osbm commited on
Commit
4831400
·
1 Parent(s): c39733d

Upload folder using huggingface_hub

Browse files
Files changed (16) hide show
  1. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json +18 -0
  2. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json +1426 -0
  3. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/.ipynb_checkpoints/progress-checkpoint.png +3 -0
  4. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth +3 -0
  5. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_latest.pth +3 -0
  6. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json +52 -0
  7. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png +3 -0
  8. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_7_24_00_01_52.txt +1194 -0
  9. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/Untitled-checkpoint.ipynb +6 -0
  10. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/progress-checkpoint.png +3 -0
  11. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/Untitled.ipynb +112 -0
  12. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_best.pth +3 -0
  13. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json +52 -0
  14. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png +3 -0
  15. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_7_24_09_31_46.txt +170 -0
  16. Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json +342 -0
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Prostate158",
3
+ "description": "Prostate cancer segmentation dataset",
4
+ "channel_names": {
5
+ "0": "T2",
6
+ "1": "ADC",
7
+ "2": "DFI"
8
+ },
9
+ "labels": {
10
+ "background": 0,
11
+ "prostate_inner": 1,
12
+ "prostate_outer": 2,
13
+ "tumor": 3
14
+ },
15
+ "numTraining": 139,
16
+ "numTest": 19,
17
+ "file_ending": ".nii.gz"
18
+ }
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/dataset_fingerprint.json ADDED
@@ -0,0 +1,1426 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "foreground_intensity_properties_per_channel": {
3
+ "0": {
4
+ "max": 1694.0,
5
+ "mean": 267.35308837890625,
6
+ "median": 242.0,
7
+ "min": 0.0,
8
+ "percentile_00_5": 36.0,
9
+ "percentile_99_5": 768.0,
10
+ "std": 136.11251831054688
11
+ },
12
+ "1": {
13
+ "max": 3557.286865234375,
14
+ "mean": 1215.81591796875,
15
+ "median": 1203.8331298828125,
16
+ "min": 0.0,
17
+ "percentile_00_5": 0.0,
18
+ "percentile_99_5": 2259.82861328125,
19
+ "std": 338.6748352050781
20
+ },
21
+ "2": {
22
+ "max": 198.95455932617188,
23
+ "mean": 72.26309204101562,
24
+ "median": 70.3214340209961,
25
+ "min": 0.0,
26
+ "percentile_00_5": 34.534385681152344,
27
+ "percentile_99_5": 132.71939086914062,
28
+ "std": 18.909290313720703
29
+ }
30
+ },
31
+ "median_relative_size_after_cropping": 1.0,
32
+ "shapes_after_crop": [
33
+ [
34
+ 26,
35
+ 270,
36
+ 270
37
+ ],
38
+ [
39
+ 26,
40
+ 270,
41
+ 270
42
+ ],
43
+ [
44
+ 24,
45
+ 270,
46
+ 270
47
+ ],
48
+ [
49
+ 25,
50
+ 442,
51
+ 442
52
+ ],
53
+ [
54
+ 24,
55
+ 270,
56
+ 270
57
+ ],
58
+ [
59
+ 24,
60
+ 270,
61
+ 270
62
+ ],
63
+ [
64
+ 24,
65
+ 270,
66
+ 270
67
+ ],
68
+ [
69
+ 24,
70
+ 270,
71
+ 270
72
+ ],
73
+ [
74
+ 25,
75
+ 442,
76
+ 442
77
+ ],
78
+ [
79
+ 24,
80
+ 270,
81
+ 270
82
+ ],
83
+ [
84
+ 24,
85
+ 270,
86
+ 270
87
+ ],
88
+ [
89
+ 26,
90
+ 270,
91
+ 270
92
+ ],
93
+ [
94
+ 26,
95
+ 270,
96
+ 270
97
+ ],
98
+ [
99
+ 24,
100
+ 270,
101
+ 270
102
+ ],
103
+ [
104
+ 24,
105
+ 270,
106
+ 270
107
+ ],
108
+ [
109
+ 24,
110
+ 270,
111
+ 270
112
+ ],
113
+ [
114
+ 26,
115
+ 270,
116
+ 270
117
+ ],
118
+ [
119
+ 24,
120
+ 270,
121
+ 270
122
+ ],
123
+ [
124
+ 24,
125
+ 270,
126
+ 270
127
+ ],
128
+ [
129
+ 28,
130
+ 270,
131
+ 270
132
+ ],
133
+ [
134
+ 24,
135
+ 270,
136
+ 270
137
+ ],
138
+ [
139
+ 26,
140
+ 270,
141
+ 270
142
+ ],
143
+ [
144
+ 25,
145
+ 442,
146
+ 442
147
+ ],
148
+ [
149
+ 25,
150
+ 442,
151
+ 442
152
+ ],
153
+ [
154
+ 25,
155
+ 442,
156
+ 442
157
+ ],
158
+ [
159
+ 24,
160
+ 270,
161
+ 270
162
+ ],
163
+ [
164
+ 24,
165
+ 270,
166
+ 270
167
+ ],
168
+ [
169
+ 27,
170
+ 232,
171
+ 232
172
+ ],
173
+ [
174
+ 24,
175
+ 270,
176
+ 270
177
+ ],
178
+ [
179
+ 30,
180
+ 232,
181
+ 232
182
+ ],
183
+ [
184
+ 27,
185
+ 232,
186
+ 232
187
+ ],
188
+ [
189
+ 24,
190
+ 270,
191
+ 270
192
+ ],
193
+ [
194
+ 25,
195
+ 442,
196
+ 442
197
+ ],
198
+ [
199
+ 24,
200
+ 270,
201
+ 270
202
+ ],
203
+ [
204
+ 24,
205
+ 270,
206
+ 270
207
+ ],
208
+ [
209
+ 26,
210
+ 270,
211
+ 270
212
+ ],
213
+ [
214
+ 24,
215
+ 270,
216
+ 270
217
+ ],
218
+ [
219
+ 24,
220
+ 270,
221
+ 270
222
+ ],
223
+ [
224
+ 27,
225
+ 442,
226
+ 442
227
+ ],
228
+ [
229
+ 25,
230
+ 442,
231
+ 442
232
+ ],
233
+ [
234
+ 25,
235
+ 442,
236
+ 442
237
+ ],
238
+ [
239
+ 35,
240
+ 270,
241
+ 270
242
+ ],
243
+ [
244
+ 25,
245
+ 442,
246
+ 442
247
+ ],
248
+ [
249
+ 24,
250
+ 270,
251
+ 270
252
+ ],
253
+ [
254
+ 24,
255
+ 270,
256
+ 270
257
+ ],
258
+ [
259
+ 24,
260
+ 270,
261
+ 270
262
+ ],
263
+ [
264
+ 26,
265
+ 270,
266
+ 270
267
+ ],
268
+ [
269
+ 24,
270
+ 270,
271
+ 270
272
+ ],
273
+ [
274
+ 24,
275
+ 270,
276
+ 270
277
+ ],
278
+ [
279
+ 35,
280
+ 442,
281
+ 442
282
+ ],
283
+ [
284
+ 26,
285
+ 270,
286
+ 270
287
+ ],
288
+ [
289
+ 24,
290
+ 270,
291
+ 270
292
+ ],
293
+ [
294
+ 24,
295
+ 270,
296
+ 270
297
+ ],
298
+ [
299
+ 31,
300
+ 442,
301
+ 442
302
+ ],
303
+ [
304
+ 26,
305
+ 270,
306
+ 270
307
+ ],
308
+ [
309
+ 30,
310
+ 442,
311
+ 442
312
+ ],
313
+ [
314
+ 27,
315
+ 232,
316
+ 232
317
+ ],
318
+ [
319
+ 27,
320
+ 232,
321
+ 232
322
+ ],
323
+ [
324
+ 25,
325
+ 442,
326
+ 442
327
+ ],
328
+ [
329
+ 24,
330
+ 270,
331
+ 270
332
+ ],
333
+ [
334
+ 24,
335
+ 270,
336
+ 270
337
+ ],
338
+ [
339
+ 24,
340
+ 270,
341
+ 270
342
+ ],
343
+ [
344
+ 24,
345
+ 270,
346
+ 270
347
+ ],
348
+ [
349
+ 28,
350
+ 270,
351
+ 270
352
+ ],
353
+ [
354
+ 24,
355
+ 270,
356
+ 270
357
+ ],
358
+ [
359
+ 31,
360
+ 442,
361
+ 442
362
+ ],
363
+ [
364
+ 24,
365
+ 270,
366
+ 270
367
+ ],
368
+ [
369
+ 26,
370
+ 270,
371
+ 270
372
+ ],
373
+ [
374
+ 26,
375
+ 270,
376
+ 270
377
+ ],
378
+ [
379
+ 24,
380
+ 270,
381
+ 270
382
+ ],
383
+ [
384
+ 24,
385
+ 270,
386
+ 270
387
+ ],
388
+ [
389
+ 24,
390
+ 270,
391
+ 270
392
+ ],
393
+ [
394
+ 25,
395
+ 442,
396
+ 442
397
+ ],
398
+ [
399
+ 26,
400
+ 270,
401
+ 270
402
+ ],
403
+ [
404
+ 27,
405
+ 232,
406
+ 232
407
+ ],
408
+ [
409
+ 24,
410
+ 270,
411
+ 270
412
+ ],
413
+ [
414
+ 29,
415
+ 270,
416
+ 270
417
+ ],
418
+ [
419
+ 24,
420
+ 270,
421
+ 270
422
+ ],
423
+ [
424
+ 26,
425
+ 270,
426
+ 270
427
+ ],
428
+ [
429
+ 26,
430
+ 232,
431
+ 232
432
+ ],
433
+ [
434
+ 24,
435
+ 270,
436
+ 270
437
+ ],
438
+ [
439
+ 27,
440
+ 232,
441
+ 232
442
+ ],
443
+ [
444
+ 26,
445
+ 270,
446
+ 270
447
+ ],
448
+ [
449
+ 25,
450
+ 442,
451
+ 442
452
+ ],
453
+ [
454
+ 26,
455
+ 270,
456
+ 270
457
+ ],
458
+ [
459
+ 24,
460
+ 270,
461
+ 270
462
+ ],
463
+ [
464
+ 24,
465
+ 270,
466
+ 270
467
+ ],
468
+ [
469
+ 30,
470
+ 442,
471
+ 442
472
+ ],
473
+ [
474
+ 28,
475
+ 270,
476
+ 270
477
+ ],
478
+ [
479
+ 24,
480
+ 270,
481
+ 270
482
+ ],
483
+ [
484
+ 24,
485
+ 270,
486
+ 270
487
+ ],
488
+ [
489
+ 24,
490
+ 270,
491
+ 270
492
+ ],
493
+ [
494
+ 25,
495
+ 442,
496
+ 442
497
+ ],
498
+ [
499
+ 31,
500
+ 442,
501
+ 442
502
+ ],
503
+ [
504
+ 25,
505
+ 442,
506
+ 442
507
+ ],
508
+ [
509
+ 25,
510
+ 442,
511
+ 442
512
+ ],
513
+ [
514
+ 30,
515
+ 232,
516
+ 232
517
+ ],
518
+ [
519
+ 24,
520
+ 270,
521
+ 270
522
+ ],
523
+ [
524
+ 26,
525
+ 270,
526
+ 270
527
+ ],
528
+ [
529
+ 31,
530
+ 442,
531
+ 442
532
+ ],
533
+ [
534
+ 24,
535
+ 270,
536
+ 270
537
+ ],
538
+ [
539
+ 26,
540
+ 270,
541
+ 270
542
+ ],
543
+ [
544
+ 26,
545
+ 270,
546
+ 270
547
+ ],
548
+ [
549
+ 24,
550
+ 270,
551
+ 270
552
+ ],
553
+ [
554
+ 25,
555
+ 442,
556
+ 442
557
+ ],
558
+ [
559
+ 24,
560
+ 270,
561
+ 270
562
+ ],
563
+ [
564
+ 26,
565
+ 270,
566
+ 270
567
+ ],
568
+ [
569
+ 27,
570
+ 442,
571
+ 442
572
+ ],
573
+ [
574
+ 24,
575
+ 270,
576
+ 270
577
+ ],
578
+ [
579
+ 24,
580
+ 270,
581
+ 270
582
+ ],
583
+ [
584
+ 24,
585
+ 270,
586
+ 270
587
+ ],
588
+ [
589
+ 28,
590
+ 270,
591
+ 270
592
+ ],
593
+ [
594
+ 24,
595
+ 270,
596
+ 270
597
+ ],
598
+ [
599
+ 30,
600
+ 270,
601
+ 270
602
+ ],
603
+ [
604
+ 24,
605
+ 270,
606
+ 270
607
+ ],
608
+ [
609
+ 24,
610
+ 270,
611
+ 270
612
+ ],
613
+ [
614
+ 25,
615
+ 442,
616
+ 442
617
+ ],
618
+ [
619
+ 24,
620
+ 270,
621
+ 270
622
+ ],
623
+ [
624
+ 24,
625
+ 270,
626
+ 270
627
+ ],
628
+ [
629
+ 24,
630
+ 270,
631
+ 270
632
+ ],
633
+ [
634
+ 28,
635
+ 270,
636
+ 270
637
+ ],
638
+ [
639
+ 24,
640
+ 270,
641
+ 270
642
+ ],
643
+ [
644
+ 40,
645
+ 270,
646
+ 270
647
+ ],
648
+ [
649
+ 24,
650
+ 270,
651
+ 270
652
+ ],
653
+ [
654
+ 24,
655
+ 270,
656
+ 270
657
+ ],
658
+ [
659
+ 27,
660
+ 232,
661
+ 232
662
+ ],
663
+ [
664
+ 24,
665
+ 270,
666
+ 270
667
+ ],
668
+ [
669
+ 26,
670
+ 270,
671
+ 270
672
+ ],
673
+ [
674
+ 25,
675
+ 442,
676
+ 442
677
+ ],
678
+ [
679
+ 27,
680
+ 232,
681
+ 232
682
+ ],
683
+ [
684
+ 26,
685
+ 270,
686
+ 270
687
+ ],
688
+ [
689
+ 24,
690
+ 270,
691
+ 270
692
+ ],
693
+ [
694
+ 25,
695
+ 442,
696
+ 442
697
+ ],
698
+ [
699
+ 24,
700
+ 270,
701
+ 270
702
+ ],
703
+ [
704
+ 24,
705
+ 270,
706
+ 270
707
+ ],
708
+ [
709
+ 24,
710
+ 270,
711
+ 270
712
+ ],
713
+ [
714
+ 24,
715
+ 270,
716
+ 270
717
+ ],
718
+ [
719
+ 25,
720
+ 442,
721
+ 442
722
+ ],
723
+ [
724
+ 24,
725
+ 270,
726
+ 270
727
+ ]
728
+ ],
729
+ "spacings": [
730
+ [
731
+ 3.0,
732
+ 0.4017857015132904,
733
+ 0.4017857015132904
734
+ ],
735
+ [
736
+ 3.0,
737
+ 0.4017857015132904,
738
+ 0.4017857015132904
739
+ ],
740
+ [
741
+ 3.0,
742
+ 0.4017857015132904,
743
+ 0.4017857015132904
744
+ ],
745
+ [
746
+ 3.000002384185791,
747
+ 0.27173900604248047,
748
+ 0.27173900604248047
749
+ ],
750
+ [
751
+ 3.000000238418579,
752
+ 0.4017857015132904,
753
+ 0.4017857015132904
754
+ ],
755
+ [
756
+ 3.000000238418579,
757
+ 0.4017857015132904,
758
+ 0.4017857015132904
759
+ ],
760
+ [
761
+ 2.999999761581421,
762
+ 0.4017857015132904,
763
+ 0.4017857015132904
764
+ ],
765
+ [
766
+ 3.000000238418579,
767
+ 0.4017857015132904,
768
+ 0.4017857015132904
769
+ ],
770
+ [
771
+ 3.0000030994415283,
772
+ 0.27173900604248047,
773
+ 0.27173900604248047
774
+ ],
775
+ [
776
+ 3.0,
777
+ 0.4017857015132904,
778
+ 0.4017857015132904
779
+ ],
780
+ [
781
+ 2.999999761581421,
782
+ 0.4017857015132904,
783
+ 0.4017857015132904
784
+ ],
785
+ [
786
+ 3.0,
787
+ 0.4464285671710968,
788
+ 0.4464285671710968
789
+ ],
790
+ [
791
+ 3.0,
792
+ 0.4017857015132904,
793
+ 0.4017857015132904
794
+ ],
795
+ [
796
+ 3.0,
797
+ 0.4017857015132904,
798
+ 0.4017857015132904
799
+ ],
800
+ [
801
+ 3.000000238418579,
802
+ 0.4017857015132904,
803
+ 0.4017857015132904
804
+ ],
805
+ [
806
+ 3.0,
807
+ 0.4017857015132904,
808
+ 0.4017857015132904
809
+ ],
810
+ [
811
+ 3.0,
812
+ 0.4017857015132904,
813
+ 0.4017857015132904
814
+ ],
815
+ [
816
+ 3.0,
817
+ 0.4017857015132904,
818
+ 0.4017857015132904
819
+ ],
820
+ [
821
+ 3.0,
822
+ 0.4017857015132904,
823
+ 0.4017857015132904
824
+ ],
825
+ [
826
+ 3.0,
827
+ 0.4017857015132904,
828
+ 0.4017857015132904
829
+ ],
830
+ [
831
+ 3.0,
832
+ 0.4017857015132904,
833
+ 0.4017857015132904
834
+ ],
835
+ [
836
+ 3.000000238418579,
837
+ 0.4017857015132904,
838
+ 0.4017857015132904
839
+ ],
840
+ [
841
+ 2.999998092651367,
842
+ 0.27173900604248047,
843
+ 0.27173900604248047
844
+ ],
845
+ [
846
+ 2.9999985694885254,
847
+ 0.27173900604248047,
848
+ 0.27173900604248047
849
+ ],
850
+ [
851
+ 3.000016689300537,
852
+ 0.27173900604248047,
853
+ 0.27173900604248047
854
+ ],
855
+ [
856
+ 3.0,
857
+ 0.4017857015132904,
858
+ 0.4017857015132904
859
+ ],
860
+ [
861
+ 3.0,
862
+ 0.4017857015132904,
863
+ 0.4017857015132904
864
+ ],
865
+ [
866
+ 3.0000035762786865,
867
+ 0.46875,
868
+ 0.46875
869
+ ],
870
+ [
871
+ 3.0,
872
+ 0.4017857015132904,
873
+ 0.4017857015132904
874
+ ],
875
+ [
876
+ 2.9999992847442627,
877
+ 0.46875,
878
+ 0.46875
879
+ ],
880
+ [
881
+ 2.9999945163726807,
882
+ 0.46875,
883
+ 0.46875
884
+ ],
885
+ [
886
+ 3.000000238418579,
887
+ 0.4017857015132904,
888
+ 0.4017857015132904
889
+ ],
890
+ [
891
+ 3.0000016689300537,
892
+ 0.27173900604248047,
893
+ 0.27173900604248047
894
+ ],
895
+ [
896
+ 3.0,
897
+ 0.4017857015132904,
898
+ 0.4017857015132904
899
+ ],
900
+ [
901
+ 3.0,
902
+ 0.4017857015132904,
903
+ 0.4017857015132904
904
+ ],
905
+ [
906
+ 3.0,
907
+ 0.4017857015132904,
908
+ 0.4017857015132904
909
+ ],
910
+ [
911
+ 3.0,
912
+ 0.4017857015132904,
913
+ 0.4017857015132904
914
+ ],
915
+ [
916
+ 3.0,
917
