00904
|
824 |
+
2023-07-24 06:24:59.495173: train_loss -0.7319
|
825 |
+
2023-07-24 06:24:59.495373: val_loss -0.4684
|
826 |
+
2023-07-24 06:24:59.495463: Pseudo dice [0.8719, 0.699, 0.4954]
|
827 |
+
2023-07-24 06:24:59.495545: Epoch time: 203.02 s
|
828 |
+
2023-07-24 06:25:01.416497:
|
829 |
+
2023-07-24 06:25:01.416672: Epoch 107
|
830 |
+
2023-07-24 06:25:01.416785: Current learning rate: 0.00903
|
831 |
+
2023-07-24 06:28:38.100931: train_loss -0.7425
|
832 |
+
2023-07-24 06:28:38.101100: val_loss -0.5066
|
833 |
+
2023-07-24 06:28:38.101199: Pseudo dice [0.8828, 0.7349, 0.551]
|
834 |
+
2023-07-24 06:28:38.101286: Epoch time: 216.69 s
|
835 |
+
2023-07-24 06:28:39.838402:
|
836 |
+
2023-07-24 06:28:39.838579: Epoch 108
|
837 |
+
2023-07-24 06:28:39.838694: Current learning rate: 0.00902
|
838 |
+
2023-07-24 06:32:19.977618: train_loss -0.7335
|
839 |
+
2023-07-24 06:32:19.990841: val_loss -0.4957
|
840 |
+
2023-07-24 06:32:19.990945: Pseudo dice [0.8713, 0.7344, 0.4371]
|
841 |
+
2023-07-24 06:32:19.991140: Epoch time: 220.14 s
|
842 |
+
2023-07-24 06:32:22.127137:
|
843 |
+
2023-07-24 06:32:22.127293: Epoch 109
|
844 |
+
2023-07-24 06:32:22.127414: Current learning rate: 0.00901
|
845 |
+
2023-07-24 06:35:56.862900: train_loss -0.7247
|
846 |
+
2023-07-24 06:35:56.863097: val_loss -0.4827
|
847 |
+
2023-07-24 06:35:56.863201: Pseudo dice [0.8801, 0.6793, 0.5831]
|
848 |
+
2023-07-24 06:35:56.863297: Epoch time: 214.74 s
|
849 |
+
2023-07-24 06:36:00.448839:
|
850 |
+
2023-07-24 06:36:00.449008: Epoch 110
|
851 |
+
2023-07-24 06:36:00.449116: Current learning rate: 0.009
|
852 |
+
2023-07-24 06:39:25.954977: train_loss -0.7307
|
853 |
+
2023-07-24 06:39:25.955158: val_loss -0.4855
|
854 |
+
2023-07-24 06:39:25.955249: Pseudo dice [0.8795, 0.6975, 0.5762]
|
855 |
+
2023-07-24 06:39:25.955334: Epoch time: 205.51 s
|
856 |
+
2023-07-24 06:39:28.934479:
|
857 |
+
2023-07-24 06:39:28.934601: Epoch 111
|
858 |
+
2023-07-24 06:39:28.934713: Current learning rate: 0.009
|
859 |
+
2023-07-24 06:42:53.226294: train_loss -0.7364
|
860 |
+
2023-07-24 06:42:53.226513: val_loss -0.4781
|
861 |
+
2023-07-24 06:42:53.226613: Pseudo dice [0.8844, 0.7035, 0.4998]
|
862 |
+
2023-07-24 06:42:53.226707: Epoch time: 204.29 s
|
863 |
+
2023-07-24 06:42:57.119614:
|
864 |
+
2023-07-24 06:42:57.119749: Epoch 112
|
865 |
+
2023-07-24 06:42:57.119859: Current learning rate: 0.00899
|
866 |
+
2023-07-24 06:46:27.868778: train_loss -0.7428
|
867 |
+
2023-07-24 06:46:27.868973: val_loss -0.5043
|
868 |
+
2023-07-24 06:46:27.869063: Pseudo dice [0.8869, 0.6979, 0.6164]
|
869 |
+
2023-07-24 06:46:27.869147: Epoch time: 210.75 s
|
870 |
+
2023-07-24 06:46:29.738551:
|
871 |
+
2023-07-24 06:46:29.738678: Epoch 113
|
872 |
+
2023-07-24 06:46:29.738820: Current learning rate: 0.00898
|
873 |
+
2023-07-24 06:49:47.016800: train_loss -0.7404
|
874 |
+
2023-07-24 06:49:47.017059: val_loss -0.484
|
875 |
+
2023-07-24 06:49:47.017146: Pseudo dice [0.8878, 0.7123, 0.5259]
|
876 |
+
2023-07-24 06:49:47.017297: Epoch time: 197.28 s
|
877 |
+
2023-07-24 06:49:49.028085:
|
878 |
+
2023-07-24 06:49:49.028212: Epoch 114
|
879 |
+
2023-07-24 06:49:49.028322: Current learning rate: 0.00897
|
880 |
+
2023-07-24 06:53:22.595026: train_loss -0.7403
|
881 |
+
2023-07-24 06:53:22.595240: val_loss -0.4923
|
882 |
+
2023-07-24 06:53:22.595333: Pseudo dice [0.8744, 0.7065, 0.5055]
|
883 |
+
2023-07-24 06:53:22.595417: Epoch time: 213.57 s
|
884 |
+
2023-07-24 06:53:25.630225:
|
885 |
+
2023-07-24 06:53:25.630350: Epoch 115
|
886 |
+
2023-07-24 06:53:25.630466: Current learning rate: 0.00896
|
887 |
+
2023-07-24 06:56:54.846274: train_loss -0.7407
|
888 |
+
2023-07-24 06:56:54.846479: val_loss -0.5206
|
889 |
+
2023-07-24 06:56:54.846571: Pseudo dice [0.8874, 0.7354, 0.4706]
|
890 |
+
2023-07-24 06:56:54.846656: Epoch time: 209.22 s
|
891 |
+
2023-07-24 06:56:58.530087:
|
892 |
+
2023-07-24 06:56:58.530329: Epoch 116
|
893 |
+
2023-07-24 06:56:58.530463: Current learning rate: 0.00895
|
894 |
+
2023-07-24 07:00:33.757893: train_loss -0.7397
|
895 |
+
2023-07-24 07:00:33.758083: val_loss -0.4963
|
896 |
+
2023-07-24 07:00:33.758173: Pseudo dice [0.8784, 0.7196, 0.5139]
|
897 |
+
2023-07-24 07:00:33.758259: Epoch time: 215.23 s
|
898 |
+
2023-07-24 07:00:36.559549:
|
899 |
+
2023-07-24 07:00:36.559805: Epoch 117
|
900 |
+
2023-07-24 07:00:36.559918: Current learning rate: 0.00894
|
901 |
+
2023-07-24 07:04:09.798198: train_loss -0.737
|
902 |
+
2023-07-24 07:04:09.798404: val_loss -0.4986
|
903 |
+
2023-07-24 07:04:09.809834: Pseudo dice [0.879, 0.706, 0.5266]
|
904 |
+
2023-07-24 07:04:09.810041: Epoch time: 213.24 s
|
905 |
+
2023-07-24 07:04:13.458022:
|
906 |
+
2023-07-24 07:04:13.458441: Epoch 118
|
907 |
+
2023-07-24 07:04:13.458563: Current learning rate: 0.00893
|
908 |
+
2023-07-24 07:07:55.203243: train_loss -0.7376
|
909 |
+
2023-07-24 07:07:55.203503: val_loss -0.5011
|
910 |
+
2023-07-24 07:07:55.203593: Pseudo dice [0.8852, 0.7273, 0.5817]
|
911 |
+
2023-07-24 07:07:55.203745: Epoch time: 221.75 s
|
912 |
+
2023-07-24 07:07:57.539746:
|
913 |
+
2023-07-24 07:07:57.539875: Epoch 119
|
914 |
+
2023-07-24 07:07:57.539999: Current learning rate: 0.00892
|
915 |
+
2023-07-24 07:11:23.694811: train_loss -0.7511
|
916 |
+
2023-07-24 07:11:23.706887: val_loss -0.5173
|
917 |
+
2023-07-24 07:11:23.707143: Pseudo dice [0.8818, 0.7369, 0.559]
|
918 |
+
2023-07-24 07:11:23.707327: Epoch time: 206.16 s
|
919 |
+
2023-07-24 07:11:26.298614:
|
920 |
+
2023-07-24 07:11:26.298933: Epoch 120
|
921 |
+
2023-07-24 07:11:26.299044: Current learning rate: 0.00891
|
922 |
+
2023-07-24 07:14:58.226911: train_loss -0.7376
|
923 |
+
2023-07-24 07:14:58.227126: val_loss -0.4984
|
924 |
+
2023-07-24 07:14:58.227228: Pseudo dice [0.8841, 0.7261, 0.4873]
|
925 |
+
2023-07-24 07:14:58.227322: Epoch time: 211.93 s
|
926 |
+
2023-07-24 07:15:00.409765:
|
927 |
+
2023-07-24 07:15:00.409939: Epoch 121
|
928 |
+
2023-07-24 07:15:00.410051: Current learning rate: 0.0089
|
929 |
+
2023-07-24 07:18:26.223230: train_loss -0.7331
|
930 |
+
2023-07-24 07:18:26.223434: val_loss -0.4727
|
931 |
+
2023-07-24 07:18:26.223520: Pseudo dice [0.8632, 0.6888, 0.5576]
|
932 |
+
2023-07-24 07:18:26.223612: Epoch time: 205.81 s
|
933 |
+
2023-07-24 07:18:28.232954:
|
934 |
+
2023-07-24 07:18:28.233098: Epoch 122
|
935 |
+
2023-07-24 07:18:28.233214: Current learning rate: 0.00889
|
936 |
+
2023-07-24 07:22:00.937126: train_loss -0.739
|
937 |
+
2023-07-24 07:22:00.937339: val_loss -0.4894
|
938 |
+
2023-07-24 07:22:00.937483: Pseudo dice [0.8769, 0.7199, 0.4559]
|
939 |
+
2023-07-24 07:22:00.937608: Epoch time: 212.71 s
|
940 |
+
2023-07-24 07:22:04.448639:
|
941 |
+
2023-07-24 07:22:04.448863: Epoch 123
|
942 |
+
2023-07-24 07:22:04.448967: Current learning rate: 0.00889
|
943 |
+
2023-07-24 07:25:39.226343: train_loss -0.7513
|
944 |
+
2023-07-24 07:25:39.226538: val_loss -0.4662
|
945 |
+
2023-07-24 07:25:39.226624: Pseudo dice [0.8728, 0.7032, 0.4345]
|
946 |
+
2023-07-24 07:25:39.226705: Epoch time: 214.78 s
|
947 |
+
2023-07-24 07:25:41.940106:
|
948 |
+
2023-07-24 07:25:41.940430: Epoch 124
|
949 |
+
2023-07-24 07:25:41.940552: Current learning rate: 0.00888
|
950 |
+
2023-07-24 07:29:31.867979: train_loss -0.7385
|
951 |
+
2023-07-24 07:29:31.868199: val_loss -0.4822
|
952 |
+
2023-07-24 07:29:31.868285: Pseudo dice [0.8879, 0.7072, 0.4662]
|
953 |
+
2023-07-24 07:29:31.868367: Epoch time: 229.93 s
|
954 |
+
2023-07-24 07:29:33.666378:
|
955 |
+
2023-07-24 07:29:33.666722: Epoch 125
|
956 |
+
2023-07-24 07:29:33.666862: Current learning rate: 0.00887
|
957 |
+
2023-07-24 07:33:13.897824: train_loss -0.735