+ 0.4017857015132904,
918
+ 0.4017857015132904
919
+ ],
920
+ [
921
+ 2.9999990463256836,
922
+ 0.27173900604248047,
923
+ 0.27173900604248047
924
+ ],
925
+ [
926
+ 2.9999988079071045,
927
+ 0.27173900604248047,
928
+ 0.27173900604248047
929
+ ],
930
+ [
931
+ 2.999993085861206,
932
+ 0.27173900604248047,
933
+ 0.27173900604248047
934
+ ],
935
+ [
936
+ 3.0,
937
+ 0.4017857015132904,
938
+ 0.4017857015132904
939
+ ],
940
+ [
941
+ 2.999997854232788,
942
+ 0.27173900604248047,
943
+ 0.27173900604248047
944
+ ],
945
+ [
946
+ 3.0,
947
+ 0.4017857015132904,
948
+ 0.4017857015132904
949
+ ],
950
+ [
951
+ 3.0,
952
+ 0.4017857015132904,
953
+ 0.4017857015132904
954
+ ],
955
+ [
956
+ 3.0,
957
+ 0.4017857015132904,
958
+ 0.4017857015132904
959
+ ],
960
+ [
961
+ 3.000000238418579,
962
+ 0.4017857015132904,
963
+ 0.4017857015132904
964
+ ],
965
+ [
966
+ 3.0,
967
+ 0.4017857015132904,
968
+ 0.4017857015132904
969
+ ],
970
+ [
971
+ 3.0,
972
+ 0.4017857015132904,
973
+ 0.4017857015132904
974
+ ],
975
+ [
976
+ 3.0000011920928955,
977
+ 0.27173900604248047,
978
+ 0.27173900604248047
979
+ ],
980
+ [
981
+ 3.0,
982
+ 0.4017857015132904,
983
+ 0.4017857015132904
984
+ ],
985
+ [
986
+ 3.0,
987
+ 0.4017857015132904,
988
+ 0.4017857015132904
989
+ ],
990
+ [
991
+ 3.0,
992
+ 0.4017857015132904,
993
+ 0.4017857015132904
994
+ ],
995
+ [
996
+ 3.000004768371582,
997
+ 0.27173900604248047,
998
+ 0.27173900604248047
999
+ ],
1000
+ [
1001
+ 3.0000159740448,
1002
+ 0.4017859995365143,
1003
+ 0.4017859995365143
1004
+ ],
1005
+ [
1006
+ 2.9999992847442627,
1007
+ 0.27173900604248047,
1008
+ 0.27173900604248047
1009
+ ],
1010
+ [
1011
+ 2.9999992847442627,
1012
+ 0.46875,
1013
+ 0.46875
1014
+ ],
1015
+ [
1016
+ 2.9999849796295166,
1017
+ 0.46875,
1018
+ 0.46875
1019
+ ],
1020
+ [
1021
+ 3.0000016689300537,
1022
+ 0.27173900604248047,
1023
+ 0.27173900604248047
1024
+ ],
1025
+ [
1026
+ 3.0,
1027
+ 0.4017857015132904,
1028
+ 0.4017857015132904
1029
+ ],
1030
+ [
1031
+ 3.000000238418579,
1032
+ 0.4017857015132904,
1033
+ 0.4017857015132904
1034
+ ],
1035
+ [
1036
+ 3.0,
1037
+ 0.4017857015132904,
1038
+ 0.4017857015132904
1039
+ ],
1040
+ [
1041
+ 3.0,
1042
+ 0.4017857015132904,
1043
+ 0.4017857015132904
1044
+ ],
1045
+ [
1046
+ 3.0,
1047
+ 0.4017857015132904,
1048
+ 0.4017857015132904
1049
+ ],
1050
+ [
1051
+ 3.0,
1052
+ 0.4017857015132904,
1053
+ 0.4017857015132904
1054
+ ],
1055
+ [
1056
+ 2.999997854232788,
1057
+ 0.27173900604248047,
1058
+ 0.27173900604248047
1059
+ ],
1060
+ [
1061
+ 3.0,
1062
+ 0.4017857015132904,
1063
+ 0.4017857015132904
1064
+ ],
1065
+ [
1066
+ 3.0,
1067
+ 0.4017857015132904,
1068
+ 0.4017857015132904
1069
+ ],
1070
+ [
1071
+ 3.0,
1072
+ 0.4017857015132904,
1073
+ 0.4017857015132904
1074
+ ],
1075
+ [
1076
+ 3.0,
1077
+ 0.4017857015132904,
1078
+ 0.4017857015132904
1079
+ ],
1080
+ [
1081
+ 3.0,
1082
+ 0.4017857015132904,
1083
+ 0.4017857015132904
1084
+ ],
1085
+ [
1086
+ 3.0,
1087
+ 0.4017857015132904,
1088
+ 0.4017857015132904
1089
+ ],
1090
+ [
1091
+ 3.0,
1092
+ 0.27173900604248047,
1093
+ 0.27173900604248047
1094
+ ],
1095
+ [
1096
+ 3.0,
1097
+ 0.4017857015132904,
1098
+ 0.4017857015132904
1099
+ ],
1100
+ [
1101
+ 3.0000014305114746,
1102
+ 0.46875,
1103
+ 0.46875
1104
+ ],
1105
+ [
1106
+ 2.999999761581421,
1107
+ 0.4017857015132904,
1108
+ 0.4017857015132904
1109
+ ],
1110
+ [
1111
+ 3.0,
1112
+ 0.4017857015132904,
1113
+ 0.4017857015132904
1114
+ ],
1115
+ [
1116
+ 3.0,
1117
+ 0.4017857015132904,
1118
+ 0.4017857015132904
1119
+ ],
1120
+ [
1121
+ 3.0,
1122
+ 0.4017857015132904,
1123
+ 0.4017857015132904
1124
+ ],
1125
+ [
1126
+ 3.0,
1127
+ 0.46875,
1128
+ 0.46875
1129
+ ],
1130
+ [
1131
+ 3.0,
1132
+ 0.4017857015132904,
1133
+ 0.4017857015132904
1134
+ ],
1135
+ [
1136
+ 3.00002121925354,
1137
+ 0.46875,
1138
+ 0.46875
1139
+ ],
1140
+ [
1141
+ 3.0,
1142
+ 0.4017857015132904,
1143
+ 0.4017857015132904
1144
+ ],
1145
+ [
1146
+ 3.0,
1147
+ 0.27173900604248047,
1148
+ 0.27173900604248047
1149
+ ],
1150
+ [
1151
+ 3.0,
1152
+ 0.4017857015132904,
1153
+ 0.4017857015132904
1154
+ ],
1155
+ [
1156
+ 3.0,
1157
+ 0.4017857015132904,
1158
+ 0.4017857015132904
1159
+ ],
1160
+ [
1161
+ 3.0,
1162
+ 0.4017857015132904,
1163
+ 0.4017857015132904
1164
+ ],
1165
+ [
1166
+ 3.000000476837158,
1167
+ 0.27173900604248047,
1168
+ 0.27173900604248047
1169
+ ],
1170
+ [
1171
+ 3.0,
1172
+ 0.4017857015132904,
1173
+ 0.4017857015132904
1174
+ ],
1175
+ [
1176
+ 3.0,
1177
+ 0.4017857015132904,
1178
+ 0.4017857015132904
1179
+ ],
1180
+ [
1181
+ 3.000000238418579,
1182
+ 0.4017857015132904,
1183
+ 0.4017857015132904
1184
+ ],
1185
+ [
1186
+ 3.0,
1187
+ 0.4017857015132904,
1188
+ 0.4017857015132904
1189
+ ],
1190
+ [
1191
+ 3.0,
1192
+ 0.27173900604248047,
1193
+ 0.27173900604248047
1194
+ ],
1195
+ [
1196
+ 3.0000033378601074,
1197
+ 0.27173900604248047,
1198
+ 0.27173900604248047
1199
+ ],
1200
+ [
1201
+ 2.9999983310699463,
1202
+ 0.27173900604248047,
1203
+ 0.27173900604248047
1204
+ ],
1205
+ [
1206
+ 3.0,
1207
+ 0.27173900604248047,
1208
+ 0.27173900604248047
1209
+ ],
1210
+ [
1211
+ 2.9999992847442627,
1212
+ 0.46875,
1213
+ 0.46875
1214
+ ],
1215
+ [
1216
+ 3.0,
1217
+ 0.4017857015132904,
1218
+ 0.4017857015132904
1219
+ ],
1220
+ [
1221
+ 3.0,
1222
+ 0.4017857015132904,
1223
+ 0.4017857015132904
1224
+ ],
1225
+ [
1226
+ 2.9999990463256836,
1227
+ 0.27173900604248047,
1228
+ 0.27173900604248047
1229
+ ],
1230
+ [
1231
+ 3.0,
1232
+ 0.4017857015132904,
1233
+ 0.4017857015132904
1234
+ ],
1235
+ [
1236
+ 3.0,
1237
+ 0.4017857015132904,
1238
+ 0.4017857015132904
1239
+ ],
1240
+ [
1241
+ 3.0,
1242
+ 0.4017857015132904,
1243
+ 0.4017857015132904
1244
+ ],
1245
+ [
1246
+ 3.0,
1247
+ 0.4017857015132904,
1248
+ 0.4017857015132904
1249
+ ],
1250
+ [
1251
+ 3.000020742416382,
1252
+ 0.27173900604248047,
1253
+ 0.27173900604248047
1254
+ ],
1255
+ [
1256
+ 2.999999761581421,
1257
+ 0.4017857015132904,
1258
+ 0.4017857015132904
1259
+ ],
1260
+ [
1261
+ 3.0,
1262
+ 0.4017857015132904,
1263
+ 0.4017857015132904
1264
+ ],
1265
+ [
1266
+ 2.9999923706054688,
1267
+ 0.27173900604248047,
1268
+ 0.27173900604248047
1269
+ ],
1270
+ [
1271
+ 3.0,
1272
+ 0.4017857015132904,
1273
+ 0.4017857015132904
1274
+ ],
1275
+ [
1276
+ 3.0,
1277
+ 0.4017857015132904,
1278
+ 0.4017857015132904
1279
+ ],
1280
+ [
1281
+ 3.0,
1282
+ 0.4017857015132904,
1283
+ 0.4017857015132904
1284
+ ],
1285
+ [
1286
+ 3.0,
1287
+ 0.4017857015132904,
1288
+ 0.4017857015132904
1289
+ ],
1290
+ [
1291
+ 3.0,
1292
+ 0.4017857015132904,
1293
+ 0.4017857015132904
1294
+ ],
1295
+ [
1296
+ 3.0,
1297
+ 0.4017857015132904,
1298
+ 0.4017857015132904
1299
+ ],
1300
+ [
1301
+ 3.0,
1302
+ 0.4017857015132904,
1303
+ 0.4017857015132904
1304
+ ],
1305
+ [
1306
+ 3.0,
1307
+ 0.4017857015132904,
1308
+ 0.4017857015132904
1309
+ ],
1310
+ [
1311
+ 2.999995470046997,
1312
+ 0.27173900604248047,
1313
+ 0.27173900604248047
1314
+ ],
1315
+ [
1316
+ 3.0,
1317
+ 0.4017857015132904,
1318
+ 0.4017857015132904
1319
+ ],
1320
+ [
1321
+ 3.0,
1322
+ 0.4017857015132904,
1323
+ 0.4017857015132904
1324
+ ],
1325
+ [
1326
+ 3.0,
1327
+ 0.4017857015132904,
1328
+ 0.4017857015132904
1329
+ ],
1330
+ [
1331
+ 3.0,
1332
+ 0.4017857015132904,
1333
+ 0.4017857015132904
1334
+ ],
1335
+ [
1336
+ 2.999999761581421,
1337
+ 0.4017857015132904,
1338
+ 0.4017857015132904
1339
+ ],
1340
+ [
1341
+ 3.0,
1342
+ 0.4017857015132904,
1343
+ 0.4017857015132904
1344
+ ],
1345
+ [
1346
+ 3.0,
1347
+ 0.4017857015132904,
1348
+ 0.4017857015132904
1349
+ ],
1350
+ [
1351
+ 3.0,
1352
+ 0.4017857015132904,
1353
+ 0.4017857015132904
1354
+ ],
1355
+ [
1356
+ 2.999994993209839,
1357
+ 0.46875,
1358
+ 0.46875
1359
+ ],
1360
+ [
1361
+ 3.0,
1362
+ 0.4017857015132904,
1363
+ 0.4017857015132904
1364
+ ],
1365
+ [
1366
+ 3.0,
1367
+ 0.4017857015132904,
1368
+ 0.4017857015132904
1369
+ ],
1370
+ [
1371
+ 3.0,
1372
+ 0.27173900604248047,
1373
+ 0.27173900604248047
1374
+ ],
1375
+ [
1376
+ 2.9999983310699463,
1377
+ 0.46875,
1378
+ 0.46875
1379
+ ],
1380
+ [
1381
+ 3.0,
1382
+ 0.4017857015132904,
1383
+ 0.4017857015132904
1384
+ ],
1385
+ [
1386
+ 3.0,
1387
+ 0.4017857015132904,
1388
+ 0.4017857015132904
1389
+ ],
1390
+ [
1391
+ 2.999985694885254,
1392
+ 0.27173900604248047,
1393
+ 0.27173900604248047
1394
+ ],
1395
+ [
1396
+ 3.000000238418579,
1397
+ 0.4017857015132904,
1398
+ 0.4017857015132904
1399
+ ],
1400
+ [
1401
+ 3.0,
1402
+ 0.4017857015132904,
1403
+ 0.4017857015132904
1404
+ ],
1405
+ [
1406
+ 3.0,
1407
+ 0.4017857015132904,
1408
+ 0.4017857015132904
1409
+ ],
1410
+ [
1411
+ 3.0,
1412
+ 0.4464285671710968,
1413
+ 0.4464285671710968
1414
+ ],
1415
+ [
1416
+ 3.0,
1417
+ 0.27173900604248047,
1418
+ 0.27173900604248047
1419
+ ],
1420
+ [
1421
+ 3.000000238418579,
1422
+ 0.4017857015132904,
1423
+ 0.4017857015132904
1424
+ ]
1425
+ ]
1426
+ }
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/.ipynb_checkpoints/progress-checkpoint.png ADDED

Git LFS Details

  • SHA256: acad0880086620effdb8b1b34d02327b5ed2419fd875e25ddf0521c7d45f6fd7
  • Pointer size: 131 Bytes
  • Size of remote file: 699 kB
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00ea40d5a8879983fd37b31da67b30e4af0746331e43f9557f00db4d0d9c1720
3
+ size 356831121
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/checkpoint_latest.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c4e68fcceeded035c49c3e0530a70cd6c3d96f942d0d1e5a997ea23e6fffdc
3
+ size 356854997
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe17c7ca020>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe17c7c8c40>",
10
+ "dataloader_train.num_processes": "4",
11
+ "dataloader_train.transform": "Compose ( [Convert3DTo2DTransform( apply_to_keys = ('data', 'seg') ), SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [256, 256], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), Convert2DTo3DTransform( apply_to_keys = ('data', 'seg') ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = (0,) ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7fe17c7c90f0>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7fe17c7c90c0>",
14
+ "dataloader_val.num_processes": "2",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "0",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A10G",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7fe17d646560>",
23
+ "hostname": "s-osbm-jupyter-f0b83-8689bbb555-5t6kn",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7fe17d6464a0>",
29
+ "local_rank": "0",
30
+ "log_file": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_7_24_00_01_52.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7fe17d646410>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7fe17d646470>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}, 'configuration': '3d_fullres', 'fold': 0, 'dataset_json': {'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "3",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0",
42
+ "output_folder_base": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}",
45
+ "preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset001_Prostate158/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset001_Prostate158",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.1+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/progress.png ADDED

Git LFS Details

  • SHA256: 1853459deab216f0dccaee8913ac5be19856556711ddfb2d5734cd720aaf559c
  • Pointer size: 131 Bytes
  • Size of remote file: 701 kB
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_0/training_log_2023_7_24_00_01_52.txt ADDED
@@ -0,0 +1,1194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #######################################################################
3
+ Please cite the following paper when using nnU-Net:
4
+ Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
5
+ #######################################################################
6
+
7
+
8
+ This is the configuration used by this training:
9
+ Configuration name: 3d_fullres
10
+ {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}
11
+
12
+ These are the global plan.json settings:
13
+ {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}
14
+
15
+ 2023-07-24 00:01:53.902022: unpacking dataset...
16
+ 2023-07-24 00:02:07.139120: unpacking done...
17
+ 2023-07-24 00:02:07.196625: do_dummy_2d_data_aug: True
18
+ 2023-07-24 00:02:07.197410: Creating new 5-fold cross-validation split...
19
+ 2023-07-24 00:02:07.198499: Desired fold for training: 0
20
+ 2023-07-24 00:02:07.198552: This split has 111 training and 28 validation cases.
21
+ 2023-07-24 00:02:14.074938: Unable to plot network architecture:
22
+ 2023-07-24 00:02:14.075182: module 'torch.onnx' has no attribute '_optimize_trace'
23
+ 2023-07-24 00:02:14.123964:
24
+ 2023-07-24 00:02:14.124048: Epoch 0
25
+ 2023-07-24 00:02:14.124163: Current learning rate: 0.01
26
+ 2023-07-24 00:06:16.568555: train_loss -0.0413
27
+ 2023-07-24 00:06:16.568763: val_loss -0.1561
28
+ 2023-07-24 00:06:16.568854: Pseudo dice [0.6633, 0.3715, 0.0]
29
+ 2023-07-24 00:06:16.568946: Epoch time: 242.45 s
30
+ 2023-07-24 00:06:16.569015: Yayy! New best EMA pseudo Dice: 0.3449
31
+ 2023-07-24 00:06:19.487634:
32
+ 2023-07-24 00:06:19.487758: Epoch 1
33
+ 2023-07-24 00:06:19.487858: Current learning rate: 0.00999
34
+ 2023-07-24 00:09:51.638274: train_loss -0.2546
35
+ 2023-07-24 00:09:51.638539: val_loss -0.3228
36
+ 2023-07-24 00:09:51.638626: Pseudo dice [0.7605, 0.5865, 0.0]
37
+ 2023-07-24 00:09:51.638798: Epoch time: 212.15 s
38
+ 2023-07-24 00:09:51.638938: Yayy! New best EMA pseudo Dice: 0.3553
39
+ 2023-07-24 00:09:54.319529:
40
+ 2023-07-24 00:09:54.319663: Epoch 2
41
+ 2023-07-24 00:09:54.319769: Current learning rate: 0.00998
42
+ 2023-07-24 00:13:25.194643: train_loss -0.324
43
+ 2023-07-24 00:13:25.194925: val_loss -0.3233
44
+ 2023-07-24 00:13:25.195090: Pseudo dice [0.7874, 0.5763, 0.0]
45
+ 2023-07-24 00:13:25.195179: Epoch time: 210.88 s
46
+ 2023-07-24 00:13:25.195318: Yayy! New best EMA pseudo Dice: 0.3652
47
+ 2023-07-24 00:13:27.399833:
48
+ 2023-07-24 00:13:27.399949: Epoch 3
49
+ 2023-07-24 00:13:27.400062: Current learning rate: 0.00997
50
+ 2023-07-24 00:17:09.770445: train_loss -0.3629
51
+ 2023-07-24 00:17:09.770754: val_loss -0.3386
52
+ 2023-07-24 00:17:09.771257: Pseudo dice [0.7865, 0.6213, 0.0]
53
+ 2023-07-24 00:17:09.771582: Epoch time: 222.37 s
54
+ 2023-07-24 00:17:09.771953: Yayy! New best EMA pseudo Dice: 0.3756
55
+ 2023-07-24 00:17:13.443594:
56
+ 2023-07-24 00:17:13.443887: Epoch 4
57
+ 2023-07-24 00:17:13.444007: Current learning rate: 0.00996
58
+ 2023-07-24 00:20:25.372916: train_loss -0.4038
59
+ 2023-07-24 00:20:25.373092: val_loss -0.4029
60
+ 2023-07-24 00:20:25.373185: Pseudo dice [0.821, 0.6488, 0.2694]
61
+ 2023-07-24 00:20:25.373266: Epoch time: 191.93 s
62
+ 2023-07-24 00:20:25.373332: Yayy! New best EMA pseudo Dice: 0.3961
63
+ 2023-07-24 00:20:27.527769:
64
+ 2023-07-24 00:20:27.527886: Epoch 5
65
+ 2023-07-24 00:20:27.527997: Current learning rate: 0.00995
66
+ 2023-07-24 00:23:59.957678: train_loss -0.4395
67
+ 2023-07-24 00:23:59.957844: val_loss -0.4287
68
+ 2023-07-24 00:23:59.957929: Pseudo dice [0.8103, 0.634, 0.4383]
69
+ 2023-07-24 00:23:59.958011: Epoch time: 212.43 s
70
+ 2023-07-24 00:23:59.958077: Yayy! New best EMA pseudo Dice: 0.4192
71
+ 2023-07-24 00:24:01.987802:
72
+ 2023-07-24 00:24:01.987912: Epoch 6
73
+ 2023-07-24 00:24:01.988024: Current learning rate: 0.00995
74
+ 2023-07-24 00:27:44.002411: train_loss -0.4486
75
+ 2023-07-24 00:27:44.002615: val_loss -0.4226
76
+ 2023-07-24 00:27:44.002702: Pseudo dice [0.8368, 0.6463, 0.3067]
77
+ 2023-07-24 00:27:44.002805: Epoch time: 222.02 s
78
+ 2023-07-24 00:27:44.002879: Yayy! New best EMA pseudo Dice: 0.4369
79
+ 2023-07-24 00:27:46.502084:
80
+ 2023-07-24 00:27:46.502206: Epoch 7
81
+ 2023-07-24 00:27:46.502326: Current learning rate: 0.00994
82
+ 2023-07-24 00:31:13.044165: train_loss -0.4879
83
+ 2023-07-24 00:31:13.044357: val_loss -0.4522
84
+ 2023-07-24 00:31:13.044453: Pseudo dice [0.8328, 0.6665, 0.389]
85
+ 2023-07-24 00:31:13.044543: Epoch time: 206.54 s
86
+ 2023-07-24 00:31:13.050315: Yayy! New best EMA pseudo Dice: 0.4562
87
+ 2023-07-24 00:31:15.979445:
88
+ 2023-07-24 00:31:15.979643: Epoch 8
89
+ 2023-07-24 00:31:15.979780: Current learning rate: 0.00993
90
+ 2023-07-24 00:34:55.354722: train_loss -0.5049
91
+ 2023-07-24 00:34:55.355004: val_loss -0.4647
92
+ 2023-07-24 00:34:55.355092: Pseudo dice [0.8501, 0.6851, 0.4456]
93
+ 2023-07-24 00:34:55.355233: Epoch time: 219.38 s
94
+ 2023-07-24 00:34:55.355299: Yayy! New best EMA pseudo Dice: 0.4766
95
+ 2023-07-24 00:34:57.734633:
96
+ 2023-07-24 00:34:57.734877: Epoch 9
97
+ 2023-07-24 00:34:57.734988: Current learning rate: 0.00992
98
+ 2023-07-24 00:38:36.038373: train_loss -0.5101
99
+ 2023-07-24 00:38:36.038563: val_loss -0.4518
100
+ 2023-07-24 00:38:36.038657: Pseudo dice [0.8332, 0.6664, 0.4652]
101
+ 2023-07-24 00:38:36.038745: Epoch time: 218.3 s
102
+ 2023-07-24 00:38:36.038840: Yayy! New best EMA pseudo Dice: 0.4944
103
+ 2023-07-24 00:38:39.940725:
104
+ 2023-07-24 00:38:39.941038: Epoch 10
105
+ 2023-07-24 00:38:39.941158: Current learning rate: 0.00991
106
+ 2023-07-24 00:42:04.394748: train_loss -0.5153
107
+ 2023-07-24 00:42:04.398857: val_loss -0.4822
108
+ 2023-07-24 00:42:04.399046: Pseudo dice [0.8432, 0.6794, 0.4922]
109
+ 2023-07-24 00:42:04.399148: Epoch time: 204.46 s
110
+ 2023-07-24 00:42:04.399216: Yayy! New best EMA pseudo Dice: 0.5121
111
+ 2023-07-24 00:42:08.116886:
112
+ 2023-07-24 00:42:08.117016: Epoch 11
113
+ 2023-07-24 00:42:08.117131: Current learning rate: 0.0099
114
+ 2023-07-24 00:45:37.933030: train_loss -0.5128
115
+ 2023-07-24 00:45:37.933209: val_loss -0.4819
116
+ 2023-07-24 00:45:37.933295: Pseudo dice [0.8511, 0.6729, 0.4875]
117
+ 2023-07-24 00:45:37.933378: Epoch time: 209.82 s
118
+ 2023-07-24 00:45:37.933442: Yayy! New best EMA pseudo Dice: 0.528
119
+ 2023-07-24 00:45:41.223381:
120
+ 2023-07-24 00:45:41.223522: Epoch 12
121
+ 2023-07-24 00:45:41.223654: Current learning rate: 0.00989
122
+ 2023-07-24 00:49:18.457412: train_loss -0.5139
123
+ 2023-07-24 00:49:18.457591: val_loss -0.4663
124
+ 2023-07-24 00:49:18.457679: Pseudo dice [0.8304, 0.6664, 0.4751]
125
+ 2023-07-24 00:49:18.457762: Epoch time: 217.24 s
126
+ 2023-07-24 00:49:18.457826: Yayy! New best EMA pseudo Dice: 0.5409
127
+ 2023-07-24 00:49:21.452374:
128
+ 2023-07-24 00:49:21.452548: Epoch 13
129
+ 2023-07-24 00:49:21.452664: Current learning rate: 0.00988
130
+ 2023-07-24 00:52:53.617019: train_loss -0.5306
131
+ 2023-07-24 00:52:53.617260: val_loss -0.4947
132
+ 2023-07-24 00:52:53.617345: Pseudo dice [0.8434, 0.6944, 0.4883]
133
+ 2023-07-24 00:52:53.617487: Epoch time: 212.17 s
134
+ 2023-07-24 00:52:53.617552: Yayy! New best EMA pseudo Dice: 0.5544
135
+ 2023-07-24 00:52:55.726403:
136
+ 2023-07-24 00:52:55.726518: Epoch 14
137
+ 2023-07-24 00:52:55.726615: Current learning rate: 0.00987
138
+ 2023-07-24 00:56:22.506680: train_loss -0.5446
139
+ 2023-07-24 00:56:22.506907: val_loss -0.4714
140
+ 2023-07-24 00:56:22.507013: Pseudo dice [0.8411, 0.671, 0.4914]
141
+ 2023-07-24 00:56:22.507121: Epoch time: 206.78 s
142
+ 2023-07-24 00:56:22.507219: Yayy! New best EMA pseudo Dice: 0.5657
143
+ 2023-07-24 00:56:24.667025:
144
+ 2023-07-24 00:56:24.667140: Epoch 15
145
+ 2023-07-24 00:56:24.667252: Current learning rate: 0.00986
146
+ 2023-07-24 00:59:50.747144: train_loss -0.5394
147
+ 2023-07-24 00:59:50.747421: val_loss -0.4625
148
+ 2023-07-24 00:59:50.747515: Pseudo dice [0.8447, 0.654, 0.5712]
149
+ 2023-07-24 00:59:50.747690: Epoch time: 206.08 s
150
+ 2023-07-24 00:59:50.747818: Yayy! New best EMA pseudo Dice: 0.5781
151
+ 2023-07-24 00:59:53.732963:
152
+ 2023-07-24 00:59:53.733104: Epoch 16
153
+ 2023-07-24 00:59:53.733224: Current learning rate: 0.00986
154
+ 2023-07-24 01:03:24.895722: train_loss -0.5551
155
+ 2023-07-24 01:03:24.895922: val_loss -0.496
156
+ 2023-07-24 01:03:24.896017: Pseudo dice [0.8705, 0.6946, 0.4975]
157
+ 2023-07-24 01:03:24.896102: Epoch time: 211.16 s
158
+ 2023-07-24 01:03:24.896200: Yayy! New best EMA pseudo Dice: 0.5891
159
+ 2023-07-24 01:03:27.655639:
160
+ 2023-07-24 01:03:27.655761: Epoch 17
161
+ 2023-07-24 01:03:27.655877: Current learning rate: 0.00985
162
+ 2023-07-24 01:07:09.366258: train_loss -0.5496
163
+ 2023-07-24 01:07:09.371549: val_loss -0.4745
164
+ 2023-07-24 01:07:09.371795: Pseudo dice [0.8679, 0.6897, 0.514]
165
+ 2023-07-24 01:07:09.371953: Epoch time: 221.71 s
166
+ 2023-07-24 01:07:09.372037: Yayy! New best EMA pseudo Dice: 0.5992
167
+ 2023-07-24 01:07:12.715889:
168
+ 2023-07-24 01:07:12.716015: Epoch 18
169
+ 2023-07-24 01:07:12.716132: Current learning rate: 0.00984
170
+ 2023-07-24 01:10:59.095254: train_loss -0.5406
171
+ 2023-07-24 01:10:59.095483: val_loss -0.483
172
+ 2023-07-24 01:10:59.095583: Pseudo dice [0.8634, 0.6795, 0.5385]
173
+ 2023-07-24 01:10:59.095723: Epoch time: 226.38 s
174
+ 2023-07-24 01:10:59.095788: Yayy! New best EMA pseudo Dice: 0.6087
175
+ 2023-07-24 01:11:01.356395:
176
+ 2023-07-24 01:11:01.356525: Epoch 19
177
+ 2023-07-24 01:11:01.356640: Current learning rate: 0.00983
178
+ 2023-07-24 01:14:19.901330: train_loss -0.5567
179
+ 2023-07-24 01:14:19.901525: val_loss -0.4783
180
+ 2023-07-24 01:14:19.901613: Pseudo dice [0.8492, 0.6553, 0.535]
181
+ 2023-07-24 01:14:19.901693: Epoch time: 198.55 s
182
+ 2023-07-24 01:14:19.901747: Yayy! New best EMA pseudo Dice: 0.6158
183
+ 2023-07-24 01:14:22.511663:
184
+ 2023-07-24 01:14:22.511957: Epoch 20
185
+ 2023-07-24 01:14:22.512064: Current learning rate: 0.00982
186
+ 2023-07-24 01:17:55.925512: train_loss -0.5745
187
+ 2023-07-24 01:17:55.925694: val_loss -0.4715
188
+ 2023-07-24 01:17:55.925791: Pseudo dice [0.8548, 0.653, 0.5559]
189
+ 2023-07-24 01:17:55.925879: Epoch time: 213.41 s
190
+ 2023-07-24 01:17:55.925951: Yayy! New best EMA pseudo Dice: 0.623
191
+ 2023-07-24 01:17:58.448946:
192
+ 2023-07-24 01:17:58.449071: Epoch 21
193
+ 2023-07-24 01:17:58.449180: Current learning rate: 0.00981
194
+ 2023-07-24 01:21:29.617508: train_loss -0.5761
195
+ 2023-07-24 01:21:29.617684: val_loss -0.4919
196
+ 2023-07-24 01:21:29.617774: Pseudo dice [0.8628, 0.7072, 0.4682]
197
+ 2023-07-24 01:21:29.617859: Epoch time: 211.17 s
198
+ 2023-07-24 01:21:29.617927: Yayy! New best EMA pseudo Dice: 0.6286
199
+ 2023-07-24 01:21:32.232873:
200
+ 2023-07-24 01:21:32.232998: Epoch 22
201
+ 2023-07-24 01:21:32.233115: Current learning rate: 0.0098
202
+ 2023-07-24 01:24:54.282193: train_loss -0.5831
203
+ 2023-07-24 01:24:54.282391: val_loss -0.5023
204
+ 2023-07-24 01:24:54.282501: Pseudo dice [0.8587, 0.6942, 0.4825]
205
+ 2023-07-24 01:24:54.282606: Epoch time: 202.05 s
206
+ 2023-07-24 01:24:54.282692: Yayy! New best EMA pseudo Dice: 0.6336
207
+ 2023-07-24 01:24:57.618637:
208
+ 2023-07-24 01:24:57.618829: Epoch 23
209
+ 2023-07-24 01:24:57.618946: Current learning rate: 0.00979
210
+ 2023-07-24 01:28:25.124920: train_loss -0.5864
211
+ 2023-07-24 01:28:25.125104: val_loss -0.5029
212
+ 2023-07-24 01:28:25.125192: Pseudo dice [0.8623, 0.7014, 0.5049]
213
+ 2023-07-24 01:28:25.125279: Epoch time: 207.51 s
214
+ 2023-07-24 01:28:25.125346: Yayy! New best EMA pseudo Dice: 0.6392
215
+ 2023-07-24 01:28:29.015366:
216
+ 2023-07-24 01:28:29.015487: Epoch 24
217
+ 2023-07-24 01:28:29.015594: Current learning rate: 0.00978
218
+ 2023-07-24 01:32:03.197192: train_loss -0.5843
219
+ 2023-07-24 01:32:03.197452: val_loss -0.478
220
+ 2023-07-24 01:32:03.197542: Pseudo dice [0.8586, 0.6702, 0.5603]
221
+ 2023-07-24 01:32:03.197691: Epoch time: 214.18 s
222
+ 2023-07-24 01:32:03.197757: Yayy! New best EMA pseudo Dice: 0.6449
223
+ 2023-07-24 01:32:05.726707:
224
+ 2023-07-24 01:32:05.726868: Epoch 25
225
+ 2023-07-24 01:32:05.726998: Current learning rate: 0.00977
226
+ 2023-07-24 01:35:41.851906: train_loss -0.5882
227
+ 2023-07-24 01:35:41.852082: val_loss -0.4719
228
+ 2023-07-24 01:35:41.852175: Pseudo dice [0.862, 0.6743, 0.3966]
229
+ 2023-07-24 01:35:41.852259: Epoch time: 216.13 s
230
+ 2023-07-24 01:35:43.534244:
231
+ 2023-07-24 01:35:43.534373: Epoch 26
232
+ 2023-07-24 01:35:43.534485: Current learning rate: 0.00977
233
+ 2023-07-24 01:39:02.738217: train_loss -0.6018
234
+ 2023-07-24 01:39:02.743619: val_loss -0.4994
235
+ 2023-07-24 01:39:02.743780: Pseudo dice [0.8766, 0.733, 0.4566]
236
+ 2023-07-24 01:39:02.743932: Epoch time: 199.21 s
237
+ 2023-07-24 01:39:02.744023: Yayy! New best EMA pseudo Dice: 0.6493
238
+ 2023-07-24 01:39:05.142646:
239
+ 2023-07-24 01:39:05.142778: Epoch 27
240
+ 2023-07-24 01:39:05.142897: Current learning rate: 0.00976
241
+ 2023-07-24 01:42:29.737434: train_loss -0.5995
242
+ 2023-07-24 01:42:29.737619: val_loss -0.4867
243
+ 2023-07-24 01:42:29.737704: Pseudo dice [0.8689, 0.689, 0.4957]
244
+ 2023-07-24 01:42:29.737784: Epoch time: 204.6 s
245
+ 2023-07-24 01:42:29.737848: Yayy! New best EMA pseudo Dice: 0.6528
246
+ 2023-07-24 01:42:32.621387:
247
+ 2023-07-24 01:42:32.621503: Epoch 28
248
+ 2023-07-24 01:42:32.621617: Current learning rate: 0.00975
249
+ 2023-07-24 01:46:07.936492: train_loss -0.5998
250
+ 2023-07-24 01:46:07.936731: val_loss -0.4998
251
+ 2023-07-24 01:46:07.943375: Pseudo dice [0.8649, 0.6936, 0.5489]
252
+ 2023-07-24 01:46:07.943589: Epoch time: 215.32 s
253
+ 2023-07-24 01:46:07.943666: Yayy! New best EMA pseudo Dice: 0.6578
254
+ 2023-07-24 01:46:12.240499:
255
+ 2023-07-24 01:46:12.240789: Epoch 29
256
+ 2023-07-24 01:46:12.240907: Current learning rate: 0.00974
257
+ 2023-07-24 01:49:49.765490: train_loss -0.6192
258
+ 2023-07-24 01:49:49.765681: val_loss -0.4884
259
+ 2023-07-24 01:49:49.765781: Pseudo dice [0.8677, 0.6745, 0.5335]
260
+ 2023-07-24 01:49:49.765875: Epoch time: 217.53 s
261
+ 2023-07-24 01:49:49.765948: Yayy! New best EMA pseudo Dice: 0.6612
262
+ 2023-07-24 01:49:54.074142:
263
+ 2023-07-24 01:49:54.074317: Epoch 30
264
+ 2023-07-24 01:49:54.074434: Current learning rate: 0.00973
265
+ 2023-07-24 01:53:33.757728: train_loss -0.6115
266
+ 2023-07-24 01:53:33.758031: val_loss -0.4838
267
+ 2023-07-24 01:53:33.758127: Pseudo dice [0.8786, 0.6666, 0.5728]
268
+ 2023-07-24 01:53:33.758209: Epoch time: 219.69 s
269
+ 2023-07-24 01:53:33.758281: Yayy! New best EMA pseudo Dice: 0.6656
270
+ 2023-07-24 01:53:37.008034:
271
+ 2023-07-24 01:53:37.008158: Epoch 31
272
+ 2023-07-24 01:53:37.008272: Current learning rate: 0.00972
273
+ 2023-07-24 01:57:03.417002: train_loss -0.625
274
+ 2023-07-24 01:57:03.417286: val_loss -0.5044
275
+ 2023-07-24 01:57:03.417374: Pseudo dice [0.8686, 0.7071, 0.5431]
276
+ 2023-07-24 01:57:03.417525: Epoch time: 206.41 s
277
+ 2023-07-24 01:57:03.417588: Yayy! New best EMA pseudo Dice: 0.6697
278
+ 2023-07-24 01:57:05.575807:
279
+ 2023-07-24 01:57:05.575927: Epoch 32
280
+ 2023-07-24 01:57:05.576024: Current learning rate: 0.00971
281
+ 2023-07-24 02:00:42.226546: train_loss -0.6184
282
+ 2023-07-24 02:00:42.232471: val_loss -0.4894
283
+ 2023-07-24 02:00:42.232700: Pseudo dice [0.8702, 0.7033, 0.4937]
284
+ 2023-07-24 02:00:42.232790: Epoch time: 216.65 s
285
+ 2023-07-24 02:00:42.232924: Yayy! New best EMA pseudo Dice: 0.6716
286
+ 2023-07-24 02:00:45.014342:
287
+ 2023-07-24 02:00:45.014468: Epoch 33
288
+ 2023-07-24 02:00:45.014586: Current learning rate: 0.0097
289
+ 2023-07-24 02:04:19.757532: train_loss -0.6217
290
+ 2023-07-24 02:04:19.757771: val_loss -0.4804
291
+ 2023-07-24 02:04:19.757856: Pseudo dice [0.8748, 0.693, 0.5362]
292
+ 2023-07-24 02:04:19.758005: Epoch time: 214.74 s
293
+ 2023-07-24 02:04:19.758069: Yayy! New best EMA pseudo Dice: 0.6746
294
+ 2023-07-24 02:04:24.430918:
295
+ 2023-07-24 02:04:24.431120: Epoch 34
296
+ 2023-07-24 02:04:24.431232: Current learning rate: 0.00969
297
+ 2023-07-24 02:08:00.604949: train_loss -0.6087
298
+ 2023-07-24 02:08:00.605173: val_loss -0.4999
299
+ 2023-07-24 02:08:00.605262: Pseudo dice [0.8614, 0.7024, 0.5684]
300
+ 2023-07-24 02:08:00.605341: Epoch time: 216.18 s
301
+ 2023-07-24 02:08:00.605400: Yayy! New best EMA pseudo Dice: 0.6782
302
+ 2023-07-24 02:08:05.228923:
303
+ 2023-07-24 02:08:05.229156: Epoch 35
304
+ 2023-07-24 02:08:05.229259: Current learning rate: 0.00968