|
958 |
+
2023-07-24 07:33:13.898085: val_loss -0.5056
|
959 |
+
2023-07-24 07:33:13.898172: Pseudo dice [0.8899, 0.7388, 0.4273]
|
960 |
+
2023-07-24 07:33:13.898322: Epoch time: 220.23 s
|
961 |
+
2023-07-24 07:33:15.701629:
|
962 |
+
2023-07-24 07:33:15.701919: Epoch 126
|
963 |
+
2023-07-24 07:33:15.702039: Current learning rate: 0.00886
|
964 |
+
2023-07-24 07:36:46.580624: train_loss -0.7412
|
965 |
+
2023-07-24 07:36:46.590938: val_loss -0.4682
|
966 |
+
2023-07-24 07:36:46.591583: Pseudo dice [0.8875, 0.707, 0.464]
|
967 |
+
2023-07-24 07:36:46.591727: Epoch time: 210.88 s
|
968 |
+
2023-07-24 07:36:49.059450:
|
969 |
+
2023-07-24 07:36:49.059957: Epoch 127
|
970 |
+
2023-07-24 07:36:49.060068: Current learning rate: 0.00885
|
971 |
+
2023-07-24 07:40:16.085344: train_loss -0.7467
|
972 |
+
2023-07-24 07:40:16.085670: val_loss -0.5007
|
973 |
+
2023-07-24 07:40:16.085762: Pseudo dice [0.8923, 0.7309, 0.4699]
|
974 |
+
2023-07-24 07:40:16.085928: Epoch time: 207.03 s
|
975 |
+
2023-07-24 07:40:18.069315:
|
976 |
+
2023-07-24 07:40:18.069484: Epoch 128
|
977 |
+
2023-07-24 07:40:18.069586: Current learning rate: 0.00884
|
978 |
+
2023-07-24 07:43:48.285688: train_loss -0.7613
|
979 |
+
2023-07-24 07:43:48.285896: val_loss -0.5026
|
980 |
+
2023-07-24 07:43:48.285983: Pseudo dice [0.8685, 0.7138, 0.5262]
|
981 |
+
2023-07-24 07:43:48.286072: Epoch time: 210.22 s
|
982 |
+
2023-07-24 07:43:50.040725:
|
983 |
+
2023-07-24 07:43:50.040847: Epoch 129
|
984 |
+
2023-07-24 07:43:50.040961: Current learning rate: 0.00883
|
985 |
+
2023-07-24 07:47:20.600014: train_loss -0.749
|
986 |
+
2023-07-24 07:47:20.600197: val_loss -0.4715
|
987 |
+
2023-07-24 07:47:20.600303: Pseudo dice [0.8669, 0.7066, 0.5142]
|
988 |
+
2023-07-24 07:47:20.600403: Epoch time: 210.56 s
|
989 |
+
2023-07-24 07:47:22.825845:
|
990 |
+
2023-07-24 07:47:22.825982: Epoch 130
|
991 |
+
2023-07-24 07:47:22.826100: Current learning rate: 0.00882
|
992 |
+
2023-07-24 07:51:01.366344: train_loss -0.7542
|
993 |
+
2023-07-24 07:51:01.372711: val_loss -0.4867
|
994 |
+
2023-07-24 07:51:01.373079: Pseudo dice [0.8709, 0.7212, 0.5275]
|
995 |
+
2023-07-24 07:51:01.373174: Epoch time: 218.54 s
|
996 |
+
2023-07-24 07:51:04.639824:
|
997 |
+
2023-07-24 07:51:04.640065: Epoch 131
|
998 |
+
2023-07-24 07:51:04.640186: Current learning rate: 0.00881
|
999 |
+
2023-07-24 07:54:25.996458: train_loss -0.7539
|
1000 |
+
2023-07-24 07:54:25.996660: val_loss -0.493
|
1001 |
+
2023-07-24 07:54:25.996764: Pseudo dice [0.879, 0.7073, 0.5086]
|
1002 |
+
2023-07-24 07:54:25.996862: Epoch time: 201.36 s
|
1003 |
+
2023-07-24 07:54:27.833304:
|
1004 |
+
2023-07-24 07:54:27.833434: Epoch 132
|
1005 |
+
2023-07-24 07:54:27.833548: Current learning rate: 0.0088
|
1006 |
+
2023-07-24 07:58:06.308678: train_loss -0.7424
|
1007 |
+
2023-07-24 07:58:06.308868: val_loss -0.4781
|
1008 |
+
2023-07-24 07:58:06.308955: Pseudo dice [0.8749, 0.7132, 0.4636]
|
1009 |
+
2023-07-24 07:58:06.309040: Epoch time: 218.48 s
|
1010 |
+
2023-07-24 07:58:07.995495:
|
1011 |
+
2023-07-24 07:58:07.995820: Epoch 133
|
1012 |
+
2023-07-24 07:58:07.995934: Current learning rate: 0.00879
|
1013 |
+
2023-07-24 08:01:39.319222: train_loss -0.7583
|
1014 |
+
2023-07-24 08:01:39.319408: val_loss -0.4887
|
1015 |
+
2023-07-24 08:01:39.319496: Pseudo dice [0.8776, 0.6941, 0.6211]
|
1016 |
+
2023-07-24 08:01:39.319587: Epoch time: 211.32 s
|
1017 |
+
2023-07-24 08:01:42.469862:
|
1018 |
+
2023-07-24 08:01:42.470145: Epoch 134
|
1019 |
+
2023-07-24 08:01:42.470260: Current learning rate: 0.00879
|
1020 |
+
2023-07-24 08:05:12.546540: train_loss -0.7622
|
1021 |
+
2023-07-24 08:05:12.546793: val_loss -0.487
|
1022 |
+
2023-07-24 08:05:12.546890: Pseudo dice [0.877, 0.6954, 0.6036]
|
1023 |
+
2023-07-24 08:05:12.547057: Epoch time: 210.08 s
|
1024 |
+
2023-07-24 08:05:15.318394:
|
1025 |
+
2023-07-24 08:05:15.318724: Epoch 135
|
1026 |
+
2023-07-24 08:05:15.318935: Current learning rate: 0.00878
|
1027 |
+
2023-07-24 08:08:54.008573: train_loss -0.757
|
1028 |
+
2023-07-24 08:08:54.008773: val_loss -0.4737
|
1029 |
+
2023-07-24 08:08:54.008857: Pseudo dice [0.8687, 0.6997, 0.5345]
|
1030 |
+
2023-07-24 08:08:54.008935: Epoch time: 218.69 s
|
1031 |
+
2023-07-24 08:08:57.009470:
|
1032 |
+
2023-07-24 08:08:57.009609: Epoch 136
|
1033 |
+
2023-07-24 08:08:57.009723: Current learning rate: 0.00877
|
1034 |
+
2023-07-24 08:12:31.627689: train_loss -0.7468
|
1035 |
+
2023-07-24 08:12:31.628009: val_loss -0.4989
|
1036 |
+
2023-07-24 08:12:31.628209: Pseudo dice [0.8809, 0.7079, 0.5713]
|
1037 |
+
2023-07-24 08:12:31.628382: Epoch time: 214.62 s
|
1038 |
+
2023-07-24 08:12:34.747013:
|
1039 |
+
2023-07-24 08:12:34.747181: Epoch 137
|
1040 |
+
2023-07-24 08:12:34.747300: Current learning rate: 0.00876
|
1041 |
+
2023-07-24 08:16:01.029350: train_loss -0.7588
|
1042 |
+
2023-07-24 08:16:01.029534: val_loss -0.4855
|
1043 |
+
2023-07-24 08:16:01.029621: Pseudo dice [0.8791, 0.6898, 0.6106]
|
1044 |
+
2023-07-24 08:16:01.029705: Epoch time: 206.28 s
|
1045 |
+
2023-07-24 08:16:02.771766:
|
1046 |
+
2023-07-24 08:16:02.771899: Epoch 138
|
1047 |
+
2023-07-24 08:16:02.772012: Current learning rate: 0.00875
|
1048 |
+
2023-07-24 08:19:44.406471: train_loss -0.747
|
1049 |
+
2023-07-24 08:19:44.406666: val_loss -0.5084
|
1050 |
+
2023-07-24 08:19:44.406777: Pseudo dice [0.8869, 0.7204, 0.5542]
|
1051 |
+
2023-07-24 08:19:44.406874: Epoch time: 221.64 s
|
1052 |
+
2023-07-24 08:19:47.105821:
|
1053 |
+
2023-07-24 08:19:47.105972: Epoch 139
|
1054 |
+
2023-07-24 08:19:47.106068: Current learning rate: 0.00874
|
1055 |
+
2023-07-24 08:23:18.237113: train_loss -0.7528
|
1056 |
+
2023-07-24 08:23:18.237421: val_loss -0.4871
|
1057 |
+
2023-07-24 08:23:18.237525: Pseudo dice [0.8776, 0.706, 0.5431]
|
1058 |
+
2023-07-24 08:23:18.237715: Epoch time: 211.13 s
|
1059 |
+
2023-07-24 08:23:20.150906:
|
1060 |
+
2023-07-24 08:23:20.151026: Epoch 140
|
1061 |
+
2023-07-24 08:23:20.151122: Current learning rate: 0.00873
|
1062 |
+
2023-07-24 08:26:46.623374: train_loss -0.7637
|
1063 |
+
2023-07-24 08:26:46.623651: val_loss -0.4917
|
1064 |
+
2023-07-24 08:26:46.623740: Pseudo dice [0.8785, 0.6989, 0.6665]
|
1065 |
+
2023-07-24 08:26:46.623897: Epoch time: 206.47 s
|
1066 |
+
2023-07-24 08:26:48.784806:
|
1067 |
+
2023-07-24 08:26:48.785008: Epoch 141
|
1068 |
+
2023-07-24 08:26:48.785114: Current learning rate: 0.00872
|
1069 |
+
2023-07-24 08:30:30.098001: train_loss -0.7605
|
1070 |
+
2023-07-24 08:30:30.098207: val_loss -0.499
|
1071 |
+
2023-07-24 08:30:30.098298: Pseudo dice [0.8795, 0.7093, 0.5429]
|
1072 |
+
2023-07-24 08:30:30.098378: Epoch time: 221.31 s
|
1073 |
+
2023-07-24 08:30:32.113620:
|
1074 |
+
2023-07-24 08:30:32.113780: Epoch 142
|
1075 |
+
2023-07-24 08:30:32.113915: Current learning rate: 0.00871
|
1076 |
+
2023-07-24 08:33:58.876559: train_loss -0.7434
|
1077 |
+
2023-07-24 08:33:58.876756: val_loss -0.4936
|
1078 |
+
2023-07-24 08:33:58.876848: Pseudo dice [0.8844, 0.7121, 0.5416]
|
1079 |
+
2023-07-24 08:33:58.876932: Epoch time: 206.76 s
|
1080 |
+
2023-07-24 08:34:01.494818:
|
1081 |
+
2023-07-24 08:34:01.495366: Epoch 143
|
1082 |
+
2023-07-24 08:34:01.495486: Current learning rate: 0.0087
|
1083 |
+
2023-07-24 08:37:26.398371: train_loss -0.7416
|
1084 |
+
2023-07-24 08:37:26.398579: val_loss -0.5108
|
1085 |
+
2023-07-24 08:37:26.398680: Pseudo dice [0.8855, 0.7182, 0.5946]
|
1086 |
+
2023-07-24 08:37:26.398790: Epoch time: 204.91 s
|
1087 |
+
2023-07-24 08:37:30.655529:
|
1088 |
+
2023-07-24 08:37:30.655930: Epoch 144
|
1089 |
+
2023-07-24 08:37:30.656043: Current learning rate: 0.00869