305
+ 2023-07-24 02:11:46.128471: train_loss -0.6278
306
+ 2023-07-24 02:11:46.128723: val_loss -0.4975
307
+ 2023-07-24 02:11:46.128807: Pseudo dice [0.8697, 0.6883, 0.5635]
308
+ 2023-07-24 02:11:46.128886: Epoch time: 220.9 s
309
+ 2023-07-24 02:11:46.128947: Yayy! New best EMA pseudo Dice: 0.6811
310
+ 2023-07-24 02:11:48.352022:
311
+ 2023-07-24 02:11:48.352140: Epoch 36
312
+ 2023-07-24 02:11:48.352254: Current learning rate: 0.00968
313
+ 2023-07-24 02:15:18.130978: train_loss -0.6341
314
+ 2023-07-24 02:15:18.131156: val_loss -0.514
315
+ 2023-07-24 02:15:18.131239: Pseudo dice [0.8717, 0.7153, 0.5774]
316
+ 2023-07-24 02:15:18.131315: Epoch time: 209.78 s
317
+ 2023-07-24 02:15:18.131555: Yayy! New best EMA pseudo Dice: 0.6852
318
+ 2023-07-24 02:15:20.282215:
319
+ 2023-07-24 02:15:20.282343: Epoch 37
320
+ 2023-07-24 02:15:20.282458: Current learning rate: 0.00967
321
+ 2023-07-24 02:18:53.374968: train_loss -0.6275
322
+ 2023-07-24 02:18:53.375212: val_loss -0.5119
323
+ 2023-07-24 02:18:53.375304: Pseudo dice [0.867, 0.6981, 0.5894]
324
+ 2023-07-24 02:18:53.375387: Epoch time: 213.09 s
325
+ 2023-07-24 02:18:53.375454: Yayy! New best EMA pseudo Dice: 0.6885
326
+ 2023-07-24 02:18:56.726088:
327
+ 2023-07-24 02:18:56.726211: Epoch 38
328
+ 2023-07-24 02:18:56.726327: Current learning rate: 0.00966
329
+ 2023-07-24 02:22:22.025652: train_loss -0.6328
330
+ 2023-07-24 02:22:22.031740: val_loss -0.503
331
+ 2023-07-24 02:22:22.032003: Pseudo dice [0.8649, 0.7161, 0.5203]
332
+ 2023-07-24 02:22:22.032098: Epoch time: 205.3 s
333
+ 2023-07-24 02:22:22.032236: Yayy! New best EMA pseudo Dice: 0.6897
334
+ 2023-07-24 02:22:25.923321:
335
+ 2023-07-24 02:22:25.923668: Epoch 39
336
+ 2023-07-24 02:22:25.923775: Current learning rate: 0.00965
337
+ 2023-07-24 02:25:55.050353: train_loss -0.6391
338
+ 2023-07-24 02:25:55.050546: val_loss -0.5015
339
+ 2023-07-24 02:25:55.050636: Pseudo dice [0.8618, 0.6972, 0.566]
340
+ 2023-07-24 02:25:55.050725: Epoch time: 209.13 s
341
+ 2023-07-24 02:25:55.050815: Yayy! New best EMA pseudo Dice: 0.6915
342
+ 2023-07-24 02:25:57.131437:
343
+ 2023-07-24 02:25:57.131554: Epoch 40
344
+ 2023-07-24 02:25:57.131677: Current learning rate: 0.00964
345
+ 2023-07-24 02:29:24.101611: train_loss -0.6453
346
+ 2023-07-24 02:29:24.101807: val_loss -0.4857
347
+ 2023-07-24 02:29:24.101905: Pseudo dice [0.8591, 0.6952, 0.5601]
348
+ 2023-07-24 02:29:24.102006: Epoch time: 206.97 s
349
+ 2023-07-24 02:29:24.102089: Yayy! New best EMA pseudo Dice: 0.6929
350
+ 2023-07-24 02:29:26.722635:
351
+ 2023-07-24 02:29:26.722777: Epoch 41
352
+ 2023-07-24 02:29:26.722900: Current learning rate: 0.00963
353
+ 2023-07-24 02:33:01.503387: train_loss -0.6384
354
+ 2023-07-24 02:33:01.503580: val_loss -0.495
355
+ 2023-07-24 02:33:01.503671: Pseudo dice [0.8646, 0.7111, 0.4851]
356
+ 2023-07-24 02:33:01.503757: Epoch time: 214.78 s
357
+ 2023-07-24 02:33:03.298025:
358
+ 2023-07-24 02:33:03.298147: Epoch 42
359
+ 2023-07-24 02:33:03.298252: Current learning rate: 0.00962
360
+ 2023-07-24 02:36:28.531214: train_loss -0.6454
361
+ 2023-07-24 02:36:28.531463: val_loss -0.4999
362
+ 2023-07-24 02:36:28.531549: Pseudo dice [0.8693, 0.691, 0.6198]
363
+ 2023-07-24 02:36:28.531719: Epoch time: 205.23 s
364
+ 2023-07-24 02:36:28.531906: Yayy! New best EMA pseudo Dice: 0.6957
365
+ 2023-07-24 02:36:30.675420:
366
+ 2023-07-24 02:36:30.675563: Epoch 43
367
+ 2023-07-24 02:36:30.675693: Current learning rate: 0.00961
368
+ 2023-07-24 02:39:57.254115: train_loss -0.6449
369
+ 2023-07-24 02:39:57.254383: val_loss -0.5029
370
+ 2023-07-24 02:39:57.254475: Pseudo dice [0.8713, 0.6894, 0.6393]
371
+ 2023-07-24 02:39:57.254557: Epoch time: 206.58 s
372
+ 2023-07-24 02:39:57.254622: Yayy! New best EMA pseudo Dice: 0.6995
373
+ 2023-07-24 02:39:59.978240:
374
+ 2023-07-24 02:39:59.978516: Epoch 44
375
+ 2023-07-24 02:39:59.978635: Current learning rate: 0.0096
376
+ 2023-07-24 02:43:33.330351: train_loss -0.6418
377
+ 2023-07-24 02:43:33.330585: val_loss -0.4937
378
+ 2023-07-24 02:43:33.330672: Pseudo dice [0.8727, 0.6956, 0.5291]
379
+ 2023-07-24 02:43:33.330842: Epoch time: 213.35 s
380
+ 2023-07-24 02:43:35.411677:
381
+ 2023-07-24 02:43:35.411899: Epoch 45
382
+ 2023-07-24 02:43:35.412007: Current learning rate: 0.00959
383
+ 2023-07-24 02:47:16.638136: train_loss -0.6484
384
+ 2023-07-24 02:47:16.638322: val_loss -0.5065
385
+ 2023-07-24 02:47:16.638409: Pseudo dice [0.8781, 0.7181, 0.5566]
386
+ 2023-07-24 02:47:16.638503: Epoch time: 221.23 s
387
+ 2023-07-24 02:47:16.638575: Yayy! New best EMA pseudo Dice: 0.7013
388
+ 2023-07-24 02:47:18.875849:
389
+ 2023-07-24 02:47:18.876126: Epoch 46
390
+ 2023-07-24 02:47:18.876246: Current learning rate: 0.00959
391
+ 2023-07-24 02:50:43.664102: train_loss -0.6594
392
+ 2023-07-24 02:50:43.664368: val_loss -0.5021
393
+ 2023-07-24 02:50:43.664471: Pseudo dice [0.8832, 0.7081, 0.5237]
394
+ 2023-07-24 02:50:43.664641: Epoch time: 204.79 s
395
+ 2023-07-24 02:50:43.664771: Yayy! New best EMA pseudo Dice: 0.7016
396
+ 2023-07-24 02:50:45.913680:
397
+ 2023-07-24 02:50:45.913988: Epoch 47
398
+ 2023-07-24 02:50:45.914099: Current learning rate: 0.00958
399
+ 2023-07-24 02:54:09.407397: train_loss -0.6559
400
+ 2023-07-24 02:54:09.407646: val_loss -0.4876
401
+ 2023-07-24 02:54:09.407736: Pseudo dice [0.8737, 0.6605, 0.6181]
402
+ 2023-07-24 02:54:09.407889: Epoch time: 203.49 s
403
+ 2023-07-24 02:54:09.407957: Yayy! New best EMA pseudo Dice: 0.7032
404
+ 2023-07-24 02:54:12.936934:
405
+ 2023-07-24 02:54:12.937068: Epoch 48
406
+ 2023-07-24 02:54:12.937182: Current learning rate: 0.00957
407
+ 2023-07-24 02:57:47.539666: train_loss -0.6583
408
+ 2023-07-24 02:57:47.539865: val_loss -0.5048
409
+ 2023-07-24 02:57:47.540035: Pseudo dice [0.8792, 0.7214, 0.4783]
410
+ 2023-07-24 02:57:47.540195: Epoch time: 214.6 s
411
+ 2023-07-24 02:57:49.232162:
412
+ 2023-07-24 02:57:49.232288: Epoch 49
413
+ 2023-07-24 02:57:49.232400: Current learning rate: 0.00956
414
+ 2023-07-24 03:01:31.963185: train_loss -0.6562
415
+ 2023-07-24 03:01:31.963373: val_loss -0.5071
416
+ 2023-07-24 03:01:31.963463: Pseudo dice [0.8811, 0.7189, 0.5632]
417
+ 2023-07-24 03:01:31.963546: Epoch time: 222.73 s
418
+ 2023-07-24 03:01:32.441789: Yayy! New best EMA pseudo Dice: 0.7041
419
+ 2023-07-24 03:01:34.494628:
420
+ 2023-07-24 03:01:34.494856: Epoch 50
421
+ 2023-07-24 03:01:34.494962: Current learning rate: 0.00955
422
+ 2023-07-24 03:05:00.456790: train_loss -0.66
423
+ 2023-07-24 03:05:00.457008: val_loss -0.4885
424
+ 2023-07-24 03:05:00.457094: Pseudo dice [0.8722, 0.7199, 0.3882]
425
+ 2023-07-24 03:05:00.457232: Epoch time: 205.96 s
426
+ 2023-07-24 03:05:01.920852:
427
+ 2023-07-24 03:05:01.921130: Epoch 51
428
+ 2023-07-24 03:05:01.921252: Current learning rate: 0.00954
429
+ 2023-07-24 03:08:21.863105: train_loss -0.6615
430
+ 2023-07-24 03:08:21.863394: val_loss -0.5063
431
+ 2023-07-24 03:08:21.863482: Pseudo dice [0.8652, 0.6923, 0.5877]
432
+ 2023-07-24 03:08:21.863767: Epoch time: 199.94 s
433
+ 2023-07-24 03:08:23.565506:
434
+ 2023-07-24 03:08:23.565624: Epoch 52
435
+ 2023-07-24 03:08:23.565736: Current learning rate: 0.00953
436
+ 2023-07-24 03:11:58.618505: train_loss -0.6541
437
+ 2023-07-24 03:11:58.618745: val_loss -0.5208
438
+ 2023-07-24 03:11:58.618862: Pseudo dice [0.8769, 0.7111, 0.5391]
439
+ 2023-07-24 03:11:58.619015: Epoch time: 215.05 s
440
+ 2023-07-24 03:12:00.422971:
441
+ 2023-07-24 03:12:00.423093: Epoch 53
442
+ 2023-07-24 03:12:00.423211: Current learning rate: 0.00952
443
+ 2023-07-24 03:15:34.016732: train_loss -0.6717
444
+ 2023-07-24 03:15:34.016971: val_loss -0.4904
445
+ 2023-07-24 03:15:34.017070: Pseudo dice [0.8808, 0.7097, 0.4256]
446
+ 2023-07-24 03:15:34.017220: Epoch time: 213.59 s
447
+ 2023-07-24 03:15:36.404579:
448
+ 2023-07-24 03:15:36.404704: Epoch 54
449
+ 2023-07-24 03:15:36.404819: Current learning rate: 0.00951
450
+ 2023-07-24 03:19:13.253185: train_loss -0.677
451
+ 2023-07-24 03:19:13.253387: val_loss -0.4902
452
+ 2023-07-24 03:19:13.253475: Pseudo dice [0.8606, 0.7035, 0.5965]
453
+ 2023-07-24 03:19:13.253560: Epoch time: 216.85 s
454
+ 2023-07-24 03:19:14.880905:
455
+ 2023-07-24 03:19:14.881205: Epoch 55
456
+ 2023-07-24 03:19:14.881327: Current learning rate: 0.0095
457
+ 2023-07-24 03:22:41.606614: train_loss -0.6675
458
+ 2023-07-24 03:22:41.606848: val_loss -0.4941
459
+ 2023-07-24 03:22:41.606937: Pseudo dice [0.873, 0.7194, 0.3798]
460
+ 2023-07-24 03:22:41.607017: Epoch time: 206.73 s
461
+ 2023-07-24 03:22:45.052177:
462
+ 2023-07-24 03:22:45.052385: Epoch 56
463
+ 2023-07-24 03:22:45.052505: Current learning rate: 0.00949
464
+ 2023-07-24 03:26:17.637499: train_loss -0.6827
465
+ 2023-07-24 03:26:17.637738: val_loss -0.5062
466
+ 2023-07-24 03:26:17.637826: Pseudo dice [0.8737, 0.71, 0.6042]
467
+ 2023-07-24 03:26:17.637978: Epoch time: 212.59 s
468
+ 2023-07-24 03:26:21.340287:
469
+ 2023-07-24 03:26:21.340517: Epoch 57
470
+ 2023-07-24 03:26:21.340631: Current learning rate: 0.00949
471
+ 2023-07-24 03:29:47.100365: train_loss -0.6838
472
+ 2023-07-24 03:29:47.100567: val_loss -0.4964
473
+ 2023-07-24 03:29:47.100666: Pseudo dice [0.8891, 0.7083, 0.4048]
474
+ 2023-07-24 03:29:47.100763: Epoch time: 205.76 s
475
+ 2023-07-24 03:29:48.555212:
476
+ 2023-07-24 03:29:48.555346: Epoch 58
477
+ 2023-07-24 03:29:48.555466: Current learning rate: 0.00948
478
+ 2023-07-24 03:33:20.722145: train_loss -0.6697
479
+ 2023-07-24 03:33:20.722324: val_loss -0.5062
480
+ 2023-07-24 03:33:20.722407: Pseudo dice [0.8666, 0.6973, 0.5627]
481
+ 2023-07-24 03:33:20.722488: Epoch time: 212.17 s
482
+ 2023-07-24 03:33:23.647374:
483
+ 2023-07-24 03:33:23.647504: Epoch 59
484
+ 2023-07-24 03:33:23.647635: Current learning rate: 0.00947
485
+ 2023-07-24 03:36:54.070232: train_loss -0.6887
486
+ 2023-07-24 03:36:54.070504: val_loss -0.5134
487
+ 2023-07-24 03:36:54.070593: Pseudo dice [0.8732, 0.7361, 0.4845]
488
+ 2023-07-24 03:36:54.070743: Epoch time: 210.42 s
489
+ 2023-07-24 03:36:56.444733:
490
+ 2023-07-24 03:36:56.444867: Epoch 60
491
+ 2023-07-24 03:36:56.444985: Current learning rate: 0.00946
492
+ 2023-07-24 03:40:22.488861: train_loss -0.6985
493
+ 2023-07-24 03:40:22.498857: val_loss -0.4992
494
+ 2023-07-24 03:40:22.499064: Pseudo dice [0.8846, 0.7076, 0.5453]
495
+ 2023-07-24 03:40:22.499147: Epoch time: 206.05 s
496
+ 2023-07-24 03:40:25.415841:
497
+ 2023-07-24 03:40:25.415988: Epoch 61
498
+ 2023-07-24 03:40:25.416104: Current learning rate: 0.00945
499
+ 2023-07-24 03:43:58.801075: train_loss -0.6876
500
+ 2023-07-24 03:43:58.801260: val_loss -0.5122
501
+ 2023-07-24 03:43:58.801349: Pseudo dice [0.8586, 0.716, 0.5498]
502
+ 2023-07-24 03:43:58.801434: Epoch time: 213.39 s
503
+ 2023-07-24 03:44:01.958030:
504
+ 2023-07-24 03:44:01.970955: Epoch 62
505
+ 2023-07-24 03:44:01.971086: Current learning rate: 0.00944
506
+ 2023-07-24 03:47:44.738477: train_loss -0.6943
507
+ 2023-07-24 03:47:44.738670: val_loss -0.5106
508
+ 2023-07-24 03:47:44.738753: Pseudo dice [0.882, 0.7326, 0.544]
509
+ 2023-07-24 03:47:44.738875: Epoch time: 222.78 s
510
+ 2023-07-24 03:47:48.039309:
511
+ 2023-07-24 03:47:48.039480: Epoch 63
512
+ 2023-07-24 03:47:48.039597: Current learning rate: 0.00943
513
+ 2023-07-24 03:51:16.951300: train_loss -0.6731
514
+ 2023-07-24 03:51:16.951505: val_loss -0.4852
515
+ 2023-07-24 03:51:16.951604: Pseudo dice [0.8708, 0.7122, 0.4841]
516
+ 2023-07-24 03:51:16.951797: Epoch time: 208.91 s
517
+ 2023-07-24 03:51:18.621170:
518
+ 2023-07-24 03:51:18.621321: Epoch 64
519
+ 2023-07-24 03:51:18.621441: Current learning rate: 0.00942
520
+ 2023-07-24 03:54:44.957338: train_loss -0.6761
521
+ 2023-07-24 03:54:44.957540: val_loss -0.4724
522
+ 2023-07-24 03:54:44.957629: Pseudo dice [0.8598, 0.6921, 0.5167]
523
+ 2023-07-24 03:54:44.957714: Epoch time: 206.34 s
524
+ 2023-07-24 03:54:46.812274:
525
+ 2023-07-24 03:54:46.812412: Epoch 65
526
+ 2023-07-24 03:54:46.812517: Current learning rate: 0.00941
527
+ 2023-07-24 03:58:23.950075: train_loss -0.6927
528
+ 2023-07-24 03:58:23.950717: val_loss -0.5027
529
+ 2023-07-24 03:58:23.951065: Pseudo dice [0.8701, 0.7152, 0.4785]
530
+ 2023-07-24 03:58:23.951216: Epoch time: 217.14 s
531
+ 2023-07-24 03:58:25.802012:
532
+ 2023-07-24 03:58:25.802195: Epoch 66
533
+ 2023-07-24 03:58:25.802299: Current learning rate: 0.0094
534
+ 2023-07-24 04:01:56.722209: train_loss -0.6963
535
+ 2023-07-24 04:01:56.722415: val_loss -0.5062
536
+ 2023-07-24 04:01:56.722507: Pseudo dice [0.8726, 0.7042, 0.5969]
537
+ 2023-07-24 04:01:56.722586: Epoch time: 210.92 s
538
+ 2023-07-24 04:01:59.771096:
539
+ 2023-07-24 04:01:59.771243: Epoch 67
540
+ 2023-07-24 04:01:59.771358: Current learning rate: 0.00939
541
+ 2023-07-24 04:05:40.925208: train_loss -0.6952
542
+ 2023-07-24 04:05:40.925490: val_loss -0.5088
543
+ 2023-07-24 04:05:40.925585: Pseudo dice [0.8802, 0.729, 0.5521]
544
+ 2023-07-24 04:05:40.925745: Epoch time: 221.16 s
545
+ 2023-07-24 04:05:43.897002:
546
+ 2023-07-24 04:05:43.898616: Epoch 68
547
+ 2023-07-24 04:05:43.898738: Current learning rate: 0.00939
548
+ 2023-07-24 04:09:15.657769: train_loss -0.6889
549
+ 2023-07-24 04:09:15.658007: val_loss -0.516
550
+ 2023-07-24 04:09:15.658100: Pseudo dice [0.8782, 0.7278, 0.5643]
551
+ 2023-07-24 04:09:15.658307: Epoch time: 211.76 s
552
+ 2023-07-24 04:09:15.658453: Yayy! New best EMA pseudo Dice: 0.7051
553
+ 2023-07-24 04:09:18.116199:
554
+ 2023-07-24 04:09:18.116321: Epoch 69
555
+ 2023-07-24 04:09:18.116441: Current learning rate: 0.00938
556
+ 2023-07-24 04:12:42.753379: train_loss -0.6904
557
+ 2023-07-24 04:12:42.753681: val_loss -0.4671
558
+ 2023-07-24 04:12:42.753862: Pseudo dice [0.8749, 0.7138, 0.3681]
559
+ 2023-07-24 04:12:42.753966: Epoch time: 204.64 s
560
+ 2023-07-24 04:12:44.327600:
561
+ 2023-07-24 04:12:44.327721: Epoch 70
562
+ 2023-07-24 04:12:44.327840: Current learning rate: 0.00937
563
+ 2023-07-24 04:16:22.761208: train_loss -0.6958
564
+ 2023-07-24 04:16:22.761458: val_loss -0.5012
565
+ 2023-07-24 04:16:22.761544: Pseudo dice [0.8879, 0.7126, 0.5304]
566
+ 2023-07-24 04:16:22.761694: Epoch time: 218.43 s
567
+ 2023-07-24 04:16:24.628846:
568
+ 2023-07-24 04:16:24.629004: Epoch 71
569
+ 2023-07-24 04:16:24.629131: Current learning rate: 0.00936
570
+ 2023-07-24 04:19:50.557256: train_loss -0.6919
571
+ 2023-07-24 04:19:50.557556: val_loss -0.4675
572
+ 2023-07-24 04:19:50.557651: Pseudo dice [0.8698, 0.6855, 0.5056]
573
+ 2023-07-24 04:19:50.557837: Epoch time: 205.93 s
574
+ 2023-07-24 04:19:53.142438:
575
+ 2023-07-24 04:19:53.142620: Epoch 72
576
+ 2023-07-24 04:19:53.142735: Current learning rate: 0.00935
577
+ 2023-07-24 04:23:22.464141: train_loss -0.6977
578
+ 2023-07-24 04:23:22.464365: val_loss -0.5149
579
+ 2023-07-24 04:23:22.464458: Pseudo dice [0.8859, 0.7116, 0.5175]
580
+ 2023-07-24 04:23:22.464544: Epoch time: 209.32 s
581
+ 2023-07-24 04:23:24.605744:
582
+ 2023-07-24 04:23:24.605880: Epoch 73
583
+ 2023-07-24 04:23:24.605996: Current learning rate: 0.00934
584
+ 2023-07-24 04:26:50.364227: train_loss -0.6983
585
+ 2023-07-24 04:26:50.364492: val_loss -0.4938
586
+ 2023-07-24 04:26:50.364594: Pseudo dice [0.8637, 0.7213, 0.5451]
587
+ 2023-07-24 04:26:50.364779: Epoch time: 205.76 s
588
+ 2023-07-24 04:26:52.800122:
589
+ 2023-07-24 04:26:52.800305: Epoch 74
590
+ 2023-07-24 04:26:52.800421: Current learning rate: 0.00933
591
+ 2023-07-24 04:30:26.828684: train_loss -0.6956
592
+ 2023-07-24 04:30:26.828918: val_loss -0.4781
593
+ 2023-07-24 04:30:26.829004: Pseudo dice [0.8634, 0.6982, 0.4993]
594
+ 2023-07-24 04:30:26.829283: Epoch time: 214.03 s
595
+ 2023-07-24 04:30:28.715835:
596
+ 2023-07-24 04:30:28.716055: Epoch 75
597
+ 2023-07-24 04:30:28.716175: Current learning rate: 0.00932
598
+ 2023-07-24 04:33:56.996001: train_loss -0.6978
599
+ 2023-07-24 04:33:56.996192: val_loss -0.5014
600
+ 2023-07-24 04:33:56.996281: Pseudo dice [0.8721, 0.6953, 0.5428]
601
+ 2023-07-24 04:33:56.996363: Epoch time: 208.28 s
602
+ 2023-07-24 04:34:01.112788:
603
+ 2023-07-24 04:34:01.112929: Epoch 76
604
+ 2023-07-24 04:34:01.113038: Current learning rate: 0.00931
605
+ 2023-07-24 04:37:36.118190: train_loss -0.6992
606
+ 2023-07-24 04:37:36.118396: val_loss -0.5014
607
+ 2023-07-24 04:37:36.118491: Pseudo dice [0.8768, 0.7055, 0.5652]
608
+ 2023-07-24 04:37:36.118583: Epoch time: 215.01 s
609
+ 2023-07-24 04:37:39.211814:
610
+ 2023-07-24 04:37:39.211969: Epoch 77
611
+ 2023-07-24 04:37:39.212115: Current learning rate: 0.0093
612
+ 2023-07-24 04:41:10.694273: train_loss -0.7058
613
+ 2023-07-24 04:41:10.694464: val_loss -0.4895
614
+ 2023-07-24 04:41:10.694552: Pseudo dice [0.8602, 0.7049, 0.5613]
615
+ 2023-07-24 04:41:10.694637: Epoch time: 211.48 s
616
+ 2023-07-24 04:41:13.013998:
617
+ 2023-07-24 04:41:13.014146: Epoch 78
618
+ 2023-07-24 04:41:13.014262: Current learning rate: 0.0093
619
+ 2023-07-24 04:44:39.537027: train_loss -0.7016
620
+ 2023-07-24 04:44:39.537224: val_loss -0.4884
621
+ 2023-07-24 04:44:39.537313: Pseudo dice [0.8797, 0.7206, 0.4807]
622
+ 2023-07-24 04:44:39.537394: Epoch time: 206.52 s
623
+ 2023-07-24 04:44:41.752397:
624
+ 2023-07-24 04:44:41.752547: Epoch 79
625
+ 2023-07-24 04:44:41.752668: Current learning rate: 0.00929
626
+ 2023-07-24 04:48:09.494605: train_loss -0.6964
627
+ 2023-07-24 04:48:09.494830: val_loss -0.5074
628
+ 2023-07-24 04:48:09.494932: Pseudo dice [0.8874, 0.7203, 0.6069]
629
+ 2023-07-24 04:48:09.495023: Epoch time: 207.74 s
630
+ 2023-07-24 04:48:11.746876:
631
+ 2023-07-24 04:48:11.747036: Epoch 80
632
+ 2023-07-24 04:48:11.747147: Current learning rate: 0.00928
633
+ 2023-07-24 04:51:42.348668: train_loss -0.7065
634
+ 2023-07-24 04:51:42.348896: val_loss -0.4837
635
+ 2023-07-24 04:51:42.348983: Pseudo dice [0.8784, 0.7032, 0.5621]
636
+ 2023-07-24 04:51:42.349133: Epoch time: 210.6 s
637
+ 2023-07-24 04:51:42.349199: Yayy! New best EMA pseudo Dice: 0.7061
638
+ 2023-07-24 04:51:44.484021:
639
+ 2023-07-24 04:51:44.484140: Epoch 81
640
+ 2023-07-24 04:51:44.484257: Current learning rate: 0.00927
641
+ 2023-07-24 04:55:09.696577: train_loss -0.714
642
+ 2023-07-24 04:55:09.696886: val_loss -0.491
643
+ 2023-07-24 04:55:09.696984: Pseudo dice [0.8814, 0.7251, 0.4554]
644
+ 2023-07-24 04:55:09.697072: Epoch time: 205.21 s
645
+ 2023-07-24 04:55:11.259889:
646
+ 2023-07-24 04:55:11.260105: Epoch 82
647
+ 2023-07-24 04:55:11.260218: Current learning rate: 0.00926
648
+ 2023-07-24 04:58:42.167684: train_loss -0.7151
649
+ 2023-07-24 04:58:42.167853: val_loss -0.5149
650
+ 2023-07-24 04:58:42.167938: Pseudo dice [0.8747, 0.6999, 0.632]
651
+ 2023-07-24 04:58:42.168024: Epoch time: 210.91 s
652
+ 2023-07-24 04:58:42.168089: Yayy! New best EMA pseudo Dice: 0.7073
653
+ 2023-07-24 04:58:46.756355:
654
+ 2023-07-24 04:58:46.756490: Epoch 83
655
+ 2023-07-24 04:58:46.756597: Current learning rate: 0.00925
656
+ 2023-07-24 05:02:22.008022: train_loss -0.7232
657
+ 2023-07-24 05:02:22.008212: val_loss -0.5229
658
+ 2023-07-24 05:02:22.008301: Pseudo dice [0.8914, 0.7236, 0.6229]
659
+ 2023-07-24 05:02:22.008386: Epoch time: 215.25 s
660
+ 2023-07-24 05:02:22.008452: Yayy! New best EMA pseudo Dice: 0.7112
661
+ 2023-07-24 05:02:24.066390:
662
+ 2023-07-24 05:02:24.066524: Epoch 84
663
+ 2023-07-24 05:02:24.066619: Current learning rate: 0.00924
664
+ 2023-07-24 05:05:50.327326: train_loss -0.725
665
+ 2023-07-24 05:05:50.327611: val_loss -0.5159
666
+ 2023-07-24 05:05:50.327698: Pseudo dice [0.8756, 0.7106, 0.5817]
667
+ 2023-07-24 05:05:50.327851: Epoch time: 206.26 s
668
+ 2023-07-24 05:05:50.327918: Yayy! New best EMA pseudo Dice: 0.7123
669
+ 2023-07-24 05:05:54.485906:
670
+ 2023-07-24 05:05:54.486033: Epoch 85
671
+ 2023-07-24 05:05:54.486146: Current learning rate: 0.00923
672
+ 2023-07-24 05:09:37.322994: train_loss -0.723
673
+ 2023-07-24 05:09:37.323187: val_loss -0.5029
674
+ 2023-07-24 05:09:37.323277: Pseudo dice [0.8783, 0.7171, 0.4587]
675
+ 2023-07-24 05:09:37.323362: Epoch time: 222.84 s
676
+ 2023-07-24 05:09:38.723594:
677
+ 2023-07-24 05:09:38.723815: Epoch 86
678
+ 2023-07-24 05:09:38.723936: Current learning rate: 0.00922
679
+ 2023-07-24 05:13:09.316705: train_loss -0.7182
680
+ 2023-07-24 05:13:09.316886: val_loss -0.4834
681
+ 2023-07-24 05:13:09.316982: Pseudo dice [0.8828, 0.7206, 0.4715]
682
+ 2023-07-24 05:13:09.317072: Epoch time: 210.59 s
683
+ 2023-07-24 05:13:12.422567:
684
+ 2023-07-24 05:13:12.422688: Epoch 87
685
+ 2023-07-24 05:13:12.422828: Current learning rate: 0.00921
686
+ 2023-07-24 05:16:46.310607: train_loss -0.7222
687
+ 2023-07-24 05:16:46.310821: val_loss -0.502
688
+ 2023-07-24 05:16:46.310914: Pseudo dice [0.8901, 0.6998, 0.6513]
689
+ 2023-07-24 05:16:46.310997: Epoch time: 213.89 s
690
+ 2023-07-24 05:16:48.065801:
691
+ 2023-07-24 05:16:48.065928: Epoch 88
692
+ 2023-07-24 05:16:48.066038: Current learning rate: 0.0092
693
+ 2023-07-24 05:20:26.412961: train_loss -0.7227
694
+ 2023-07-24 05:20:26.413243: val_loss -0.5113
695
+ 2023-07-24 05:20:26.413336: Pseudo dice [0.885, 0.7263, 0.6205]
696
+ 2023-07-24 05:20:26.413419: Epoch time: 218.35 s
697
+ 2023-07-24 05:20:26.413479: Yayy! New best EMA pseudo Dice: 0.7149
698
+ 2023-07-24 05:20:28.466174:
699
+ 2023-07-24 05:20:28.466462: Epoch 89
700
+ 2023-07-24 05:20:28.466586: Current learning rate: 0.0092
701
+ 2023-07-24 05:23:53.870799: train_loss -0.7281
702
+ 2023-07-24 05:23:53.871042: val_loss -0.5177
703
+ 2023-07-24 05:23:53.871127: Pseudo dice [0.8774, 0.7281, 0.5178]
704
+ 2023-07-24 05:23:53.871280: Epoch time: 205.41 s
705
+ 2023-07-24 05:23:56.666574:
706
+ 2023-07-24 05:23:56.666709: Epoch 90
707
+ 2023-07-24 05:23:56.666846: Current learning rate: 0.00919
708
+ 2023-07-24 05:27:24.511108: train_loss -0.7268
709
+ 2023-07-24 05:27:24.511282: val_loss -0.4883
710
+ 2023-07-24 05:27:24.511378: Pseudo dice [0.8808, 0.7023, 0.5429]
711
+ 2023-07-24 05:27:24.511463: Epoch time: 207.85 s
712
+ 2023-07-24 05:27:26.253584:
713
+ 2023-07-24 05:27:26.253713: Epoch 91
714
+ 2023-07-24 05:27:26.253826: Current learning rate: 0.00918
715
+ 2023-07-24 05:31:00.680078: train_loss -0.7187
716
+ 2023-07-24 05:31:00.680262: val_loss -0.5126
717
+ 2023-07-24 05:31:00.680357: Pseudo dice [0.8854, 0.734, 0.5313]
718
+ 2023-07-24 05:31:00.680444: Epoch time: 214.43 s
719
+ 2023-07-24 05:31:03.875111:
720
+ 2023-07-24 05:31:03.875342: Epoch 92
721
+ 2023-07-24 05:31:03.875453: Current learning rate: 0.00917
722
+ 2023-07-24 05:34:36.700777: train_loss -0.7261
723
+ 2023-07-24 05:34:36.701067: val_loss -0.4824
724
+ 2023-07-24 05:34:36.701155: Pseudo dice [0.8677, 0.7068, 0.5625]
725
+ 2023-07-24 05:34:36.701310: Epoch time: 212.83 s
726
+ 2023-07-24 05:34:38.725615:
727
+ 2023-07-24 05:34:38.725760: Epoch 93
728
+ 2023-07-24 05:34:38.725878: Current learning rate: 0.00916
729
+ 2023-07-24 05:38:14.723124: train_loss -0.7303
730
+ 2023-07-24 05:38:14.723329: val_loss -0.4918
731
+ 2023-07-24 05:38:14.723435: Pseudo dice [0.8725, 0.7201, 0.5379]
732
+ 2023-07-24 05:38:14.723536: Epoch time: 216.0 s
733
+ 2023-07-24 05:38:18.938028:
734
+ 2023-07-24 05:38:18.938344: Epoch 94
735
+ 2023-07-24 05:38:18.938459: Current learning rate: 0.00915
736
+ 2023-07-24 05:41:49.722474: train_loss -0.7321
737
+ 2023-07-24 05:41:49.722725: val_loss -0.5192
738
+ 2023-07-24 05:41:49.722838: Pseudo dice [0.8869, 0.73, 0.5719]
739
+ 2023-07-24 05:41:49.722987: Epoch time: 210.79 s
740
+ 2023-07-24 05:41:49.723047: Yayy! New best EMA pseudo Dice: 0.7151
741
+ 2023-07-24 05:41:52.238441:
742
+ 2023-07-24 05:41:52.238770: Epoch 95
743
+ 2023-07-24 05:41:52.238896: Current learning rate: 0.00914
744
+ 2023-07-24 05:45:28.216917: train_loss -0.7294
745
+ 2023-07-24 05:45:28.217144: val_loss -0.4859
746
+ 2023-07-24 05:45:28.217231: Pseudo dice [0.8868, 0.7071, 0.502]
747
+ 2023-07-24 05:45:28.217372: Epoch time: 215.98 s
748
+ 2023-07-24 05:45:30.203134:
749
+ 2023-07-24 05:45:30.203313: Epoch 96
750
+ 2023-07-24 05:45:30.203428: Current learning rate: 0.00913
751
+ 2023-07-24 05:49:07.118325: train_loss -0.7275
752
+ 2023-07-24 05:49:07.130988: val_loss -0.4979
753
+ 2023-07-24 05:49:07.131268: Pseudo dice [0.8742, 0.7169, 0.5796]
754
+ 2023-07-24 05:49:07.131369: Epoch time: 216.92 s
755
+ 2023-07-24 05:49:10.592634:
756
+ 2023-07-24 05:49:10.592791: Epoch 97
757
+ 2023-07-24 05:49:10.592889: Current learning rate: 0.00912
758
+ 2023-07-24 05:52:37.449055: train_loss -0.7377
759
+ 2023-07-24 05:52:37.449250: val_loss -0.4932
760
+ 2023-07-24 05:52:37.449338: Pseudo dice [0.878, 0.7154, 0.5691]
761
+ 2023-07-24 05:52:37.449421: Epoch time: 206.86 s
762
+ 2023-07-24 05:52:37.449489: Yayy! New best EMA pseudo Dice: 0.7151
763
+ 2023-07-24 05:52:39.613982:
764
+ 2023-07-24 05:52:39.614139: Epoch 98
765
+ 2023-07-24 05:52:39.614302: Current learning rate: 0.00911
766
+ 2023-07-24 05:56:12.741833: train_loss -0.725
767
+ 2023-07-24 05:56:12.742075: val_loss -0.5039
768
+ 2023-07-24 05:56:12.742163: Pseudo dice [0.8862, 0.711, 0.6208]
769
+ 2023-07-24 05:56:12.742243: Epoch time: 213.13 s
770
+ 2023-07-24 05:56:12.742309: Yayy! New best EMA pseudo Dice: 0.7175
771
+ 2023-07-24 05:56:16.737276:
772
+ 2023-07-24 05:56:16.737576: Epoch 99
773
+ 2023-07-24 05:56:16.737698: Current learning rate: 0.0091
774
+ 2023-07-24 05:59:45.462096: train_loss -0.7306
775
+ 2023-07-24 05:59:45.462285: val_loss -0.5266
776
+ 2023-07-24 05:59:45.462388: Pseudo dice [0.8861, 0.7386, 0.513]
777
+ 2023-07-24 05:59:45.462479: Epoch time: 208.73 s
778
+ 2023-07-24 05:59:50.668950:
779
+ 2023-07-24 05:59:50.669163: Epoch 100
780
+ 2023-07-24 05:59:50.669280: Current learning rate: 0.0091
781
+ 2023-07-24 06:03:33.285699: train_loss -0.7382
782
+ 2023-07-24 06:03:33.285881: val_loss -0.5096
783
+ 2023-07-24 06:03:33.285975: Pseudo dice [0.8703, 0.712, 0.5639]
784
+ 2023-07-24 06:03:33.286058: Epoch time: 222.62 s
785
+ 2023-07-24 06:03:35.851426:
786
+ 2023-07-24 06:03:35.851692: Epoch 101
787
+ 2023-07-24 06:03:35.851813: Current learning rate: 0.00909
788
+ 2023-07-24 06:07:07.771703: train_loss -0.7398
789
+ 2023-07-24 06:07:07.771932: val_loss -0.5006
790
+ 2023-07-24 06:07:07.772034: Pseudo dice [0.8863, 0.723, 0.5644]
791
+ 2023-07-24 06:07:07.772126: Epoch time: 211.92 s
792
+ 2023-07-24 06:07:07.772207: Yayy! New best EMA pseudo Dice: 0.7176
793
+ 2023-07-24 06:07:09.785565:
794
+ 2023-07-24 06:07:09.785925: Epoch 102
795
+ 2023-07-24 06:07:09.786036: Current learning rate: 0.00908
796
+ 2023-07-24 06:10:43.597014: train_loss -0.7306
797
+ 2023-07-24 06:10:43.597273: val_loss -0.5015
798
+ 2023-07-24 06:10:43.599555: Pseudo dice [0.8817, 0.7251, 0.5061]
799
+ 2023-07-24 06:10:43.599782: Epoch time: 213.81 s
800
+ 2023-07-24 06:10:45.487350:
801
+ 2023-07-24 06:10:45.487549: Epoch 103
802
+ 2023-07-24 06:10:45.487668: Current learning rate: 0.00907
803
+ 2023-07-24 06:14:14.858136: train_loss -0.7477
804
+ 2023-07-24 06:14:14.858318: val_loss -0.4896
805
+ 2023-07-24 06:14:14.858405: Pseudo dice [0.8898, 0.7226, 0.5152]
806
+ 2023-07-24 06:14:14.858487: Epoch time: 209.37 s
807
+ 2023-07-24 06:14:18.636439:
808
+ 2023-07-24 06:14:18.636607: Epoch 104
809
+ 2023-07-24 06:14:18.636723: Current learning rate: 0.00906
810
+ 2023-07-24 06:17:56.407210: train_loss -0.7288
811
+ 2023-07-24 06:17:56.407393: val_loss -0.4908
812
+ 2023-07-24 06:17:56.407491: Pseudo dice [0.8777, 0.7242, 0.4401]
813
+ 2023-07-24 06:17:56.407592: Epoch time: 217.77 s
814
+ 2023-07-24 06:17:59.395841:
815
+ 2023-07-24 06:17:59.406929: Epoch 105
816
+ 2023-07-24 06:17:59.407068: Current learning rate: 0.00905
817
+ 2023-07-24 06:21:34.379379: train_loss -0.7297
818
+ 2023-07-24 06:21:34.379545: val_loss -0.5001
819
+ 2023-07-24 06:21:34.379629: Pseudo dice [0.8812, 0.7174, 0.5466]
820
+ 2023-07-24 06:21:34.379707: Epoch time: 215.0 s
821
+ 2023-07-24 06:21:36.480978:
822
+ 2023-07-24 06:21:36.481113: Epoch 106
823
+ 2023-07-24 06:21:36.481229: Current learning rate: 0.00904
824
+ 2023-07-24 06:24:59.495173: train_loss -0.7319
825
+ 2023-07-24 06:24:59.495373: val_loss -0.4684
826
+ 2023-07-24 06:24:59.495463: Pseudo dice [0.8719, 0.699, 0.4954]
827
+ 2023-07-24 06:24:59.495545: Epoch time: 203.02 s
828
+ 2023-07-24 06:25:01.416497:
829
+ 2023-07-24 06:25:01.416672: Epoch 107
830
+ 2023-07-24 06:25:01.416785: Current learning rate: 0.00903
831
+ 2023-07-24 06:28:38.100931: train_loss -0.7425
832
+ 2023-07-24 06:28:38.101100: val_loss -0.5066
833
+ 2023-07-24 06:28:38.101199: Pseudo dice [0.8828, 0.7349, 0.551]
834
+ 2023-07-24 06:28:38.101286: Epoch time: 216.69 s
835
+ 2023-07-24 06:28:39.838402:
836
+ 2023-07-24 06:28:39.838579: Epoch 108
837
+ 2023-07-24 06:28:39.838694: Current learning rate: 0.00902
838
+ 2023-07-24 06:32:19.977618: train_loss -0.7335
839
+ 2023-07-24 06:32:19.990841: val_loss -0.4957
840
+ 2023-07-24 06:32:19.990945: Pseudo dice [0.8713, 0.7344, 0.4371]
841
+ 2023-07-24 06:32:19.991140: Epoch time: 220.14 s
842
+ 2023-07-24 06:32:22.127137:
843
+ 2023-07-24 06:32:22.127293: Epoch 109
844
+ 2023-07-24 06:32:22.127414: Current learning rate: 0.00901
845
+ 2023-07-24 06:35:56.862900: train_loss -0.7247
846
+ 2023-07-24 06:35:56.863097: val_loss -0.4827
847
+ 2023-07-24 06:35:56.863201: Pseudo dice [0.8801, 0.6793, 0.5831]
848
+ 2023-07-24 06:35:56.863297: Epoch time: 214.74 s
849
+ 2023-07-24 06:36:00.448839:
850
+ 2023-07-24 06:36:00.449008: Epoch 110
851
+ 2023-07-24 06:36:00.449116: Current learning rate: 0.009
852
+ 2023-07-24 06:39:25.954977: train_loss -0.7307
853
+ 2023-07-24 06:39:25.955158: val_loss -0.4855
854
+ 2023-07-24 06:39:25.955249: Pseudo dice [0.8795, 0.6975, 0.5762]
855
+ 2023-07-24 06:39:25.955334: Epoch time: 205.51 s
856
+ 2023-07-24 06:39:28.934479:
857
+ 2023-07-24 06:39:28.934601: Epoch 111
858
+ 2023-07-24 06:39:28.934713: Current learning rate: 0.009
859
+ 2023-07-24 06:42:53.226294: train_loss -0.7364
860
+ 2023-07-24 06:42:53.226513: val_loss -0.4781
861
+ 2023-07-24 06:42:53.226613: Pseudo dice [0.8844, 0.7035, 0.4998]
862
+ 2023-07-24 06:42:53.226707: Epoch time: 204.29 s
863
+ 2023-07-24 06:42:57.119614:
864
+ 2023-07-24 06:42:57.119749: Epoch 112
865
+ 2023-07-24 06:42:57.119859: Current learning rate: 0.00899
866
+ 2023-07-24 06:46:27.868778: train_loss -0.7428
867
+ 2023-07-24 06:46:27.868973: val_loss -0.5043
868
+ 2023-07-24 06:46:27.869063: Pseudo dice [0.8869, 0.6979, 0.6164]
869
+ 2023-07-24 06:46:27.869147: Epoch time: 210.75 s
870
+ 2023-07-24 06:46:29.738551:
871
+ 2023-07-24 06:46:29.738678: Epoch 113
872
+ 2023-07-24 06:46:29.738820: Current learning rate: 0.00898
873
+ 2023-07-24 06:49:47.016800: train_loss -0.7404
874
+ 2023-07-24 06:49:47.017059: val_loss -0.484
875
+ 2023-07-24 06:49:47.017146: Pseudo dice [0.8878, 0.7123, 0.5259]
876
+ 2023-07-24 06:49:47.017297: Epoch time: 197.28 s
877
+ 2023-07-24 06:49:49.028085:
878
+ 2023-07-24 06:49:49.028212: Epoch 114
879
+ 2023-07-24 06:49:49.028322: Current learning rate: 0.00897
880
+ 2023-07-24 06:53:22.595026: train_loss -0.7403
881
+ 2023-07-24 06:53:22.595240: val_loss -0.4923
882
+ 2023-07-24 06:53:22.595333: Pseudo dice [0.8744, 0.7065, 0.5055]
883
+ 2023-07-24 06:53:22.595417: Epoch time: 213.57 s
884
+ 2023-07-24 06:53:25.630225:
885
+ 2023-07-24 06:53:25.630350: Epoch 115
886
+ 2023-07-24 06:53:25.630466: Current learning rate: 0.00896