|
1090 |
+
2023-07-24 08:40:55.134679: train_loss -0.7574
|
1091 |
+
2023-07-24 08:40:55.134889: val_loss -0.4785
|
1092 |
+
2023-07-24 08:40:55.134991: Pseudo dice [0.8803, 0.7162, 0.3907]
|
1093 |
+
2023-07-24 08:40:55.135085: Epoch time: 204.48 s
|
1094 |
+
2023-07-24 08:40:57.261309:
|
1095 |
+
2023-07-24 08:40:57.261564: Epoch 145
|
1096 |
+
2023-07-24 08:40:57.261678: Current learning rate: 0.00868
|
1097 |
+
2023-07-24 08:44:23.101116: train_loss -0.7516
|
1098 |
+
2023-07-24 08:44:23.106944: val_loss -0.4902
|
1099 |
+
2023-07-24 08:44:23.107199: Pseudo dice [0.8784, 0.7066, 0.5606]
|
1100 |
+
2023-07-24 08:44:23.107291: Epoch time: 205.84 s
|
1101 |
+
2023-07-24 08:44:25.099223:
|
1102 |
+
2023-07-24 08:44:25.099430: Epoch 146
|
1103 |
+
2023-07-24 08:44:25.099553: Current learning rate: 0.00868
|
1104 |
+
2023-07-24 08:47:56.039377: train_loss -0.759
|
1105 |
+
2023-07-24 08:47:56.039689: val_loss -0.5251
|
1106 |
+
2023-07-24 08:47:56.039789: Pseudo dice [0.8786, 0.7236, 0.5975]
|
1107 |
+
2023-07-24 08:47:56.039928: Epoch time: 210.94 s
|
1108 |
+
2023-07-24 08:47:58.670197:
|
1109 |
+
2023-07-24 08:47:58.670312: Epoch 147
|
1110 |
+
2023-07-24 08:47:58.670412: Current learning rate: 0.00867
|
1111 |
+
2023-07-24 08:51:23.394095: train_loss -0.7657
|
1112 |
+
2023-07-24 08:51:23.394388: val_loss -0.4863
|
1113 |
+
2023-07-24 08:51:23.394477: Pseudo dice [0.8613, 0.7275, 0.4779]
|
1114 |
+
2023-07-24 08:51:23.394634: Epoch time: 204.72 s
|
1115 |
+
2023-07-24 08:51:25.151827:
|
1116 |
+
2023-07-24 08:51:25.152007: Epoch 148
|
1117 |
+
2023-07-24 08:51:25.152129: Current learning rate: 0.00866
|
1118 |
+
2023-07-24 08:55:00.305970: train_loss -0.759
|
1119 |
+
2023-07-24 08:55:00.306156: val_loss -0.4877
|
1120 |
+
2023-07-24 08:55:00.306260: Pseudo dice [0.8708, 0.7051, 0.5229]
|
1121 |
+
2023-07-24 08:55:00.306348: Epoch time: 215.16 s
|
1122 |
+
2023-07-24 08:55:03.166358:
|
1123 |
+
2023-07-24 08:55:03.166571: Epoch 149
|
1124 |
+
2023-07-24 08:55:03.166703: Current learning rate: 0.00865
|
1125 |
+
2023-07-24 08:58:36.158555: train_loss -0.7584
|
1126 |
+
2023-07-24 08:58:36.163698: val_loss -0.5075
|
1127 |
+
2023-07-24 08:58:36.163839: Pseudo dice [0.8796, 0.7186, 0.6129]
|
1128 |
+
2023-07-24 08:58:36.163924: Epoch time: 212.99 s
|
1129 |
+
2023-07-24 08:58:39.431387:
|
1130 |
+
2023-07-24 08:58:39.431509: Epoch 150
|
1131 |
+
2023-07-24 08:58:39.431633: Current learning rate: 0.00864
|
1132 |
+
2023-07-24 09:02:08.121246: train_loss -0.7586
|
1133 |
+
2023-07-24 09:02:08.121416: val_loss -0.5081
|
1134 |
+
2023-07-24 09:02:08.121502: Pseudo dice [0.8847, 0.727, 0.6269]
|
1135 |
+
2023-07-24 09:02:08.121582: Epoch time: 208.69 s
|
1136 |
+
2023-07-24 09:02:10.686369:
|
1137 |
+
2023-07-24 09:02:10.686602: Epoch 151
|
1138 |
+
2023-07-24 09:02:10.686719: Current learning rate: 0.00863
|
1139 |
+
2023-07-24 09:05:44.706747: train_loss -0.7629
|
1140 |
+
2023-07-24 09:05:44.706952: val_loss -0.4625
|
1141 |
+
2023-07-24 09:05:44.707042: Pseudo dice [0.8698, 0.6773, 0.509]
|
1142 |
+
2023-07-24 09:05:44.707127: Epoch time: 214.02 s
|
1143 |
+
2023-07-24 09:05:48.504527:
|
1144 |
+
2023-07-24 09:05:48.504706: Epoch 152
|
1145 |
+
2023-07-24 09:05:48.504832: Current learning rate: 0.00862
|
1146 |
+
2023-07-24 09:09:19.069351: train_loss -0.7578
|
1147 |
+
2023-07-24 09:09:19.069588: val_loss -0.5
|
1148 |
+
2023-07-24 09:09:19.069682: Pseudo dice [0.8778, 0.7217, 0.5765]
|
1149 |
+
2023-07-24 09:09:19.069833: Epoch time: 210.57 s
|
1150 |
+
2023-07-24 09:09:21.075281:
|
1151 |
+
2023-07-24 09:09:21.075402: Epoch 153
|
1152 |
+
2023-07-24 09:09:21.075518: Current learning rate: 0.00861
|
1153 |
+
2023-07-24 09:12:58.820027: train_loss -0.7531
|
1154 |
+
2023-07-24 09:12:58.826884: val_loss -0.4773
|
1155 |
+
2023-07-24 09:12:58.827152: Pseudo dice [0.8738, 0.7111, 0.5466]
|
1156 |
+
2023-07-24 09:12:58.827244: Epoch time: 217.75 s
|
1157 |
+
2023-07-24 09:13:02.862645:
|
1158 |
+
2023-07-24 09:13:02.862877: Epoch 154
|
1159 |
+
2023-07-24 09:13:02.862992: Current learning rate: 0.0086
|
1160 |
+
2023-07-24 09:16:28.130270: train_loss -0.7474
|
1161 |
+
2023-07-24 09:16:28.130463: val_loss -0.4756
|
1162 |
+
2023-07-24 09:16:28.130564: Pseudo dice [0.8795, 0.7165, 0.489]
|
1163 |
+
2023-07-24 09:16:28.130655: Epoch time: 205.27 s
|
1164 |
+
2023-07-24 09:16:30.896615:
|
1165 |
+
2023-07-24 09:16:30.896794: Epoch 155
|
1166 |
+
2023-07-24 09:16:30.896921: Current learning rate: 0.00859
|
1167 |
+
2023-07-24 09:20:10.606297: train_loss -0.7662
|
1168 |
+
2023-07-24 09:20:10.609706: val_loss -0.4819
|
1169 |
+
2023-07-24 09:20:10.609968: Pseudo dice [0.8773, 0.711, 0.5174]
|
1170 |
+
2023-07-24 09:20:10.610058: Epoch time: 219.71 s
|
1171 |
+
2023-07-24 09:20:13.662477:
|
1172 |
+
2023-07-24 09:20:13.662828: Epoch 156
|
1173 |
+
2023-07-24 09:20:13.662953: Current learning rate: 0.00858
|
1174 |
+
2023-07-24 09:23:55.274102: train_loss -0.7626
|
1175 |
+
2023-07-24 09:23:55.274285: val_loss -0.4917
|
1176 |
+
2023-07-24 09:23:55.274372: Pseudo dice [0.8786, 0.7163, 0.5242]
|
1177 |
+
2023-07-24 09:23:55.274455: Epoch time: 221.61 s
|
1178 |
+
2023-07-24 09:23:56.839917:
|
1179 |
+
2023-07-24 09:23:56.840061: Epoch 157
|
1180 |
+
2023-07-24 09:23:56.840175: Current learning rate: 0.00858
|
1181 |
+
2023-07-24 09:27:20.148015: train_loss -0.7542
|
1182 |
+
2023-07-24 09:27:20.148191: val_loss -0.5016
|
1183 |
+
2023-07-24 09:27:20.148277: Pseudo dice [0.8869, 0.7229, 0.5561]
|
1184 |
+
2023-07-24 09:27:20.148360: Epoch time: 203.31 s
|
1185 |
+
2023-07-24 09:27:21.869529:
|
1186 |
+
2023-07-24 09:27:21.869649: Epoch 158
|
1187 |
+
2023-07-24 09:27:21.869765: Current learning rate: 0.00857
|
1188 |
+
2023-07-24 09:30:58.994606: train_loss -0.7622
|
1189 |
+
2023-07-24 09:30:58.994871: val_loss -0.4855
|
1190 |
+
2023-07-24 09:30:58.994982: Pseudo dice [0.8842, 0.7165, 0.4867]
|
1191 |
+
2023-07-24 09:30:58.995074: Epoch time: 217.13 s
|
1192 |
+
2023-07-24 09:31:03.135907:
|
1193 |
+
2023-07-24 09:31:03.136067: Epoch 159
|
1194 |
+
2023-07-24 09:31:03.136214: Current learning rate: 0.00856
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/Untitled-checkpoint.ipynb
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [],
|
3 |
+
"metadata": {},
|
4 |
+
"nbformat": 4,
|
5 |
+
"nbformat_minor": 5
|
6 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/progress-checkpoint.png
ADDED
Git LFS Details
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/Untitled.ipynb
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 7,
|
6 |
+
"id": "f69d6289-cca0-4546-baf8-c3e0bd052370",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [
|
9 |
+
{
|
10 |
+
"name": "stdout",
|
11 |
+
"output_type": "stream",
|
12 |
+
"text": [
|
13 |
+
" \u001b[0m\u001b[01;34mProstate158\u001b[0m/ create_nnunet_dataset.py \u001b[01;34mnnUNet_results\u001b[0m/\n",
|
14 |
+
"'Untitled (2) (1) (2).ipynb' \u001b[01;34mnnUNet_preprocessed\u001b[0m/\n",
|
15 |
+
" Untitled.ipynb \u001b[01;34mnnUNet_raw\u001b[0m/\n"
|
16 |
+
]
|
17 |
+
}
|
18 |
+
],
|
19 |
+
"source": [
|
20 |
+
"ls"
|
21 |
+
]
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"cell_type": "code",
|
25 |
+
"execution_count": 9,
|
26 |
+
"id": "d358c520-7bfb-4846-a9a7-e01a151b6912",
|
27 |
+
"metadata": {
|
28 |
+
"scrolled": true
|
29 |
+
},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"ename": "SyntaxError",
|
33 |
+
"evalue": "keyword argument repeated: path_in_repo (2447229422.py, line 16)",
|
34 |
+
"output_type": "error",
|
35 |
+
"traceback": [
|
36 |
+
"\u001b[0;36m Cell \u001b[0;32mIn[9], line 16\u001b[0;36m\u001b[0m\n\u001b[0;31m path_in_repo=\"nnUNet_results\",\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m keyword argument repeated: path_in_repo\n"
|
37 |
+
]
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"from huggingface_hub import HfApi\n",
|
42 |
+
"api = HfApi()\n",
|
43 |
+
"\n",
|
44 |
+
"api.create_repo(\n",
|
45 |
+
" repo_id=\"osbm/prostate158_nnUNet_results_3d_fullres2\",\n",
|
46 |
+
" repo_type=\"dataset\",\n",
|
47 |
+
" exist_ok=True,\n",
|
48 |
+
" private=False,\n",
|
49 |
+
")\n",
|
50 |
+
"# Upload all the content from the local folder to your remote Space.\n",
|
51 |
+
"# By default, files are uploaded at the root of the repo\n",
|
52 |
+
"api.upload_folder(\n",
|
53 |
+
" folder_path=\"nnUNet_results\",\n",
|
54 |
+
" path_in_repo=\"nnUNet_results\",\n",
|
55 |
+
" repo_id=\"osbm/prostate158_nnUNet_results_3d_fullres2\",\n",
|
56 |
+
" # path_in_repo=\"nnUNet_results\",\n",
|
57 |
+
" repo_type=\"dataset\",\n",
|
58 |
+
")\n",
|
59 |
+
"# api.upload_folder(\n",
|
60 |
+
"# folder_path=\"nnUNet_preprocessed\",\n",
|
61 |
+
"# repo_id=\"osbm/prostate158_nnUNet_results_3d_fullres2\",\n",
|
62 |
+
"# repo_type=\"dataset\",\n",
|
63 |
+
"# )\n",
|
64 |
+
"# api.upload_folder(\n",
|
65 |
+
"# folder_path=\"nnUNet_raw\",\n",
|
66 |
+
"# repo_id=\"osbm/prostate158_nnUNet_results_3d_fullres2\",\n",
|
67 |
+
"# repo_type=\"dataset\",\n",
|
68 |
+
"# )"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "9dc0670f-31b2-4b0d-b756-043b798d865e",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": []
|
78 |
+
}
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"kernelspec": {
|
82 |
+
"display_name": "Python 3 (ipykernel)",
|
83 |
+
"language": "python",
|
84 |
+
"name": "python3"
|
85 |
+
},
|
86 |
+
"language_info": {
|
87 |
+
"codemirror_mode": {
|
88 |
+
"name": "ipython",
|
89 |
+
"version": 3
|
90 |
+
},
|
91 |
+
"file_extension": ".py",
|
92 |
+
"mimetype": "text/x-python",
|
93 |
+
"name": "python",
|
94 |
+
"nbconvert_exporter": "python",
|
95 |
+
"pygments_lexer": "ipython3",
|
96 |
+
"version": "3.10.6"
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"nbformat": 4,
|
100 |
+
"nbformat_minor": 5
|
101 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_best.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71ee9b51374f2933c99366df10825efcc8b2cfb394ae7aabc1b9064db285e0c9
|
3 |
+
size 356800593
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f974c2f5780>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f974c2f5090>",
|
10 |
+
"dataloader_train.num_processes": "4",
|
11 |
+
"dataloader_train.transform": "Compose ( [Convert3DTo2DTransform( apply_to_keys = ('data', 'seg') ), SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [256, 256], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), Convert2DTo3DTransform( apply_to_keys = ('data', 'seg') ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = (0,) ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f974c2f4880>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f974c2f4be0>",
|
14 |
+
"dataloader_val.num_processes": "2",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "1",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A10G",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f974d1d1a50>",
|
23 |
+
"hostname": "s-osbm-jupyter-f0b83-8689bbb555-5t6kn",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f974d1d1c00>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_7_24_09_31_46.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f974d1d1ae0>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f974d1d1b40>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}, 'configuration': '3d_fullres', 'fold': 1, 'dataset_json': {'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "3",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1",
|
42 |
+
"output_folder_base": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}",
|
45 |
+
"preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset001_Prostate158/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset001_Prostate158",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.1+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png
ADDED
Git LFS Details
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_7_24_09_31_46.txt
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#######################################################################
|
3 |
+
Please cite the following paper when using nnU-Net:
|
4 |
+
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
|
5 |
+
#######################################################################
|
6 |
+
|
7 |
+
|
8 |
+
This is the configuration used by this training:
|
9 |
+
Configuration name: 3d_fullres
|
10 |
+
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}
|
11 |
+
|
12 |
+
These are the global plan.json settings:
|
13 |
+
{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}
|
14 |
+
|
15 |
+
2023-07-24 09:31:48.662707: unpacking dataset...
|
16 |
+
2023-07-24 09:31:51.254056: unpacking done...
|
17 |
+
2023-07-24 09:31:51.254646: do_dummy_2d_data_aug: True
|
18 |
+
2023-07-24 09:31:51.255391: Using splits from existing split file: nnUNet_preprocessed/Dataset001_Prostate158/splits_final.json
|
19 |
+
2023-07-24 09:31:51.255736: The split file contains 5 splits.
|
20 |
+
2023-07-24 09:31:51.255795: Desired fold for training: 1
|
21 |
+
2023-07-24 09:31:51.255847: This split has 111 training and 28 validation cases.
|
22 |
+
2023-07-24 09:31:55.429484: Unable to plot network architecture:
|
23 |
+
2023-07-24 09:31:55.429709: module 'torch.onnx' has no attribute '_optimize_trace'
|
24 |
+
2023-07-24 09:31:55.479973:
|
25 |
+
2023-07-24 09:31:55.480082: Epoch 0
|
26 |
+
2023-07-24 09:31:55.480217: Current learning rate: 0.01
|
27 |
+
2023-07-24 09:35:51.149318: train_loss -0.0686
|
28 |
+
2023-07-24 09:35:51.149595: val_loss -0.1977
|
29 |
+
2023-07-24 09:35:51.149694: Pseudo dice [0.6772, 0.3986, 0.0]
|
30 |
+
2023-07-24 09:35:51.149858: Epoch time: 235.67 s
|
31 |
+
2023-07-24 09:35:51.149975: Yayy! New best EMA pseudo Dice: 0.3586
|
32 |
+
2023-07-24 09:35:52.944725:
|
33 |
+
2023-07-24 09:35:52.944855: Epoch 1
|
34 |
+
2023-07-24 09:35:52.945019: Current learning rate: 0.00999
|
35 |
+
2023-07-24 09:39:26.457915: train_loss -0.2509
|
36 |
+
2023-07-24 09:39:26.458209: val_loss -0.2695
|
37 |
+
2023-07-24 09:39:26.458309: Pseudo dice [0.7352, 0.5579, 0.0]
|
38 |
+
2023-07-24 09:39:26.458386: Epoch time: 213.51 s
|
39 |
+
2023-07-24 09:39:26.458445: Yayy! New best EMA pseudo Dice: 0.3658
|
40 |
+
2023-07-24 09:39:30.325983:
|
41 |
+
2023-07-24 09:39:30.326120: Epoch 2
|
42 |
+
2023-07-24 09:39:30.326235: Current learning rate: 0.00998
|
43 |
+
2023-07-24 09:42:59.369360: train_loss -0.3283
|
44 |
+
2023-07-24 09:42:59.369581: val_loss -0.2917
|
45 |
+
2023-07-24 09:42:59.369678: Pseudo dice [0.7702, 0.5453, 0.0]
|
46 |
+
2023-07-24 09:42:59.369768: Epoch time: 209.04 s
|
47 |
+
2023-07-24 09:42:59.369841: Yayy! New best EMA pseudo Dice: 0.3731
|
48 |
+
2023-07-24 09:43:02.898393:
|
49 |
+
2023-07-24 09:43:02.898701: Epoch 3
|
50 |
+
2023-07-24 09:43:02.898844: Current learning rate: 0.00997
|
51 |
+
2023-07-24 09:46:30.423032: train_loss -0.3623
|
52 |
+
2023-07-24 09:46:30.423313: val_loss -0.362
|
53 |
+
2023-07-24 09:46:30.423406: Pseudo dice [0.8084, 0.6354, 0.0]
|
54 |
+
2023-07-24 09:46:30.423570: Epoch time: 207.53 s
|
55 |
+
2023-07-24 09:46:30.423706: Yayy! New best EMA pseudo Dice: 0.3839
|
56 |
+
2023-07-24 09:46:32.679859:
|
57 |
+
2023-07-24 09:46:32.679986: Epoch 4
|
58 |
+
2023-07-24 09:46:32.680083: Current learning rate: 0.00996
|
59 |
+
2023-07-24 09:50:16.112560: train_loss -0.4055