887
+ 2023-07-24 06:56:54.846274: train_loss -0.7407
888
+ 2023-07-24 06:56:54.846479: val_loss -0.5206
889
+ 2023-07-24 06:56:54.846571: Pseudo dice [0.8874, 0.7354, 0.4706]
890
+ 2023-07-24 06:56:54.846656: Epoch time: 209.22 s
891
+ 2023-07-24 06:56:58.530087:
892
+ 2023-07-24 06:56:58.530329: Epoch 116
893
+ 2023-07-24 06:56:58.530463: Current learning rate: 0.00895
894
+ 2023-07-24 07:00:33.757893: train_loss -0.7397
895
+ 2023-07-24 07:00:33.758083: val_loss -0.4963
896
+ 2023-07-24 07:00:33.758173: Pseudo dice [0.8784, 0.7196, 0.5139]
897
+ 2023-07-24 07:00:33.758259: Epoch time: 215.23 s
898
+ 2023-07-24 07:00:36.559549:
899
+ 2023-07-24 07:00:36.559805: Epoch 117
900
+ 2023-07-24 07:00:36.559918: Current learning rate: 0.00894
901
+ 2023-07-24 07:04:09.798198: train_loss -0.737
902
+ 2023-07-24 07:04:09.798404: val_loss -0.4986
903
+ 2023-07-24 07:04:09.809834: Pseudo dice [0.879, 0.706, 0.5266]
904
+ 2023-07-24 07:04:09.810041: Epoch time: 213.24 s
905
+ 2023-07-24 07:04:13.458022:
906
+ 2023-07-24 07:04:13.458441: Epoch 118
907
+ 2023-07-24 07:04:13.458563: Current learning rate: 0.00893
908
+ 2023-07-24 07:07:55.203243: train_loss -0.7376
909
+ 2023-07-24 07:07:55.203503: val_loss -0.5011
910
+ 2023-07-24 07:07:55.203593: Pseudo dice [0.8852, 0.7273, 0.5817]
911
+ 2023-07-24 07:07:55.203745: Epoch time: 221.75 s
912
+ 2023-07-24 07:07:57.539746:
913
+ 2023-07-24 07:07:57.539875: Epoch 119
914
+ 2023-07-24 07:07:57.539999: Current learning rate: 0.00892
915
+ 2023-07-24 07:11:23.694811: train_loss -0.7511
916
+ 2023-07-24 07:11:23.706887: val_loss -0.5173
917
+ 2023-07-24 07:11:23.707143: Pseudo dice [0.8818, 0.7369, 0.559]
918
+ 2023-07-24 07:11:23.707327: Epoch time: 206.16 s
919
+ 2023-07-24 07:11:26.298614:
920
+ 2023-07-24 07:11:26.298933: Epoch 120
921
+ 2023-07-24 07:11:26.299044: Current learning rate: 0.00891
922
+ 2023-07-24 07:14:58.226911: train_loss -0.7376
923
+ 2023-07-24 07:14:58.227126: val_loss -0.4984
924
+ 2023-07-24 07:14:58.227228: Pseudo dice [0.8841, 0.7261, 0.4873]
925
+ 2023-07-24 07:14:58.227322: Epoch time: 211.93 s
926
+ 2023-07-24 07:15:00.409765:
927
+ 2023-07-24 07:15:00.409939: Epoch 121
928
+ 2023-07-24 07:15:00.410051: Current learning rate: 0.0089
929
+ 2023-07-24 07:18:26.223230: train_loss -0.7331
930
+ 2023-07-24 07:18:26.223434: val_loss -0.4727
931
+ 2023-07-24 07:18:26.223520: Pseudo dice [0.8632, 0.6888, 0.5576]
932
+ 2023-07-24 07:18:26.223612: Epoch time: 205.81 s
933
+ 2023-07-24 07:18:28.232954:
934
+ 2023-07-24 07:18:28.233098: Epoch 122
935
+ 2023-07-24 07:18:28.233214: Current learning rate: 0.00889
936
+ 2023-07-24 07:22:00.937126: train_loss -0.739
937
+ 2023-07-24 07:22:00.937339: val_loss -0.4894
938
+ 2023-07-24 07:22:00.937483: Pseudo dice [0.8769, 0.7199, 0.4559]
939
+ 2023-07-24 07:22:00.937608: Epoch time: 212.71 s
940
+ 2023-07-24 07:22:04.448639:
941
+ 2023-07-24 07:22:04.448863: Epoch 123
942
+ 2023-07-24 07:22:04.448967: Current learning rate: 0.00889
943
+ 2023-07-24 07:25:39.226343: train_loss -0.7513
944
+ 2023-07-24 07:25:39.226538: val_loss -0.4662
945
+ 2023-07-24 07:25:39.226624: Pseudo dice [0.8728, 0.7032, 0.4345]
946
+ 2023-07-24 07:25:39.226705: Epoch time: 214.78 s
947
+ 2023-07-24 07:25:41.940106:
948
+ 2023-07-24 07:25:41.940430: Epoch 124
949
+ 2023-07-24 07:25:41.940552: Current learning rate: 0.00888
950
+ 2023-07-24 07:29:31.867979: train_loss -0.7385
951
+ 2023-07-24 07:29:31.868199: val_loss -0.4822
952
+ 2023-07-24 07:29:31.868285: Pseudo dice [0.8879, 0.7072, 0.4662]
953
+ 2023-07-24 07:29:31.868367: Epoch time: 229.93 s
954
+ 2023-07-24 07:29:33.666378:
955
+ 2023-07-24 07:29:33.666722: Epoch 125
956
+ 2023-07-24 07:29:33.666862: Current learning rate: 0.00887
957
+ 2023-07-24 07:33:13.897824: train_loss -0.735
958
+ 2023-07-24 07:33:13.898085: val_loss -0.5056
959
+ 2023-07-24 07:33:13.898172: Pseudo dice [0.8899, 0.7388, 0.4273]
960
+ 2023-07-24 07:33:13.898322: Epoch time: 220.23 s
961
+ 2023-07-24 07:33:15.701629:
962
+ 2023-07-24 07:33:15.701919: Epoch 126
963
+ 2023-07-24 07:33:15.702039: Current learning rate: 0.00886
964
+ 2023-07-24 07:36:46.580624: train_loss -0.7412
965
+ 2023-07-24 07:36:46.590938: val_loss -0.4682
966
+ 2023-07-24 07:36:46.591583: Pseudo dice [0.8875, 0.707, 0.464]
967
+ 2023-07-24 07:36:46.591727: Epoch time: 210.88 s
968
+ 2023-07-24 07:36:49.059450:
969
+ 2023-07-24 07:36:49.059957: Epoch 127
970
+ 2023-07-24 07:36:49.060068: Current learning rate: 0.00885
971
+ 2023-07-24 07:40:16.085344: train_loss -0.7467
972
+ 2023-07-24 07:40:16.085670: val_loss -0.5007
973
+ 2023-07-24 07:40:16.085762: Pseudo dice [0.8923, 0.7309, 0.4699]
974
+ 2023-07-24 07:40:16.085928: Epoch time: 207.03 s
975
+ 2023-07-24 07:40:18.069315:
976
+ 2023-07-24 07:40:18.069484: Epoch 128
977
+ 2023-07-24 07:40:18.069586: Current learning rate: 0.00884
978
+ 2023-07-24 07:43:48.285688: train_loss -0.7613
979
+ 2023-07-24 07:43:48.285896: val_loss -0.5026
980
+ 2023-07-24 07:43:48.285983: Pseudo dice [0.8685, 0.7138, 0.5262]
981
+ 2023-07-24 07:43:48.286072: Epoch time: 210.22 s
982
+ 2023-07-24 07:43:50.040725:
983
+ 2023-07-24 07:43:50.040847: Epoch 129
984
+ 2023-07-24 07:43:50.040961: Current learning rate: 0.00883
985
+ 2023-07-24 07:47:20.600014: train_loss -0.749
986
+ 2023-07-24 07:47:20.600197: val_loss -0.4715
987
+ 2023-07-24 07:47:20.600303: Pseudo dice [0.8669, 0.7066, 0.5142]
988
+ 2023-07-24 07:47:20.600403: Epoch time: 210.56 s
989
+ 2023-07-24 07:47:22.825845:
990
+ 2023-07-24 07:47:22.825982: Epoch 130
991
+ 2023-07-24 07:47:22.826100: Current learning rate: 0.00882
992
+ 2023-07-24 07:51:01.366344: train_loss -0.7542
993
+ 2023-07-24 07:51:01.372711: val_loss -0.4867
994
+ 2023-07-24 07:51:01.373079: Pseudo dice [0.8709, 0.7212, 0.5275]
995
+ 2023-07-24 07:51:01.373174: Epoch time: 218.54 s
996
+ 2023-07-24 07:51:04.639824:
997
+ 2023-07-24 07:51:04.640065: Epoch 131
998
+ 2023-07-24 07:51:04.640186: Current learning rate: 0.00881
999
+ 2023-07-24 07:54:25.996458: train_loss -0.7539
1000
+ 2023-07-24 07:54:25.996660: val_loss -0.493
1001
+ 2023-07-24 07:54:25.996764: Pseudo dice [0.879, 0.7073, 0.5086]
1002
+ 2023-07-24 07:54:25.996862: Epoch time: 201.36 s
1003
+ 2023-07-24 07:54:27.833304:
1004
+ 2023-07-24 07:54:27.833434: Epoch 132
1005
+ 2023-07-24 07:54:27.833548: Current learning rate: 0.0088
1006
+ 2023-07-24 07:58:06.308678: train_loss -0.7424
1007
+ 2023-07-24 07:58:06.308868: val_loss -0.4781
1008
+ 2023-07-24 07:58:06.308955: Pseudo dice [0.8749, 0.7132, 0.4636]
1009
+ 2023-07-24 07:58:06.309040: Epoch time: 218.48 s
1010
+ 2023-07-24 07:58:07.995495:
1011
+ 2023-07-24 07:58:07.995820: Epoch 133
1012
+ 2023-07-24 07:58:07.995934: Current learning rate: 0.00879
1013
+ 2023-07-24 08:01:39.319222: train_loss -0.7583
1014
+ 2023-07-24 08:01:39.319408: val_loss -0.4887
1015
+ 2023-07-24 08:01:39.319496: Pseudo dice [0.8776, 0.6941, 0.6211]
1016
+ 2023-07-24 08:01:39.319587: Epoch time: 211.32 s
1017
+ 2023-07-24 08:01:42.469862:
1018
+ 2023-07-24 08:01:42.470145: Epoch 134
1019
+ 2023-07-24 08:01:42.470260: Current learning rate: 0.00879
1020
+ 2023-07-24 08:05:12.546540: train_loss -0.7622
1021
+ 2023-07-24 08:05:12.546793: val_loss -0.487
1022
+ 2023-07-24 08:05:12.546890: Pseudo dice [0.877, 0.6954, 0.6036]
1023
+ 2023-07-24 08:05:12.547057: Epoch time: 210.08 s
1024
+ 2023-07-24 08:05:15.318394:
1025
+ 2023-07-24 08:05:15.318724: Epoch 135
1026
+ 2023-07-24 08:05:15.318935: Current learning rate: 0.00878
1027
+ 2023-07-24 08:08:54.008573: train_loss -0.757
1028
+ 2023-07-24 08:08:54.008773: val_loss -0.4737
1029
+ 2023-07-24 08:08:54.008857: Pseudo dice [0.8687, 0.6997, 0.5345]
1030
+ 2023-07-24 08:08:54.008935: Epoch time: 218.69 s
1031
+ 2023-07-24 08:08:57.009470:
1032
+ 2023-07-24 08:08:57.009609: Epoch 136
1033
+ 2023-07-24 08:08:57.009723: Current learning rate: 0.00877
1034
+ 2023-07-24 08:12:31.627689: train_loss -0.7468
1035
+ 2023-07-24 08:12:31.628009: val_loss -0.4989
1036
+ 2023-07-24 08:12:31.628209: Pseudo dice [0.8809, 0.7079, 0.5713]
1037
+ 2023-07-24 08:12:31.628382: Epoch time: 214.62 s
1038
+ 2023-07-24 08:12:34.747013:
1039
+ 2023-07-24 08:12:34.747181: Epoch 137
1040
+ 2023-07-24 08:12:34.747300: Current learning rate: 0.00876
1041
+ 2023-07-24 08:16:01.029350: train_loss -0.7588
1042
+ 2023-07-24 08:16:01.029534: val_loss -0.4855
1043
+ 2023-07-24 08:16:01.029621: Pseudo dice [0.8791, 0.6898, 0.6106]
1044
+ 2023-07-24 08:16:01.029705: Epoch time: 206.28 s
1045
+ 2023-07-24 08:16:02.771766:
1046
+ 2023-07-24 08:16:02.771899: Epoch 138
1047
+ 2023-07-24 08:16:02.772012: Current learning rate: 0.00875
1048
+ 2023-07-24 08:19:44.406471: train_loss -0.747
1049
+ 2023-07-24 08:19:44.406666: val_loss -0.5084
1050
+ 2023-07-24 08:19:44.406777: Pseudo dice [0.8869, 0.7204, 0.5542]
1051
+ 2023-07-24 08:19:44.406874: Epoch time: 221.64 s
1052
+ 2023-07-24 08:19:47.105821:
1053
+ 2023-07-24 08:19:47.105972: Epoch 139
1054
+ 2023-07-24 08:19:47.106068: Current learning rate: 0.00874
1055
+ 2023-07-24 08:23:18.237113: train_loss -0.7528
1056
+ 2023-07-24 08:23:18.237421: val_loss -0.4871
1057
+ 2023-07-24 08:23:18.237525: Pseudo dice [0.8776, 0.706, 0.5431]
1058
+ 2023-07-24 08:23:18.237715: Epoch time: 211.13 s
1059
+ 2023-07-24 08:23:20.150906:
1060
+ 2023-07-24 08:23:20.151026: Epoch 140
1061
+ 2023-07-24 08:23:20.151122: Current learning rate: 0.00873
1062
+ 2023-07-24 08:26:46.623374: train_loss -0.7637
1063
+ 2023-07-24 08:26:46.623651: val_loss -0.4917
1064
+ 2023-07-24 08:26:46.623740: Pseudo dice [0.8785, 0.6989, 0.6665]
1065
+ 2023-07-24 08:26:46.623897: Epoch time: 206.47 s
1066
+ 2023-07-24 08:26:48.784806:
1067
+ 2023-07-24 08:26:48.785008: Epoch 141
1068
+ 2023-07-24 08:26:48.785114: Current learning rate: 0.00872
1069
+ 2023-07-24 08:30:30.098001: train_loss -0.7605
1070
+ 2023-07-24 08:30:30.098207: val_loss -0.499
1071
+ 2023-07-24 08:30:30.098298: Pseudo dice [0.8795, 0.7093, 0.5429]
1072
+ 2023-07-24 08:30:30.098378: Epoch time: 221.31 s
1073
+ 2023-07-24 08:30:32.113620:
1074
+ 2023-07-24 08:30:32.113780: Epoch 142
1075
+ 2023-07-24 08:30:32.113915: Current learning rate: 0.00871
1076
+ 2023-07-24 08:33:58.876559: train_loss -0.7434
1077
+ 2023-07-24 08:33:58.876756: val_loss -0.4936
1078
+ 2023-07-24 08:33:58.876848: Pseudo dice [0.8844, 0.7121, 0.5416]
1079
+ 2023-07-24 08:33:58.876932: Epoch time: 206.76 s
1080
+ 2023-07-24 08:34:01.494818:
1081
+ 2023-07-24 08:34:01.495366: Epoch 143
1082
+ 2023-07-24 08:34:01.495486: Current learning rate: 0.0087
1083
+ 2023-07-24 08:37:26.398371: train_loss -0.7416
1084
+ 2023-07-24 08:37:26.398579: val_loss -0.5108
1085
+ 2023-07-24 08:37:26.398680: Pseudo dice [0.8855, 0.7182, 0.5946]
1086
+ 2023-07-24 08:37:26.398790: Epoch time: 204.91 s
1087
+ 2023-07-24 08:37:30.655529:
1088
+ 2023-07-24 08:37:30.655930: Epoch 144
1089
+ 2023-07-24 08:37:30.656043: Current learning rate: 0.00869
1090
+ 2023-07-24 08:40:55.134679: train_loss -0.7574
1091
+ 2023-07-24 08:40:55.134889: val_loss -0.4785
1092
+ 2023-07-24 08:40:55.134991: Pseudo dice [0.8803, 0.7162, 0.3907]
1093
+ 2023-07-24 08:40:55.135085: Epoch time: 204.48 s
1094
+ 2023-07-24 08:40:57.261309:
1095
+ 2023-07-24 08:40:57.261564: Epoch 145
1096
+ 2023-07-24 08:40:57.261678: Current learning rate: 0.00868
1097
+ 2023-07-24 08:44:23.101116: train_loss -0.7516
1098
+ 2023-07-24 08:44:23.106944: val_loss -0.4902
1099
+ 2023-07-24 08:44:23.107199: Pseudo dice [0.8784, 0.7066, 0.5606]
1100
+ 2023-07-24 08:44:23.107291: Epoch time: 205.84 s
1101
+ 2023-07-24 08:44:25.099223:
1102
+ 2023-07-24 08:44:25.099430: Epoch 146
1103
+ 2023-07-24 08:44:25.099553: Current learning rate: 0.00868
1104
+ 2023-07-24 08:47:56.039377: train_loss -0.759
1105
+ 2023-07-24 08:47:56.039689: val_loss -0.5251
1106
+ 2023-07-24 08:47:56.039789: Pseudo dice [0.8786, 0.7236, 0.5975]
1107
+ 2023-07-24 08:47:56.039928: Epoch time: 210.94 s
1108
+ 2023-07-24 08:47:58.670197:
1109
+ 2023-07-24 08:47:58.670312: Epoch 147
1110
+ 2023-07-24 08:47:58.670412: Current learning rate: 0.00867
1111
+ 2023-07-24 08:51:23.394095: train_loss -0.7657
1112
+ 2023-07-24 08:51:23.394388: val_loss -0.4863
1113
+ 2023-07-24 08:51:23.394477: Pseudo dice [0.8613, 0.7275, 0.4779]
1114
+ 2023-07-24 08:51:23.394634: Epoch time: 204.72 s
1115
+ 2023-07-24 08:51:25.151827:
1116
+ 2023-07-24 08:51:25.152007: Epoch 148
1117
+ 2023-07-24 08:51:25.152129: Current learning rate: 0.00866
1118
+ 2023-07-24 08:55:00.305970: train_loss -0.759
1119
+ 2023-07-24 08:55:00.306156: val_loss -0.4877
1120
+ 2023-07-24 08:55:00.306260: Pseudo dice [0.8708, 0.7051, 0.5229]
1121
+ 2023-07-24 08:55:00.306348: Epoch time: 215.16 s
1122
+ 2023-07-24 08:55:03.166358:
1123
+ 2023-07-24 08:55:03.166571: Epoch 149
1124
+ 2023-07-24 08:55:03.166703: Current learning rate: 0.00865
1125
+ 2023-07-24 08:58:36.158555: train_loss -0.7584
1126
+ 2023-07-24 08:58:36.163698: val_loss -0.5075
1127
+ 2023-07-24 08:58:36.163839: Pseudo dice [0.8796, 0.7186, 0.6129]
1128
+ 2023-07-24 08:58:36.163924: Epoch time: 212.99 s
1129
+ 2023-07-24 08:58:39.431387:
1130
+ 2023-07-24 08:58:39.431509: Epoch 150
1131
+ 2023-07-24 08:58:39.431633: Current learning rate: 0.00864
1132
+ 2023-07-24 09:02:08.121246: train_loss -0.7586
1133
+ 2023-07-24 09:02:08.121416: val_loss -0.5081
1134
+ 2023-07-24 09:02:08.121502: Pseudo dice [0.8847, 0.727, 0.6269]
1135
+ 2023-07-24 09:02:08.121582: Epoch time: 208.69 s
1136
+ 2023-07-24 09:02:10.686369:
1137
+ 2023-07-24 09:02:10.686602: Epoch 151
1138
+ 2023-07-24 09:02:10.686719: Current learning rate: 0.00863
1139
+ 2023-07-24 09:05:44.706747: train_loss -0.7629
1140
+ 2023-07-24 09:05:44.706952: val_loss -0.4625
1141
+ 2023-07-24 09:05:44.707042: Pseudo dice [0.8698, 0.6773, 0.509]
1142
+ 2023-07-24 09:05:44.707127: Epoch time: 214.02 s
1143
+ 2023-07-24 09:05:48.504527:
1144
+ 2023-07-24 09:05:48.504706: Epoch 152
1145
+ 2023-07-24 09:05:48.504832: Current learning rate: 0.00862
1146
+ 2023-07-24 09:09:19.069351: train_loss -0.7578
1147
+ 2023-07-24 09:09:19.069588: val_loss -0.5
1148
+ 2023-07-24 09:09:19.069682: Pseudo dice [0.8778, 0.7217, 0.5765]
1149
+ 2023-07-24 09:09:19.069833: Epoch time: 210.57 s
1150
+ 2023-07-24 09:09:21.075281:
1151
+ 2023-07-24 09:09:21.075402: Epoch 153
1152
+ 2023-07-24 09:09:21.075518: Current learning rate: 0.00861
1153
+ 2023-07-24 09:12:58.820027: train_loss -0.7531
1154
+ 2023-07-24 09:12:58.826884: val_loss -0.4773
1155
+ 2023-07-24 09:12:58.827152: Pseudo dice [0.8738, 0.7111, 0.5466]
1156
+ 2023-07-24 09:12:58.827244: Epoch time: 217.75 s
1157
+ 2023-07-24 09:13:02.862645:
1158
+ 2023-07-24 09:13:02.862877: Epoch 154
1159
+ 2023-07-24 09:13:02.862992: Current learning rate: 0.0086
1160
+ 2023-07-24 09:16:28.130270: train_loss -0.7474
1161
+ 2023-07-24 09:16:28.130463: val_loss -0.4756
1162
+ 2023-07-24 09:16:28.130564: Pseudo dice [0.8795, 0.7165, 0.489]
1163
+ 2023-07-24 09:16:28.130655: Epoch time: 205.27 s
1164
+ 2023-07-24 09:16:30.896615:
1165
+ 2023-07-24 09:16:30.896794: Epoch 155
1166
+ 2023-07-24 09:16:30.896921: Current learning rate: 0.00859
1167
+ 2023-07-24 09:20:10.606297: train_loss -0.7662
1168
+ 2023-07-24 09:20:10.609706: val_loss -0.4819
1169
+ 2023-07-24 09:20:10.609968: Pseudo dice [0.8773, 0.711, 0.5174]
1170
+ 2023-07-24 09:20:10.610058: Epoch time: 219.71 s
1171
+ 2023-07-24 09:20:13.662477:
1172
+ 2023-07-24 09:20:13.662828: Epoch 156
1173
+ 2023-07-24 09:20:13.662953: Current learning rate: 0.00858
1174
+ 2023-07-24 09:23:55.274102: train_loss -0.7626
1175
+ 2023-07-24 09:23:55.274285: val_loss -0.4917
1176
+ 2023-07-24 09:23:55.274372: Pseudo dice [0.8786, 0.7163, 0.5242]
1177
+ 2023-07-24 09:23:55.274455: Epoch time: 221.61 s
1178
+ 2023-07-24 09:23:56.839917:
1179
+ 2023-07-24 09:23:56.840061: Epoch 157
1180
+ 2023-07-24 09:23:56.840175: Current learning rate: 0.00858
1181
+ 2023-07-24 09:27:20.148015: train_loss -0.7542
1182
+ 2023-07-24 09:27:20.148191: val_loss -0.5016
1183
+ 2023-07-24 09:27:20.148277: Pseudo dice [0.8869, 0.7229, 0.5561]
1184
+ 2023-07-24 09:27:20.148360: Epoch time: 203.31 s
1185
+ 2023-07-24 09:27:21.869529:
1186
+ 2023-07-24 09:27:21.869649: Epoch 158
1187
+ 2023-07-24 09:27:21.869765: Current learning rate: 0.00857
1188
+ 2023-07-24 09:30:58.994606: train_loss -0.7622
1189
+ 2023-07-24 09:30:58.994871: val_loss -0.4855
1190
+ 2023-07-24 09:30:58.994982: Pseudo dice [0.8842, 0.7165, 0.4867]
1191
+ 2023-07-24 09:30:58.995074: Epoch time: 217.13 s
1192
+ 2023-07-24 09:31:03.135907:
1193
+ 2023-07-24 09:31:03.136067: Epoch 159
1194
+ 2023-07-24 09:31:03.136214: Current learning rate: 0.00856
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/.ipynb_checkpoints/progress-checkpoint.png ADDED

Git LFS Details

  • SHA256: 8fc57b4caaa26cf16f39f128306a43910994edbe76b8c3ae7ccf055fd818ebf7
  • Pointer size: 131 Bytes
  • Size of remote file: 463 kB
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/Untitled.ipynb ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 7,
6
+ "id": "f69d6289-cca0-4546-baf8-c3e0bd052370",
7
+ "metadata": {},
8
+ "outputs": [
9
+ {
10
+ "name": "stdout",
11
+ "output_type": "stream",
12
+ "text": [
13
+ " \u001b[0m\u001b[01;34mProstate158\u001b[0m/ create_nnunet_dataset.py \u001b[01;34mnnUNet_results\u001b[0m/\n",
14
+ "'Untitled (2) (1) (2).ipynb' \u001b[01;34mnnUNet_preprocessed\u001b[0m/\n",
15
+ " Untitled.ipynb \u001b[01;34mnnUNet_raw\u001b[0m/\n"
16
+ ]
17
+ }
18
+ ],
19
+ "source": [
20
+ "ls"
21
+ ]
22
+ },
23
+ {
24
+ "cell_type": "code",
25
+ "execution_count": 5,
26
+ "id": "d358c520-7bfb-4846-a9a7-e01a151b6912",
27
+ "metadata": {},
28
+ "outputs": [
29
+ {
30
+ "name": "stderr",
31
+ "output_type": "stream",
32
+ "text": [
33
+ "/usr/local/lib/python3.10/dist-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
34
+ " from .autonotebook import tqdm as notebook_tqdm\n"
35
+ ]
36
+ },
37
+ {
38
+ "ename": "RepositoryNotFoundError",
39
+ "evalue": "404 Client Error. (Request ID: Root=1-64be540a-13608ebb4f5e72723d9907a8;bec748ef-4d79-4099-914c-5e806f83f5e0)\n\nRepository Not Found for url: https://huggingface.co/api/spaces/username/my-cool-space/preupload/main.\nPlease make sure you specified the correct `repo_id` and `repo_type`.\nIf you are trying to access a private or gated repo, make sure you are authenticated.\nNote: Creating a commit assumes that the repo already exists on the Huggingface Hub. Please use `create_repo` if it's not the case.",
40
+ "output_type": "error",
41
+ "traceback": [
42
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
43
+ "\u001b[0;31mHTTPError\u001b[0m Traceback (most recent call last)",
44
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py:261\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 261\u001b[0m \u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mraise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 262\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m HTTPError \u001b[38;5;28;01mas\u001b[39;00m e:\n",
45
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/requests/models.py:1021\u001b[0m, in \u001b[0;36mResponse.raise_for_status\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m http_error_msg:\n\u001b[0;32m-> 1021\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m HTTPError(http_error_msg, response\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m)\n",
46
+ "\u001b[0;31mHTTPError\u001b[0m: 404 Client Error: Not Found for url: https://huggingface.co/api/spaces/username/my-cool-space/preupload/main",
47
+ "\nThe above exception was the direct cause of the following exception:\n",
48
+ "\u001b[0;31mRepositoryNotFoundError\u001b[0m Traceback (most recent call last)",
49
+ "Cell \u001b[0;32mIn[5], line 6\u001b[0m\n\u001b[1;32m 2\u001b[0m api \u001b[38;5;241m=\u001b[39m HfApi()\n\u001b[1;32m 4\u001b[0m \u001b[38;5;66;03m# Upload all the content from the local folder to your remote Space.\u001b[39;00m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# By default, files are uploaded at the root of the repo\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m \u001b[43mapi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mupload_folder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43mfolder_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43musername/my-cool-space\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mspace\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 10\u001b[0m \u001b[43m)\u001b[49m\n",
50
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
51
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py:828\u001b[0m, in \u001b[0;36mfuture_compatible.<locals>._inner\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 825\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun_as_future(fn, \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 827\u001b[0m \u001b[38;5;66;03m# Otherwise, call the function normally\u001b[39;00m\n\u001b[0;32m--> 828\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
52
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py:3509\u001b[0m, in \u001b[0;36mHfApi.upload_folder\u001b[0;34m(self, repo_id, folder_path, path_in_repo, commit_message, commit_description, token, repo_type, revision, create_pr, parent_commit, allow_patterns, ignore_patterns, delete_patterns, multi_commits, multi_commits_verbose, run_as_future)\u001b[0m\n\u001b[1;32m 3497\u001b[0m pr_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcreate_commits_on_pr(\n\u001b[1;32m 3498\u001b[0m repo_id\u001b[38;5;241m=\u001b[39mrepo_id,\n\u001b[1;32m 3499\u001b[0m repo_type\u001b[38;5;241m=\u001b[39mrepo_type,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 3506\u001b[0m verbose\u001b[38;5;241m=\u001b[39mmulti_commits_verbose,\n\u001b[1;32m 3507\u001b[0m )\n\u001b[1;32m 3508\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 3509\u001b[0m commit_info \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_commit\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3510\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3511\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3512\u001b[0m \u001b[43m \u001b[49m\u001b[43moperations\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_operations\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3513\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_message\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_message\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3514\u001b[0m \u001b[43m \u001b[49m\u001b[43mcommit_description\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_description\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3515\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3516\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3517\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3518\u001b[0m \u001b[43m \u001b[49m\u001b[43mparent_commit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparent_commit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 3519\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3520\u001b[0m pr_url \u001b[38;5;241m=\u001b[39m commit_info\u001b[38;5;241m.\u001b[39mpr_url\n\u001b[1;32m 3522\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m create_pr \u001b[38;5;129;01mand\u001b[39;00m pr_url \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
53
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
54
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py:828\u001b[0m, in \u001b[0;36mfuture_compatible.<locals>._inner\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 825\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrun_as_future(fn, \u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 827\u001b[0m \u001b[38;5;66;03m# Otherwise, call the function normally\u001b[39;00m\n\u001b[0;32m--> 828\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
55
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py:2675\u001b[0m, in \u001b[0;36mHfApi.create_commit\u001b[0;34m(self, repo_id, operations, commit_message, commit_description, token, repo_type, revision, create_pr, num_threads, parent_commit, run_as_future)\u001b[0m\n\u001b[1;32m 2672\u001b[0m warn_on_overwriting_operations(operations)\n\u001b[1;32m 2674\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 2675\u001b[0m upload_modes \u001b[38;5;241m=\u001b[39m \u001b[43mfetch_upload_modes\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2676\u001b[0m \u001b[43m \u001b[49m\u001b[43madditions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madditions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2677\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2678\u001b[0m \u001b[43m \u001b[49m\u001b[43mrepo_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrepo_id\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2679\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2680\u001b[0m \u001b[43m \u001b[49m\u001b[43mrevision\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrevision\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2681\u001b[0m \u001b[43m \u001b[49m\u001b[43mendpoint\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mendpoint\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2682\u001b[0m \u001b[43m \u001b[49m\u001b[43mcreate_pr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_pr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2683\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2684\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m RepositoryNotFoundError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 2685\u001b[0m e\u001b[38;5;241m.\u001b[39mappend_to_message(_CREATE_COMMIT_NO_REPO_ERROR_MESSAGE)\n",
56
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py:118\u001b[0m, in \u001b[0;36mvalidate_hf_hub_args.<locals>._inner_fn\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m check_use_auth_token:\n\u001b[1;32m 116\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m smoothly_deprecate_use_auth_token(fn_name\u001b[38;5;241m=\u001b[39mfn\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m, has_token\u001b[38;5;241m=\u001b[39mhas_token, kwargs\u001b[38;5;241m=\u001b[39mkwargs)\n\u001b[0;32m--> 118\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
57
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/_commit_api.py:483\u001b[0m, in \u001b[0;36mfetch_upload_modes\u001b[0;34m(additions, repo_type, repo_id, token, revision, endpoint, create_pr)\u001b[0m\n\u001b[1;32m 465\u001b[0m payload \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m 466\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfiles\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\n\u001b[1;32m 467\u001b[0m {\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m ]\n\u001b[1;32m 475\u001b[0m }\n\u001b[1;32m 477\u001b[0m resp \u001b[38;5;241m=\u001b[39m get_session()\u001b[38;5;241m.\u001b[39mpost(\n\u001b[1;32m 478\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mendpoint\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m/api/\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrepo_type\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124ms/\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrepo_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m/preupload/\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mrevision\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 479\u001b[0m json\u001b[38;5;241m=\u001b[39mpayload,\n\u001b[1;32m 480\u001b[0m headers\u001b[38;5;241m=\u001b[39mheaders,\n\u001b[1;32m 481\u001b[0m params\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mcreate_pr\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m1\u001b[39m\u001b[38;5;124m\"\u001b[39m} \u001b[38;5;28;01mif\u001b[39;00m create_pr \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 482\u001b[0m )\n\u001b[0;32m--> 483\u001b[0m \u001b[43mhf_raise_for_status\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresp\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 484\u001b[0m preupload_info \u001b[38;5;241m=\u001b[39m _validate_preupload_info(resp\u001b[38;5;241m.\u001b[39mjson())\n\u001b[1;32m 485\u001b[0m upload_modes\u001b[38;5;241m.\u001b[39mupdate(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m{file[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpath\u001b[39m\u001b[38;5;124m\"\u001b[39m]: file[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muploadMode\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m file \u001b[38;5;129;01min\u001b[39;00m preupload_info[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfiles\u001b[39m\u001b[38;5;124m\"\u001b[39m]})\n",
58
+ "File \u001b[0;32m/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py:293\u001b[0m, in \u001b[0;36mhf_raise_for_status\u001b[0;34m(response, endpoint_name)\u001b[0m\n\u001b[1;32m 279\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m error_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRepoNotFound\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m response\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m401\u001b[39m:\n\u001b[1;32m 280\u001b[0m \u001b[38;5;66;03m# 401 is misleading as it is returned for:\u001b[39;00m\n\u001b[1;32m 281\u001b[0m \u001b[38;5;66;03m# - private and gated repos if user is not authenticated\u001b[39;00m\n\u001b[1;32m 282\u001b[0m \u001b[38;5;66;03m# - missing repos\u001b[39;00m\n\u001b[1;32m 283\u001b[0m \u001b[38;5;66;03m# => for now, we process them as `RepoNotFound` anyway.\u001b[39;00m\n\u001b[1;32m 284\u001b[0m \u001b[38;5;66;03m# See https://gist.github.com/Wauplin/46c27ad266b15998ce56a6603796f0b9\u001b[39;00m\n\u001b[1;32m 285\u001b[0m message \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 286\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m Client Error.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 287\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m make sure you are authenticated.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 292\u001b[0m )\n\u001b[0;32m--> 293\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m RepositoryNotFoundError(message, response) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01me\u001b[39;00m\n\u001b[1;32m 295\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m response\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m400\u001b[39m:\n\u001b[1;32m 296\u001b[0m message \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 297\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mBad request for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mendpoint_name\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m endpoint:\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m endpoint_name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124mBad request:\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 298\u001b[0m )\n",
59
+ "\u001b[0;31mRepositoryNotFoundError\u001b[0m: 404 Client Error. (Request ID: Root=1-64be540a-13608ebb4f5e72723d9907a8;bec748ef-4d79-4099-914c-5e806f83f5e0)\n\nRepository Not Found for url: https://huggingface.co/api/spaces/username/my-cool-space/preupload/main.\nPlease make sure you specified the correct `repo_id` and `repo_type`.\nIf you are trying to access a private or gated repo, make sure you are authenticated.\nNote: Creating a commit assumes that the repo already exists on the Huggingface Hub. Please use `create_repo` if it's not the case."