|
60 |
+
2023-07-24 09:50:16.112745: val_loss -0.3814
|
61 |
+
2023-07-24 09:50:16.112836: Pseudo dice [0.8423, 0.6152, 0.3433]
|
62 |
+
2023-07-24 09:50:16.112920: Epoch time: 223.43 s
|
63 |
+
2023-07-24 09:50:16.112987: Yayy! New best EMA pseudo Dice: 0.4056
|
64 |
+
2023-07-24 09:50:18.759251:
|
65 |
+
2023-07-24 09:50:18.759383: Epoch 5
|
66 |
+
2023-07-24 09:50:18.759503: Current learning rate: 0.00995
|
67 |
+
2023-07-24 09:53:41.007815: train_loss -0.4426
|
68 |
+
2023-07-24 09:53:41.007999: val_loss -0.4302
|
69 |
+
2023-07-24 09:53:41.008113: Pseudo dice [0.8359, 0.6439, 0.4462]
|
70 |
+
2023-07-24 09:53:41.008215: Epoch time: 202.25 s
|
71 |
+
2023-07-24 09:53:41.008303: Yayy! New best EMA pseudo Dice: 0.4292
|
72 |
+
2023-07-24 09:53:43.767199:
|
73 |
+
2023-07-24 09:53:43.767324: Epoch 6
|
74 |
+
2023-07-24 09:53:43.767419: Current learning rate: 0.00995
|
75 |
+
2023-07-24 09:57:16.562120: train_loss -0.4301
|
76 |
+
2023-07-24 09:57:16.562339: val_loss -0.4084
|
77 |
+
2023-07-24 09:57:16.562424: Pseudo dice [0.8011, 0.6376, 0.48]
|
78 |
+
2023-07-24 09:57:16.562501: Epoch time: 212.8 s
|
79 |
+
2023-07-24 09:57:16.562591: Yayy! New best EMA pseudo Dice: 0.4502
|
80 |
+
2023-07-24 09:57:19.469062:
|
81 |
+
2023-07-24 09:57:19.469288: Epoch 7
|
82 |
+
2023-07-24 09:57:19.469407: Current learning rate: 0.00994
|
83 |
+
2023-07-24 10:00:48.194506: train_loss -0.4578
|
84 |
+
2023-07-24 10:00:48.194689: val_loss -0.4189
|
85 |
+
2023-07-24 10:00:48.194808: Pseudo dice [0.8137, 0.6457, 0.4479]
|
86 |
+
2023-07-24 10:00:48.194900: Epoch time: 208.73 s
|
87 |
+
2023-07-24 10:00:48.194967: Yayy! New best EMA pseudo Dice: 0.4688
|
88 |
+
2023-07-24 10:00:52.373474:
|
89 |
+
2023-07-24 10:00:52.373721: Epoch 8
|
90 |
+
2023-07-24 10:00:52.373865: Current learning rate: 0.00993
|
91 |
+
2023-07-24 10:04:19.517230: train_loss -0.498
|
92 |
+
2023-07-24 10:04:19.517421: val_loss -0.4187
|
93 |
+
2023-07-24 10:04:19.517504: Pseudo dice [0.8555, 0.6358, 0.3124]
|
94 |
+
2023-07-24 10:04:19.517583: Epoch time: 207.15 s
|
95 |
+
2023-07-24 10:04:19.517648: Yayy! New best EMA pseudo Dice: 0.482
|
96 |
+
2023-07-24 10:04:21.806987:
|
97 |
+
2023-07-24 10:04:21.807117: Epoch 9
|
98 |
+
2023-07-24 10:04:21.807218: Current learning rate: 0.00992
|
99 |
+
2023-07-24 10:07:51.359195: train_loss -0.5027
|
100 |
+
2023-07-24 10:07:51.370858: val_loss -0.4306
|
101 |
+
2023-07-24 10:07:51.371073: Pseudo dice [0.8521, 0.6531, 0.3801]
|
102 |
+
2023-07-24 10:07:51.371159: Epoch time: 209.55 s
|
103 |
+
2023-07-24 10:07:51.371223: Yayy! New best EMA pseudo Dice: 0.4967
|
104 |
+
2023-07-24 10:07:54.287527:
|
105 |
+
2023-07-24 10:07:54.287659: Epoch 10
|
106 |
+
2023-07-24 10:07:54.287776: Current learning rate: 0.00991
|
107 |
+
2023-07-24 10:11:21.020047: train_loss -0.5007
|
108 |
+
2023-07-24 10:11:21.020299: val_loss -0.4555
|
109 |
+
2023-07-24 10:11:21.020390: Pseudo dice [0.8525, 0.6574, 0.5038]
|
110 |
+
2023-07-24 10:11:21.020547: Epoch time: 206.73 s
|
111 |
+
2023-07-24 10:11:21.020615: Yayy! New best EMA pseudo Dice: 0.5141
|
112 |
+
2023-07-24 10:11:23.595996:
|
113 |
+
2023-07-24 10:11:23.596125: Epoch 11
|
114 |
+
2023-07-24 10:11:23.596240: Current learning rate: 0.0099
|
115 |
+
2023-07-24 10:14:50.060935: train_loss -0.5114
|
116 |
+
2023-07-24 10:14:50.061202: val_loss -0.4435
|
117 |
+
2023-07-24 10:14:50.061292: Pseudo dice [0.8367, 0.6786, 0.3972]
|
118 |
+
2023-07-24 10:14:50.061454: Epoch time: 206.47 s
|
119 |
+
2023-07-24 10:14:50.061521: Yayy! New best EMA pseudo Dice: 0.5265
|
120 |
+
2023-07-24 10:14:54.044929:
|
121 |
+
2023-07-24 10:14:54.045076: Epoch 12
|
122 |
+
2023-07-24 10:14:54.045194: Current learning rate: 0.00989
|
123 |
+
2023-07-24 10:18:35.033546: train_loss -0.5262
|
124 |
+
2023-07-24 10:18:35.033730: val_loss -0.4482
|
125 |
+
2023-07-24 10:18:35.033818: Pseudo dice [0.8485, 0.6596, 0.5738]
|
126 |
+
2023-07-24 10:18:35.033900: Epoch time: 220.99 s
|
127 |
+
2023-07-24 10:18:35.033965: Yayy! New best EMA pseudo Dice: 0.5432
|
128 |
+
2023-07-24 10:18:37.229037:
|
129 |
+
2023-07-24 10:18:37.229155: Epoch 13
|
130 |
+
2023-07-24 10:18:37.229270: Current learning rate: 0.00988
|
131 |
+
2023-07-24 10:22:07.718349: train_loss -0.5297
|
132 |
+
2023-07-24 10:22:07.718728: val_loss -0.4473
|
133 |
+
2023-07-24 10:22:07.718979: Pseudo dice [0.8557, 0.6552, 0.5333]
|
134 |
+
2023-07-24 10:22:07.719130: Epoch time: 210.49 s
|
135 |
+
2023-07-24 10:22:07.719215: Yayy! New best EMA pseudo Dice: 0.557
|
136 |
+
2023-07-24 10:22:12.377048:
|
137 |
+
2023-07-24 10:22:12.377682: Epoch 14
|
138 |
+
2023-07-24 10:22:12.377826: Current learning rate: 0.00987
|
139 |
+
2023-07-24 10:25:35.042624: train_loss -0.544
|
140 |
+
2023-07-24 10:25:35.042880: val_loss -0.4672
|
141 |
+
2023-07-24 10:25:35.042980: Pseudo dice [0.8415, 0.6909, 0.5861]
|
142 |
+
2023-07-24 10:25:35.043072: Epoch time: 202.67 s
|
143 |
+
2023-07-24 10:25:35.043142: Yayy! New best EMA pseudo Dice: 0.5719
|
144 |
+
2023-07-24 10:25:39.141425:
|
145 |
+
2023-07-24 10:25:39.141566: Epoch 15
|
146 |
+
2023-07-24 10:25:39.141699: Current learning rate: 0.00986
|
147 |
+
2023-07-24 10:29:17.006086: train_loss -0.536
|
148 |
+
2023-07-24 10:29:17.006276: val_loss -0.458
|
149 |
+
2023-07-24 10:29:17.006367: Pseudo dice [0.8684, 0.6802, 0.4725]
|
150 |
+
2023-07-24 10:29:17.006453: Epoch time: 217.87 s
|
151 |
+
2023-07-24 10:29:17.006521: Yayy! New best EMA pseudo Dice: 0.5821
|
152 |
+
2023-07-24 10:29:19.086107:
|
153 |
+
2023-07-24 10:29:19.086326: Epoch 16
|
154 |
+
2023-07-24 10:29:19.086447: Current learning rate: 0.00986
|
155 |
+
2023-07-24 10:32:52.937337: train_loss -0.5573
|
156 |
+
2023-07-24 10:32:52.937526: val_loss -0.4805
|
157 |
+
2023-07-24 10:32:52.937625: Pseudo dice [0.8545, 0.6796, 0.6108]
|
158 |
+
2023-07-24 10:32:52.937717: Epoch time: 213.85 s
|
159 |
+
2023-07-24 10:32:52.937808: Yayy! New best EMA pseudo Dice: 0.5954
|
160 |
+
2023-07-24 10:32:55.486784:
|
161 |
+
2023-07-24 10:32:55.486909: Epoch 17
|
162 |
+
2023-07-24 10:32:55.487025: Current learning rate: 0.00985
|
163 |
+
2023-07-24 10:36:29.203138: train_loss -0.5585
|
164 |
+
2023-07-24 10:36:29.203351: val_loss -0.4583
|
165 |
+
2023-07-24 10:36:29.203443: Pseudo dice [0.8662, 0.6791, 0.4972]
|
166 |
+
2023-07-24 10:36:29.203535: Epoch time: 213.72 s
|
167 |
+
2023-07-24 10:36:29.203619: Yayy! New best EMA pseudo Dice: 0.604
|
168 |
+
2023-07-24 10:36:34.055434:
|
169 |
+
2023-07-24 10:36:34.055742: Epoch 18
|
170 |
+
2023-07-24 10:36:34.055855: Current learning rate: 0.00984
|
171 |
+
2023-07-24 10:40:19.048198: train_loss -0.5594
|
172 |
+
2023-07-24 10:40:19.048498: val_loss -0.4511
|
173 |
+
2023-07-24 10:40:19.048593: Pseudo dice [0.8624, 0.6682, 0.5106]
|
174 |
+
2023-07-24 10:40:19.048678: Epoch time: 224.99 s
|
175 |
+
2023-07-24 10:40:19.048744: Yayy! New best EMA pseudo Dice: 0.6116
|
176 |
+
2023-07-24 10:40:21.521703:
|
177 |
+
2023-07-24 10:40:21.521823: Epoch 19
|
178 |
+
2023-07-24 10:40:21.521924: Current learning rate: 0.00983
|
179 |
+
2023-07-24 10:43:37.794662: train_loss -0.5578
|
180 |
+
2023-07-24 10:43:37.794921: val_loss -0.4709
|
181 |
+
2023-07-24 10:43:37.795015: Pseudo dice [0.8779, 0.6729, 0.5978]
|
182 |
+
2023-07-24 10:43:37.795315: Epoch time: 196.27 s
|
183 |
+
2023-07-24 10:43:37.796330: Yayy! New best EMA pseudo Dice: 0.6221
|
184 |
+
2023-07-24 10:43:43.010075:
|
185 |
+
2023-07-24 10:43:43.010270: Epoch 20
|
186 |
+
2023-07-24 10:43:43.010390: Current learning rate: 0.00982
|
187 |
+
2023-07-24 10:47:20.733163: train_loss -0.5605
|
188 |
+
2023-07-24 10:47:20.733360: val_loss -0.4645
|
189 |
+
2023-07-24 10:47:20.733458: Pseudo dice [0.8742, 0.6775, 0.5699]
|
190 |
+
2023-07-24 10:47:20.733543: Epoch time: 217.72 s
|
191 |
+
2023-07-24 10:47:20.733614: Yayy! New best EMA pseudo Dice: 0.6306
|
192 |
+
2023-07-24 10:47:25.612038:
|
193 |
+
2023-07-24 10:47:25.612291: Epoch 21
|
194 |
+
2023-07-24 10:47:25.612412: Current learning rate: 0.00981
|
195 |
+
2023-07-24 10:50:56.626678: train_loss -0.5768
|
196 |
+
2023-07-24 10:50:56.626989: val_loss -0.4678
|
197 |
+
2023-07-24 10:50:56.627095: Pseudo dice [0.8667, 0.7095, 0.4915]
|
198 |
+
2023-07-24 10:50:56.627192: Epoch time: 211.02 s
|
199 |
+
2023-07-24 10:50:56.627282: Yayy! New best EMA pseudo Dice: 0.6364
|
200 |
+
2023-07-24 10:50:59.071501:
|
201 |
+
2023-07-24 10:50:59.071637: Epoch 22
|
202 |
+
2023-07-24 10:50:59.071756: Current learning rate: 0.0098
|
203 |
+
2023-07-24 10:54:23.458703: train_loss -0.5779
|
204 |
+
2023-07-24 10:54:23.458929: val_loss -0.4757
|
205 |
+
2023-07-24 10:54:23.459019: Pseudo dice [0.8696, 0.6799, 0.5438]
|
206 |
+
2023-07-24 10:54:23.459159: Epoch time: 204.39 s
|
207 |
+
2023-07-24 10:54:23.459226: Yayy! New best EMA pseudo Dice: 0.6426
|
208 |
+
2023-07-24 10:54:25.869165:
|
209 |
+
2023-07-24 10:54:25.869285: Epoch 23
|
210 |
+
2023-07-24 10:54:25.869403: Current learning rate: 0.00979
|
211 |
+
2023-07-24 10:57:56.216782: train_loss -0.5858
|
212 |
+
2023-07-24 10:57:56.217053: val_loss -0.436
|
213 |
+
2023-07-24 10:57:56.217215: Pseudo dice [0.8524, 0.6452, 0.5389]
|
214 |
+
2023-07-24 10:57:56.217304: Epoch time: 210.35 s
|
215 |
+
2023-07-24 10:57:56.217423: Yayy! New best EMA pseudo Dice: 0.6462
|
216 |
+
2023-07-24 10:58:00.283592:
|
217 |
+
2023-07-24 10:58:00.283757: Epoch 24
|
218 |
+
2023-07-24 10:58:00.283865: Current learning rate: 0.00978
|
219 |
+
2023-07-24 11:01:31.659229: train_loss -0.5859
|
220 |
+
2023-07-24 11:01:31.659401: val_loss -0.4867
|
221 |
+
2023-07-24 11:01:31.659505: Pseudo dice [0.8807, 0.7036, 0.4442]
|
222 |
+
2023-07-24 11:01:31.659606: Epoch time: 211.38 s
|
223 |
+
2023-07-24 11:01:31.659684: Yayy! New best EMA pseudo Dice: 0.6492
|
224 |
+
2023-07-24 11:01:34.877736:
|
225 |
+
2023-07-24 11:01:34.877873: Epoch 25
|
226 |
+
2023-07-24 11:01:34.877987: Current learning rate: 0.00977
|
227 |
+
2023-07-24 11:05:10.845961: train_loss -0.5884
|
228 |
+
2023-07-24 11:05:10.846144: val_loss -0.4324
|
229 |
+
2023-07-24 11:05:10.846237: Pseudo dice [0.8473, 0.6541, 0.4288]
|
230 |
+
2023-07-24 11:05:10.846323: Epoch time: 215.97 s
|
231 |
+
2023-07-24 11:05:13.643211:
|
232 |
+
2023-07-24 11:05:13.643358: Epoch 26
|
233 |
+
2023-07-24 11:05:13.643473: Current learning rate: 0.00977
|
234 |
+
2023-07-24 11:08:44.563033: train_loss -0.5912
|
235 |
+
2023-07-24 11:08:44.563225: val_loss -0.4619
|
236 |
+
2023-07-24 11:08:44.563319: Pseudo dice [0.8776, 0.6791, 0.5158]
|
237 |
+
2023-07-24 11:08:44.563408: Epoch time: 210.92 s
|
238 |
+
2023-07-24 11:08:44.563480: Yayy! New best EMA pseudo Dice: 0.6528
|
239 |
+
2023-07-24 11:08:47.180097:
|
240 |
+
2023-07-24 11:08:47.180220: Epoch 27
|
241 |
+
2023-07-24 11:08:47.180338: Current learning rate: 0.00976
|
242 |
+
2023-07-24 11:12:26.577604: train_loss -0.5976
|
243 |
+
2023-07-24 11:12:26.577808: val_loss -0.4728
|
244 |
+
2023-07-24 11:12:26.577904: Pseudo dice [0.861, 0.7074, 0.4756]
|
245 |
+
2023-07-24 11:12:26.577990: Epoch time: 219.4 s
|
246 |
+
2023-07-24 11:12:26.578061: Yayy! New best EMA pseudo Dice: 0.6557
|
247 |
+
2023-07-24 11:12:29.643962:
|
248 |
+
2023-07-24 11:12:29.644087: Epoch 28
|
249 |
+
2023-07-24 11:12:29.644205: Current learning rate: 0.00975
|
250 |
+
2023-07-24 11:15:57.396276: train_loss -0.6014
|
251 |
+
2023-07-24 11:15:57.396457: val_loss -0.4564
|
252 |
+
2023-07-24 11:15:57.396578: Pseudo dice [0.8687, 0.6885, 0.4734]
|
253 |
+
2023-07-24 11:15:57.396668: Epoch time: 207.75 s
|
254 |
+
2023-07-24 11:15:57.396744: Yayy! New best EMA pseudo Dice: 0.6578
|
255 |
+
2023-07-24 11:15:59.785451:
|
256 |
+
2023-07-24 11:15:59.785571: Epoch 29
|
257 |
+
2023-07-24 11:15:59.785674: Current learning rate: 0.00974
|
258 |
+
2023-07-24 11:19:32.018114: train_loss -0.6025
|
259 |
+
2023-07-24 11:19:32.018373: val_loss -0.483
|
260 |
+
2023-07-24 11:19:32.018463: Pseudo dice [0.873, 0.7188, 0.5497]
|
261 |
+
2023-07-24 11:19:32.018615: Epoch time: 212.23 s
|
262 |
+
2023-07-24 11:19:32.018681: Yayy! New best EMA pseudo Dice: 0.6634
|
263 |
+
2023-07-24 11:19:37.166697:
|
264 |
+
2023-07-24 11:19:37.166853: Epoch 30
|
265 |
+
2023-07-24 11:19:37.166968: Current learning rate: 0.00973
|
266 |
+
2023-07-24 11:23:08.806290: train_loss -0.613
|
267 |
+
2023-07-24 11:23:08.806573: val_loss -0.4461
|
268 |
+
2023-07-24 11:23:08.806666: Pseudo dice [0.8666, 0.6895, 0.3991]
|
269 |
+
2023-07-24 11:23:08.806845: Epoch time: 211.64 s
|
270 |
+
2023-07-24 11:23:10.244822:
|
271 |
+
2023-07-24 11:23:10.244984: Epoch 31
|
272 |
+
2023-07-24 11:23:10.245092: Current learning rate: 0.00972
|
273 |
+
2023-07-24 11:26:37.710564: train_loss -0.6145
|
274 |
+
2023-07-24 11:26:37.710835: val_loss -0.4758
|
275 |
+
2023-07-24 11:26:37.710931: Pseudo dice [0.8711, 0.705, 0.5377]
|
276 |
+
2023-07-24 11:26:37.711078: Epoch time: 207.47 s
|
277 |
+
2023-07-24 11:26:37.711143: Yayy! New best EMA pseudo Dice: 0.6665
|
278 |
+
2023-07-24 11:26:41.956009:
|
279 |
+
2023-07-24 11:26:41.956271: Epoch 32
|
280 |
+
2023-07-24 11:26:41.956385: Current learning rate: 0.00971
|
281 |
+
2023-07-24 11:30:12.278454: train_loss -0.6137
|
282 |
+
2023-07-24 11:30:12.278686: val_loss -0.4835
|
283 |
+
2023-07-24 11:30:12.278804: Pseudo dice [0.867, 0.6864, 0.5483]
|
284 |
+
2023-07-24 11:30:12.278906: Epoch time: 210.32 s
|
285 |
+
2023-07-24 11:30:12.278967: Yayy! New best EMA pseudo Dice: 0.6699
|
286 |
+
2023-07-24 11:30:14.981015:
|
287 |
+
2023-07-24 11:30:14.981150: Epoch 33
|
288 |
+
2023-07-24 11:30:14.981266: Current learning rate: 0.0097
|
289 |
+
2023-07-24 11:33:53.618293: train_loss -0.6173
|
290 |
+
2023-07-24 11:33:53.630888: val_loss -0.4788
|
291 |
+
2023-07-24 11:33:53.631126: Pseudo dice [0.8711, 0.7172, 0.5993]
|
292 |
+
2023-07-24 11:33:53.631213: Epoch time: 218.64 s
|
293 |
+
2023-07-24 11:33:53.631362: Yayy! New best EMA pseudo Dice: 0.6758
|
294 |
+
2023-07-24 11:33:56.847697:
|
295 |
+
2023-07-24 11:33:56.847836: Epoch 34
|
296 |
+
2023-07-24 11:33:56.847952: Current learning rate: 0.00969
|
297 |
+
2023-07-24 11:37:31.570033: train_loss -0.6188
|
298 |
+
2023-07-24 11:37:31.570266: val_loss -0.4531
|
299 |
+
2023-07-24 11:37:31.570361: Pseudo dice [0.8598, 0.6848, 0.5296]
|
300 |
+
2023-07-24 11:37:31.570451: Epoch time: 214.72 s
|
301 |
+
2023-07-24 11:37:31.570522: Yayy! New best EMA pseudo Dice: 0.6774
|
302 |
+
2023-07-24 11:37:33.714445:
|
303 |
+
2023-07-24 11:37:33.714569: Epoch 35
|
304 |
+
2023-07-24 11:37:33.714672: Current learning rate: 0.00968
|
305 |
+
2023-07-24 11:41:14.940244: train_loss -0.6204
|
306 |
+
2023-07-24 11:41:14.940511: val_loss -0.4904
|
307 |
+
2023-07-24 11:41:14.940600: Pseudo dice [0.8691, 0.7124, 0.6012]
|
308 |
+
2023-07-24 11:41:14.940678: Epoch time: 221.23 s
|
309 |
+
2023-07-24 11:41:14.940737: Yayy! New best EMA pseudo Dice: 0.6824
|
310 |
+
2023-07-24 11:41:17.089798:
|
311 |
+
2023-07-24 11:41:17.090038: Epoch 36
|
312 |
+
2023-07-24 11:41:17.090159: Current learning rate: 0.00968
|
313 |
+
2023-07-24 11:44:46.328210: train_loss -0.6147
|
314 |
+
2023-07-24 11:44:46.328429: val_loss -0.4689
|
315 |
+
2023-07-24 11:44:46.328522: Pseudo dice [0.8711, 0.6956, 0.4682]
|
316 |
+
2023-07-24 11:44:46.328610: Epoch time: 209.24 s
|
317 |
+
2023-07-24 11:44:48.497017:
|
318 |
+
2023-07-24 11:44:48.497168: Epoch 37
|
319 |
+
2023-07-24 11:44:48.497303: Current learning rate: 0.00967
|
320 |
+
2023-07-24 11:48:28.425315: train_loss -0.6234
|
321 |
+
2023-07-24 11:48:28.425558: val_loss -0.4836
|
322 |
+
2023-07-24 11:48:28.425650: Pseudo dice [0.8754, 0.7042, 0.5211]
|
323 |
+
2023-07-24 11:48:28.425732: Epoch time: 219.93 s
|
324 |
+
2023-07-24 11:48:28.425794: Yayy! New best EMA pseudo Dice: 0.6838
|
325 |
+
2023-07-24 11:48:31.154660:
|
326 |
+
2023-07-24 11:48:31.154810: Epoch 38
|
327 |
+
2023-07-24 11:48:31.154930: Current learning rate: 0.00966
|
328 |
+
2023-07-24 11:51:54.038406: train_loss -0.6255
|
329 |
+
2023-07-24 11:51:54.050902: val_loss -0.48
|
330 |
+
2023-07-24 11:51:54.051198: Pseudo dice [0.8712, 0.6851, 0.5032]
|
331 |
+
2023-07-24 11:51:54.051365: Epoch time: 202.88 s
|
332 |
+
2023-07-24 11:51:54.051452: Yayy! New best EMA pseudo Dice: 0.6841
|
333 |
+
2023-07-24 11:51:56.363528:
|
334 |
+
2023-07-24 11:51:56.363662: Epoch 39
|
335 |
+
2023-07-24 11:51:56.363833: Current learning rate: 0.00965
|
336 |
+
2023-07-24 11:55:21.706032: train_loss -0.6288
|
337 |
+
2023-07-24 11:55:21.706228: val_loss -0.4378
|
338 |
+
2023-07-24 11:55:21.706325: Pseudo dice [0.8811, 0.6625, 0.4634]
|
339 |
+
2023-07-24 11:55:21.706409: Epoch time: 205.34 s
|
340 |
+
2023-07-24 11:55:24.489447:
|
341 |
+
2023-07-24 11:55:24.489575: Epoch 40
|
342 |
+
2023-07-24 11:55:24.489692: Current learning rate: 0.00964
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/debug.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_best_ema": "None",
|
3 |
+
"batch_size": "2",
|
4 |
+
"configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
|
5 |
+
"configuration_name": "3d_fullres",
|
6 |
+
"cudnn_version": 8500,
|
7 |
+
"current_epoch": "0",
|
8 |
+
"dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fdcde4d94e0>",
|
9 |
+
"dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fdcde4d9180>",
|
10 |
+
"dataloader_train.num_processes": "4",
|
11 |
+
"dataloader_train.transform": "Compose ( [Convert3DTo2DTransform( apply_to_keys = ('data', 'seg') ), SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [256, 256], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), Convert2DTo3DTransform( apply_to_keys = ('data', 'seg') ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = (0,) ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
12 |
+
"dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fdcde4d90c0>",
|
13 |
+
"dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fdcde4d90f0>",
|
14 |
+
"dataloader_val.num_processes": "2",
|
15 |
+
"dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
|
16 |
+
"dataset_json": "{'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}",
|
17 |
+
"device": "cuda:0",
|
18 |
+
"disable_checkpointing": "False",
|
19 |
+
"fold": "2",
|
20 |
+
"folder_with_segs_from_previous_stage": "None",
|
21 |
+
"gpu_name": "NVIDIA A10G",
|
22 |
+
"grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fdce67599f0>",
|
23 |
+
"hostname": "s-osbm-jupyter-f0b83-8689bbb555-5t6kn",
|
24 |
+
"inference_allowed_mirroring_axes": "(0, 1, 2)",
|
25 |
+
"initial_lr": "0.01",
|
26 |
+
"is_cascaded": "False",
|
27 |
+
"is_ddp": "False",
|
28 |
+
"label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fdce6759ba0>",
|
29 |
+
"local_rank": "0",
|
30 |
+
"log_file": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_7_24_11_56_27.txt",
|
31 |
+
"logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fdce6759a80>",
|
32 |
+
"loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
|
33 |
+
"lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fdce6759ae0>",
|
34 |
+
"my_init_kwargs": "{'plans': {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}, 'configuration': '3d_fullres', 'fold': 2, 'dataset_json': {'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
|
35 |
+
"network": "PlainConvUNet",
|
36 |
+
"num_epochs": "1000",
|
37 |
+
"num_input_channels": "3",
|
38 |
+
"num_iterations_per_epoch": "250",
|
39 |
+
"num_val_iterations_per_epoch": "50",
|
40 |
+
"optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
|
41 |
+
"output_folder": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2",
|
42 |
+
"output_folder_base": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres",
|
43 |
+
"oversample_foreground_percent": "0.33",
|
44 |
+
"plans_manager": "{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}",
|
45 |
+
"preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset001_Prostate158/nnUNetPlans_3d_fullres",
|
46 |
+
"preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset001_Prostate158",
|
47 |
+
"save_every": "50",
|
48 |
+
"torch_version": "2.0.1+cu117",
|
49 |
+
"unpack_dataset": "True",
|
50 |
+
"was_initialized": "True",
|
51 |
+
"weight_decay": "3e-05"
|
52 |
+
}
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_2/training_log_2023_7_24_11_56_27.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#######################################################################
|
3 |
+
Please cite the following paper when using nnU-Net:
|
4 |
+
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
|
5 |
+
#######################################################################
|
6 |
+
|
7 |
+
|
8 |
+
This is the configuration used by this training:
|
9 |
+
Configuration name: 3d_fullres
|
10 |
+
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}
|
11 |
+
|
12 |
+
These are the global plan.json settings:
|
13 |
+
{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}
|
14 |
+
|
15 |
+
2023-07-24 11:56:29.546341: unpacking dataset...
|
16 |
+
2023-07-24 11:56:32.330317: unpacking done...
|
17 |
+
2023-07-24 11:56:32.331048: do_dummy_2d_data_aug: True
|
18 |
+
2023-07-24 11:56:32.332050: Using splits from existing split file: nnUNet_preprocessed/Dataset001_Prostate158/splits_final.json
|
19 |
+
2023-07-24 11:56:32.332453: The split file contains 5 splits.
|
20 |
+
2023-07-24 11:56:32.332518: Desired fold for training: 2
|
21 |
+
2023-07-24 11:56:32.332569: This split has 111 training and 28 validation cases.
|
22 |
+
2023-07-24 11:56:37.249189: Unable to plot network architecture:
|
23 |
+
2023-07-24 11:56:37.249434: module 'torch.onnx' has no attribute '_optimize_trace'
|
24 |
+
2023-07-24 11:56:37.297982:
|
25 |
+
2023-07-24 11:56:37.298078: Epoch 0
|
26 |
+
2023-07-24 11:56:37.298198: Current learning rate: 0.01
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_3/training_log_2023_7_24_11_56_49.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
#######################################################################
|
3 |
+
Please cite the following paper when using nnU-Net:
|
4 |
+
Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
|
5 |
+
#######################################################################
|
6 |
+
|
7 |
+
|
8 |
+
This is the configuration used by this training:
|
9 |
+
Configuration name: 3d_fullres
|
10 |
+
{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}
|
11 |
+
|
12 |
+
These are the global plan.json settings:
|
13 |
+
{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}
|
14 |
+
|
15 |
+
2023-07-24 11:56:51.516630: unpacking dataset...
|
16 |
+
2023-07-24 11:56:54.153463: unpacking done...
|
17 |
+
2023-07-24 11:56:54.154020: do_dummy_2d_data_aug: True
|
18 |
+
2023-07-24 11:56:54.154704: Using splits from existing split file: nnUNet_preprocessed/Dataset001_Prostate158/splits_final.json
|
19 |
+
2023-07-24 11:56:54.154892: The split file contains 5 splits.
|
20 |
+
2023-07-24 11:56:54.154945: Desired fold for training: 3
|
21 |
+
2023-07-24 11:56:54.154991: This split has 111 training and 28 validation cases.
|
nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"dataset_name": "Dataset001_Prostate158",
|
3 |
+
"plans_name": "nnUNetPlans",
|
4 |
+
"original_median_spacing_after_transp": [
|
5 |
+
3.0,
|
6 |
+
0.4017857015132904,
|
7 |
+
0.4017857015132904
|
8 |
+
],
|
9 |
+
"original_median_shape_after_transp": [
|
10 |
+
25,
|
11 |
+
270,
|
12 |
+
270
|
13 |
+
],
|
14 |
+
"image_reader_writer": "SimpleITKIO",
|
15 |
+
"transpose_forward": [
|
16 |
+
0,
|
17 |
+
1,
|
18 |
+
2
|
19 |
+
],
|
20 |
+
"transpose_backward": [
|
21 |
+
0,
|
22 |
+
1,
|
23 |
+
2
|
24 |
+
],
|
25 |
+
"configurations": {
|
26 |
+
"2d": {
|
27 |
+
"data_identifier": "nnUNetPlans_2d",
|
28 |
+
"preprocessor_name": "DefaultPreprocessor",
|
29 |
+
"batch_size": 31,
|
30 |
+
"patch_size": [
|
31 |
+
320,
|
32 |
+
320
|
33 |
+
],
|
34 |
+
"median_image_size_in_voxels": [
|
35 |
+
270.0,
|
36 |
+
270.0
|
37 |
+
],
|
38 |
+
"spacing": [
|
39 |
+
0.4017857015132904,
|
40 |
+
0.4017857015132904
|
41 |
+
],
|
42 |
+
"normalization_schemes": [
|
43 |
+
"ZScoreNormalization",
|
44 |
+
"ZScoreNormalization",
|
45 |
+
"ZScoreNormalization"
|
46 |
+
],
|
47 |
+
"use_mask_for_norm": [
|
48 |
+
false,
|
49 |
+
false,
|
50 |
+
false
|
51 |
+
],
|
52 |
+
"UNet_class_name": "PlainConvUNet",
|
53 |
+
"UNet_base_num_features": 32,
|
54 |
+
"n_conv_per_stage_encoder": [
|
55 |
+
2,
|
56 |
+
2,
|
57 |
+
2,
|
58 |
+
2,
|
59 |
+
2,
|
60 |
+
2,
|
61 |
+
2
|
62 |
+
],
|
63 |
+
"n_conv_per_stage_decoder": [
|
64 |
+
2,
|
65 |
+
2,
|
66 |
+
2,
|
67 |
+
2,
|
68 |
+
2,
|
69 |
+
2
|
70 |
+
],
|
71 |
+
"num_pool_per_axis": [
|
72 |
+
6,
|
73 |
+
6
|
74 |
+
],
|
75 |
+
"pool_op_kernel_sizes": [
|
76 |
+
[
|
77 |
+
1,
|
78 |
+
1
|
79 |
+
],
|
80 |
+
[
|
81 |
+
2,
|
82 |
+
2
|
83 |
+
],
|
84 |
+
[
|
85 |
+
2,
|
86 |
+
2
|
87 |
+
],
|
88 |
+
[
|
89 |
+
2,
|
90 |
+
2
|
91 |
+
],
|
92 |
+
[
|
93 |
+
2,
|
94 |
+
2
|
95 |
+
],
|
96 |
+
[
|
97 |
+
2,
|
98 |
+
2
|
99 |
+
],
|
100 |
+
[
|
101 |
+
2,
|
102 |
+
2
|
103 |
+
]
|
104 |
+
],
|
105 |
+
"conv_kernel_sizes": [
|
106 |
+
[
|
107 |
+
3,
|
108 |
+
3
|
109 |
+
],
|
110 |
+
[
|
111 |
+
3,
|
112 |
+
3
|
113 |
+
],
|
114 |
+
[
|
115 |
+
3,
|
116 |
+
3
|
117 |
+
],
|
118 |
+
[
|
119 |
+
3,
|
120 |
+
3
|
121 |
+
],
|
122 |
+
[
|
123 |
+
3,
|
124 |
+
3
|
125 |
+
],
|
126 |
+
[
|
127 |
+
3,
|
128 |
+
3
|
129 |
+
],
|
130 |
+
[
|
131 |
+
3,
|
132 |
+
3
|
133 |
+
]
|
134 |
+
],
|
135 |
+
"unet_max_num_features": 512,
|
136 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
137 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
138 |
+
"resampling_fn_data_kwargs": {
|
139 |
+
"is_seg": false,
|
140 |
+
"order": 3,
|
141 |
+
"order_z": 0,
|
142 |
+
"force_separate_z": null
|
143 |
+
},
|
144 |
+
"resampling_fn_seg_kwargs": {
|
145 |
+
"is_seg": true,
|
146 |
+
"order": 1,
|
147 |
+
"order_z": 0,
|
148 |
+
"force_separate_z": null
|
149 |
+
},
|
150 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
151 |
+
"resampling_fn_probabilities_kwargs": {
|
152 |
+
"is_seg": false,
|
153 |
+
"order": 1,
|
154 |
+
"order_z": 0,
|
155 |
+
"force_separate_z": null
|
156 |
+
},
|
157 |
+
"batch_dice": true
|
158 |
+
},
|
159 |
+
"3d_fullres": {
|
160 |
+
"data_identifier": "nnUNetPlans_3d_fullres",
|
161 |
+
"preprocessor_name": "DefaultPreprocessor",
|
162 |
+
"batch_size": 2,
|
163 |
+
"patch_size": [
|
164 |
+
28,
|
165 |
+
256,
|
166 |
+
256
|
167 |
+
],
|
168 |
+
"median_image_size_in_voxels": [
|
169 |
+
25.0,
|
170 |
+
270.0,
|
171 |
+
270.0
|
172 |
+
],
|
173 |
+
"spacing": [
|
174 |
+
2.999998998641968,
|
175 |
+
0.4017857015132904,
|
176 |
+
0.4017857015132904
|
177 |
+
],
|
178 |
+
"normalization_schemes": [
|
179 |
+
"ZScoreNormalization",
|
180 |
+
"ZScoreNormalization",
|
181 |
+
"ZScoreNormalization"
|
182 |
+
],
|
183 |
+
"use_mask_for_norm": [
|
184 |
+
false,
|
185 |
+
false,
|
186 |
+
false
|
187 |
+
],
|
188 |
+
"UNet_class_name": "PlainConvUNet",
|
189 |
+
"UNet_base_num_features": 32,
|
190 |
+
"n_conv_per_stage_encoder": [
|
191 |
+
2,
|
192 |
+
2,
|
193 |
+
2,
|
194 |
+
2,
|
195 |
+
2,
|
196 |
+
2,
|
197 |
+
2
|
198 |
+
],
|
199 |
+
"n_conv_per_stage_decoder": [
|
200 |
+
2,
|
201 |
+
2,
|
202 |
+
2,
|
203 |
+
2,
|
204 |
+
2,
|
205 |
+
2
|
206 |
+
],
|
207 |
+
"num_pool_per_axis": [
|
208 |
+
2,
|
209 |
+
6,
|
210 |
+
6
|
211 |
+
],
|
212 |
+
"pool_op_kernel_sizes": [
|
213 |
+
[
|
214 |
+
1,
|
215 |
+
1,
|
216 |
+
1
|
217 |
+
],
|
218 |
+
[
|
219 |
+
1,
|
220 |
+
2,
|
221 |
+
2
|
222 |
+
],
|
223 |
+
[
|
224 |
+
1,
|
225 |
+
2,
|
226 |
+
2
|
227 |
+
],
|
228 |
+
[
|
229 |
+
2,
|
230 |
+
2,
|
231 |
+
2
|
232 |
+
],
|
233 |
+
[
|
234 |
+
2,
|
235 |
+
2,
|
236 |
+
2
|
237 |
+
],
|
238 |
+
[
|
239 |
+
1,
|
240 |
+
2,
|
241 |
+
2
|
242 |
+
],
|
243 |
+
[
|
244 |
+
1,
|
245 |
+
2,
|
246 |
+
2
|
247 |
+
]
|
248 |
+
],
|
249 |
+
"conv_kernel_sizes": [
|
250 |
+
[
|
251 |
+
1,
|
252 |
+
3,
|
253 |
+
3
|
254 |
+
],
|
255 |
+
[
|
256 |
+
1,
|
257 |
+
3,
|
258 |
+
3
|
259 |
+
],
|
260 |
+
[
|
261 |
+
3,
|
262 |
+
3,
|
263 |
+
3
|
264 |
+
],
|
265 |
+
[
|
266 |
+
3,
|
267 |
+
3,
|
268 |
+
3
|
269 |
+
],
|
270 |
+
[
|
271 |
+
3,
|
272 |
+
3,
|
273 |
+
3
|
274 |
+
],
|
275 |
+
[
|
276 |
+
3,
|
277 |
+
3,
|
278 |
+
3
|
279 |
+
],
|
280 |
+
[
|
281 |
+
3,
|
282 |
+
3,
|
283 |
+
3
|
284 |
+
]
|
285 |
+
],
|
286 |
+
"unet_max_num_features": 320,
|
287 |
+
"resampling_fn_data": "resample_data_or_seg_to_shape",
|
288 |
+
"resampling_fn_seg": "resample_data_or_seg_to_shape",
|
289 |
+
"resampling_fn_data_kwargs": {
|
290 |
+
"is_seg": false,
|
291 |
+
"order": 3,
|
292 |
+
"order_z": 0,
|
293 |
+
"force_separate_z": null
|
294 |
+
},
|
295 |
+
"resampling_fn_seg_kwargs": {
|
296 |
+
"is_seg": true,
|
297 |
+
"order": 1,
|
298 |
+
"order_z": 0,
|
299 |
+
"force_separate_z": null
|
300 |
+
},
|
301 |
+
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
|
302 |
+
"resampling_fn_probabilities_kwargs": {
|
303 |
+
"is_seg": false,
|
304 |
+
"order": 1,
|
305 |
+
"order_z": 0,
|
306 |
+
"force_separate_z": null
|
307 |
+
},
|
308 |
+
"batch_dice": false
|
309 |
+
}
|
310 |
+
},
|
311 |
+
"experiment_planner_used": "ExperimentPlanner",
|
312 |
+
"label_manager": "LabelManager",
|
313 |
+
"foreground_intensity_properties_per_channel": {
|
314 |
+
"0": {
|
315 |
+
"max": 1694.0,
|
316 |
+
"mean": 267.35308837890625,
|
317 |
+
"median": 242.0,
|
318 |
+
"min": 0.0,
|
319 |
+
"percentile_00_5": 36.0,
|
320 |
+
"percentile_99_5": 768.0,
|
321 |
+
"std": 136.11251831054688
|
322 |
+
},
|
323 |
+
"1": {
|
324 |
+
"max": 3557.286865234375,
|
325 |
+
"mean": 1215.81591796875,
|
326 |
+
"median": 1203.8331298828125,
|
327 |
+
"min": 0.0,
|
328 |
+
"percentile_00_5": 0.0,
|
329 |
+
"percentile_99_5": 2259.82861328125,
|
330 |
+
"std": 338.6748352050781
|
331 |
+
},
|
332 |
+
"2": {
|
333 |
+
"max": 198.95455932617188,
|
334 |
+
"mean": 72.26309204101562,
|
335 |
+
"median": 70.3214340209961,
|
336 |
+
"min": 0.0,
|
337 |
+
"percentile_00_5": 34.534385681152344,
|
338 |
+
"percentile_99_5": 132.71939086914062,
|
339 |
+
"std": 18.909290313720703
|
340 |
+
}
|
341 |
+
}
|
342 |
+
}
|