60
+ ]
61
+ }
62
+ ],
63
+ "source": [
64
+ "from huggingface_hub import HfApi\n",
65
+ "api = HfApi()\n",
66
+ "\n",
67
+ "api.create_repo(\n",
68
+ " repo_id=\"osbm/prostate158_nnUNet_results_3d_fullres2\",\n",
69
+ " repo_type=\"dataset\",\n",
70
+ " exist_ok=True,\n",
71
+ " private=False,\n",
72
+ ")\n",
73
+ "# Upload all the content from the local folder to your remote Space.\n",
74
+ "# By default, files are uploaded at the root of the repo\n",
75
+ "api.upload_folder(\n",
76
+ " folder_path=\"\",\n",
77
+ " repo_id=\"username/my-cool-space\",\n",
78
+ " repo_type=\"space\",\n",
79
+ ")"
80
+ ]
81
+ },
82
+ {
83
+ "cell_type": "code",
84
+ "execution_count": null,
85
+ "id": "9dc0670f-31b2-4b0d-b756-043b798d865e",
86
+ "metadata": {},
87
+ "outputs": [],
88
+ "source": []
89
+ }
90
+ ],
91
+ "metadata": {
92
+ "kernelspec": {
93
+ "display_name": "Python 3 (ipykernel)",
94
+ "language": "python",
95
+ "name": "python3"
96
+ },
97
+ "language_info": {
98
+ "codemirror_mode": {
99
+ "name": "ipython",
100
+ "version": 3
101
+ },
102
+ "file_extension": ".py",
103
+ "mimetype": "text/x-python",
104
+ "name": "python",
105
+ "nbconvert_exporter": "python",
106
+ "pygments_lexer": "ipython3",
107
+ "version": "3.10.6"
108
+ }
109
+ },
110
+ "nbformat": 4,
111
+ "nbformat_minor": 5
112
+ }
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/checkpoint_best.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b1c91cbd76cbc97c1a5c93420cf3496051fab1e0972623ab6a21416aab02550
3
+ size 356790417
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/debug.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_best_ema": "None",
3
+ "batch_size": "2",
4
+ "configuration_manager": "{'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}",
5
+ "configuration_name": "3d_fullres",
6
+ "cudnn_version": 8500,
7
+ "current_epoch": "0",
8
+ "dataloader_train": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f974c2f5780>",
9
+ "dataloader_train.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f974c2f5090>",
10
+ "dataloader_train.num_processes": "4",
11
+ "dataloader_train.transform": "Compose ( [Convert3DTo2DTransform( apply_to_keys = ('data', 'seg') ), SpatialTransform( independent_scale_for_each_axis = False, p_rot_per_sample = 0.2, p_scale_per_sample = 0.2, p_el_per_sample = 0, data_key = 'data', label_key = 'seg', patch_size = [256, 256], patch_center_dist_from_border = None, do_elastic_deform = False, alpha = (0, 0), sigma = (0, 0), do_rotation = True, angle_x = (-3.141592653589793, 3.141592653589793), angle_y = (0, 0), angle_z = (0, 0), do_scale = True, scale = (0.7, 1.4), border_mode_data = 'constant', border_cval_data = 0, order_data = 3, border_mode_seg = 'constant', border_cval_seg = -1, order_seg = 1, random_crop = False, p_rot_per_axis = 1, p_independent_scale_per_axis = 1 ), Convert2DTo3DTransform( apply_to_keys = ('data', 'seg') ), GaussianNoiseTransform( p_per_sample = 0.1, data_key = 'data', noise_variance = (0, 0.1), p_per_channel = 1, per_channel = False ), GaussianBlurTransform( p_per_sample = 0.2, different_sigma_per_channel = True, p_per_channel = 0.5, data_key = 'data', blur_sigma = (0.5, 1.0), different_sigma_per_axis = False, p_isotropic = 0 ), BrightnessMultiplicativeTransform( p_per_sample = 0.15, data_key = 'data', multiplier_range = (0.75, 1.25), per_channel = True ), ContrastAugmentationTransform( p_per_sample = 0.15, data_key = 'data', contrast_range = (0.75, 1.25), preserve_range = True, per_channel = True, p_per_channel = 1 ), SimulateLowResolutionTransform( order_upsample = 3, order_downsample = 0, channels = None, per_channel = True, p_per_channel = 0.5, p_per_sample = 0.25, data_key = 'data', zoom_range = (0.5, 1), ignore_axes = (0,) ), GammaTransform( p_per_sample = 0.1, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = True ), GammaTransform( p_per_sample = 0.3, retain_stats = True, per_channel = True, data_key = 'data', gamma_range = (0.7, 1.5), invert_image = False ), MirrorTransform( p_per_sample = 1, data_key = 'data', label_key = 'seg', axes = (0, 1, 2) ), RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
12
+ "dataloader_val": "<nnunetv2.training.data_augmentation.custom_transforms.limited_length_multithreaded_augmenter.LimitedLenWrapper object at 0x7f974c2f4880>",
13
+ "dataloader_val.generator": "<nnunetv2.training.dataloading.data_loader_3d.nnUNetDataLoader3D object at 0x7f974c2f4be0>",
14
+ "dataloader_val.num_processes": "2",
15
+ "dataloader_val.transform": "Compose ( [RemoveLabelTransform( output_key = 'seg', input_key = 'seg', replace_with = 0, remove_label = -1 ), RenameTransform( delete_old = True, out_key = 'target', in_key = 'seg' ), DownsampleSegForDSTransform2( axes = None, output_key = 'target', input_key = 'target', order = 0, ds_scales = [[1.0, 1.0, 1.0], [1.0, 0.5, 0.5], [1.0, 0.25, 0.25], [0.5, 0.125, 0.125], [0.25, 0.0625, 0.0625], [0.25, 0.03125, 0.03125]] ), NumpyToTensor( keys = ['data', 'target'], cast_to = 'float' )] )",
16
+ "dataset_json": "{'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}",
17
+ "device": "cuda:0",
18
+ "disable_checkpointing": "False",
19
+ "fold": "1",
20
+ "folder_with_segs_from_previous_stage": "None",
21
+ "gpu_name": "NVIDIA A10G",
22
+ "grad_scaler": "<torch.cuda.amp.grad_scaler.GradScaler object at 0x7f974d1d1a50>",
23
+ "hostname": "s-osbm-jupyter-f0b83-8689bbb555-5t6kn",
24
+ "inference_allowed_mirroring_axes": "(0, 1, 2)",
25
+ "initial_lr": "0.01",
26
+ "is_cascaded": "False",
27
+ "is_ddp": "False",
28
+ "label_manager": "<nnunetv2.utilities.label_handling.label_handling.LabelManager object at 0x7f974d1d1c00>",
29
+ "local_rank": "0",
30
+ "log_file": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_7_24_09_31_46.txt",
31
+ "logger": "<nnunetv2.training.logging.nnunet_logger.nnUNetLogger object at 0x7f974d1d1ae0>",
32
+ "loss": "DeepSupervisionWrapper(\n (loss): DC_and_CE_loss(\n (ce): RobustCrossEntropyLoss()\n (dc): MemoryEfficientSoftDiceLoss()\n )\n)",
33
+ "lr_scheduler": "<nnunetv2.training.lr_scheduler.polylr.PolyLRScheduler object at 0x7f974d1d1b40>",
34
+ "my_init_kwargs": "{'plans': {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}, 'configuration': '3d_fullres', 'fold': 1, 'dataset_json': {'name': 'Prostate158', 'description': 'Prostate cancer segmentation dataset', 'channel_names': {'0': 'T2', '1': 'ADC', '2': 'DFI'}, 'labels': {'background': 0, 'prostate_inner': 1, 'prostate_outer': 2, 'tumor': 3}, 'numTraining': 139, 'numTest': 19, 'file_ending': '.nii.gz'}, 'unpack_dataset': True, 'device': device(type='cuda')}",
35
+ "network": "PlainConvUNet",
36
+ "num_epochs": "1000",
37
+ "num_input_channels": "3",
38
+ "num_iterations_per_epoch": "250",
39
+ "num_val_iterations_per_epoch": "50",
40
+ "optimizer": "SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n initial_lr: 0.01\n lr: 0.01\n maximize: False\n momentum: 0.99\n nesterov: True\n weight_decay: 3e-05\n)",
41
+ "output_folder": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1",
42
+ "output_folder_base": "nnUNet_results/Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres",
43
+ "oversample_foreground_percent": "0.33",
44
+ "plans_manager": "{'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'configurations': {'2d': {'data_identifier': 'nnUNetPlans_2d', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 31, 'patch_size': [320, 320], 'median_image_size_in_voxels': [270.0, 270.0], 'spacing': [0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [6, 6], 'pool_op_kernel_sizes': [[1, 1], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]], 'conv_kernel_sizes': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3], [3, 3]], 'unet_max_num_features': 512, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': True}, '3d_fullres': {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}}, 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}",
45
+ "preprocessed_dataset_folder": "nnUNet_preprocessed/Dataset001_Prostate158/nnUNetPlans_3d_fullres",
46
+ "preprocessed_dataset_folder_base": "nnUNet_preprocessed/Dataset001_Prostate158",
47
+ "save_every": "50",
48
+ "torch_version": "2.0.1+cu117",
49
+ "unpack_dataset": "True",
50
+ "was_initialized": "True",
51
+ "weight_decay": "3e-05"
52
+ }
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/progress.png ADDED

Git LFS Details

  • SHA256: 05023ef21b368b31d2fe9a7dc0cbaf5e216e7d6e9e31c2c5237409409428e3e4
  • Pointer size: 131 Bytes
  • Size of remote file: 530 kB
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/fold_1/training_log_2023_7_24_09_31_46.txt ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ #######################################################################
3
+ Please cite the following paper when using nnU-Net:
4
+ Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
5
+ #######################################################################
6
+
7
+
8
+ This is the configuration used by this training:
9
+ Configuration name: 3d_fullres
10
+ {'data_identifier': 'nnUNetPlans_3d_fullres', 'preprocessor_name': 'DefaultPreprocessor', 'batch_size': 2, 'patch_size': [28, 256, 256], 'median_image_size_in_voxels': [25.0, 270.0, 270.0], 'spacing': [2.999998998641968, 0.4017857015132904, 0.4017857015132904], 'normalization_schemes': ['ZScoreNormalization', 'ZScoreNormalization', 'ZScoreNormalization'], 'use_mask_for_norm': [False, False, False], 'UNet_class_name': 'PlainConvUNet', 'UNet_base_num_features': 32, 'n_conv_per_stage_encoder': [2, 2, 2, 2, 2, 2, 2], 'n_conv_per_stage_decoder': [2, 2, 2, 2, 2, 2], 'num_pool_per_axis': [2, 6, 6], 'pool_op_kernel_sizes': [[1, 1, 1], [1, 2, 2], [1, 2, 2], [2, 2, 2], [2, 2, 2], [1, 2, 2], [1, 2, 2]], 'conv_kernel_sizes': [[1, 3, 3], [1, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]], 'unet_max_num_features': 320, 'resampling_fn_data': 'resample_data_or_seg_to_shape', 'resampling_fn_seg': 'resample_data_or_seg_to_shape', 'resampling_fn_data_kwargs': {'is_seg': False, 'order': 3, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_seg_kwargs': {'is_seg': True, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'resampling_fn_probabilities': 'resample_data_or_seg_to_shape', 'resampling_fn_probabilities_kwargs': {'is_seg': False, 'order': 1, 'order_z': 0, 'force_separate_z': None}, 'batch_dice': False}
11
+
12
+ These are the global plan.json settings:
13
+ {'dataset_name': 'Dataset001_Prostate158', 'plans_name': 'nnUNetPlans', 'original_median_spacing_after_transp': [3.0, 0.4017857015132904, 0.4017857015132904], 'original_median_shape_after_transp': [25, 270, 270], 'image_reader_writer': 'SimpleITKIO', 'transpose_forward': [0, 1, 2], 'transpose_backward': [0, 1, 2], 'experiment_planner_used': 'ExperimentPlanner', 'label_manager': 'LabelManager', 'foreground_intensity_properties_per_channel': {'0': {'max': 1694.0, 'mean': 267.35308837890625, 'median': 242.0, 'min': 0.0, 'percentile_00_5': 36.0, 'percentile_99_5': 768.0, 'std': 136.11251831054688}, '1': {'max': 3557.286865234375, 'mean': 1215.81591796875, 'median': 1203.8331298828125, 'min': 0.0, 'percentile_00_5': 0.0, 'percentile_99_5': 2259.82861328125, 'std': 338.6748352050781}, '2': {'max': 198.95455932617188, 'mean': 72.26309204101562, 'median': 70.3214340209961, 'min': 0.0, 'percentile_00_5': 34.534385681152344, 'percentile_99_5': 132.71939086914062, 'std': 18.909290313720703}}}
14
+
15
+ 2023-07-24 09:31:48.662707: unpacking dataset...
16
+ 2023-07-24 09:31:51.254056: unpacking done...
17
+ 2023-07-24 09:31:51.254646: do_dummy_2d_data_aug: True
18
+ 2023-07-24 09:31:51.255391: Using splits from existing split file: nnUNet_preprocessed/Dataset001_Prostate158/splits_final.json
19
+ 2023-07-24 09:31:51.255736: The split file contains 5 splits.
20
+ 2023-07-24 09:31:51.255795: Desired fold for training: 1
21
+ 2023-07-24 09:31:51.255847: This split has 111 training and 28 validation cases.
22
+ 2023-07-24 09:31:55.429484: Unable to plot network architecture:
23
+ 2023-07-24 09:31:55.429709: module 'torch.onnx' has no attribute '_optimize_trace'
24
+ 2023-07-24 09:31:55.479973:
25
+ 2023-07-24 09:31:55.480082: Epoch 0
26
+ 2023-07-24 09:31:55.480217: Current learning rate: 0.01
27
+ 2023-07-24 09:35:51.149318: train_loss -0.0686
28
+ 2023-07-24 09:35:51.149595: val_loss -0.1977
29
+ 2023-07-24 09:35:51.149694: Pseudo dice [0.6772, 0.3986, 0.0]
30
+ 2023-07-24 09:35:51.149858: Epoch time: 235.67 s
31
+ 2023-07-24 09:35:51.149975: Yayy! New best EMA pseudo Dice: 0.3586
32
+ 2023-07-24 09:35:52.944725:
33
+ 2023-07-24 09:35:52.944855: Epoch 1
34
+ 2023-07-24 09:35:52.945019: Current learning rate: 0.00999
35
+ 2023-07-24 09:39:26.457915: train_loss -0.2509
36
+ 2023-07-24 09:39:26.458209: val_loss -0.2695
37
+ 2023-07-24 09:39:26.458309: Pseudo dice [0.7352, 0.5579, 0.0]
38
+ 2023-07-24 09:39:26.458386: Epoch time: 213.51 s
39
+ 2023-07-24 09:39:26.458445: Yayy! New best EMA pseudo Dice: 0.3658
40
+ 2023-07-24 09:39:30.325983:
41
+ 2023-07-24 09:39:30.326120: Epoch 2
42
+ 2023-07-24 09:39:30.326235: Current learning rate: 0.00998
43
+ 2023-07-24 09:42:59.369360: train_loss -0.3283
44
+ 2023-07-24 09:42:59.369581: val_loss -0.2917
45
+ 2023-07-24 09:42:59.369678: Pseudo dice [0.7702, 0.5453, 0.0]
46
+ 2023-07-24 09:42:59.369768: Epoch time: 209.04 s
47
+ 2023-07-24 09:42:59.369841: Yayy! New best EMA pseudo Dice: 0.3731
48
+ 2023-07-24 09:43:02.898393:
49
+ 2023-07-24 09:43:02.898701: Epoch 3
50
+ 2023-07-24 09:43:02.898844: Current learning rate: 0.00997
51
+ 2023-07-24 09:46:30.423032: train_loss -0.3623
52
+ 2023-07-24 09:46:30.423313: val_loss -0.362
53
+ 2023-07-24 09:46:30.423406: Pseudo dice [0.8084, 0.6354, 0.0]
54
+ 2023-07-24 09:46:30.423570: Epoch time: 207.53 s
55
+ 2023-07-24 09:46:30.423706: Yayy! New best EMA pseudo Dice: 0.3839
56
+ 2023-07-24 09:46:32.679859:
57
+ 2023-07-24 09:46:32.679986: Epoch 4
58
+ 2023-07-24 09:46:32.680083: Current learning rate: 0.00996
59
+ 2023-07-24 09:50:16.112560: train_loss -0.4055
60
+ 2023-07-24 09:50:16.112745: val_loss -0.3814
61
+ 2023-07-24 09:50:16.112836: Pseudo dice [0.8423, 0.6152, 0.3433]
62
+ 2023-07-24 09:50:16.112920: Epoch time: 223.43 s
63
+ 2023-07-24 09:50:16.112987: Yayy! New best EMA pseudo Dice: 0.4056
64
+ 2023-07-24 09:50:18.759251:
65
+ 2023-07-24 09:50:18.759383: Epoch 5
66
+ 2023-07-24 09:50:18.759503: Current learning rate: 0.00995
67
+ 2023-07-24 09:53:41.007815: train_loss -0.4426
68
+ 2023-07-24 09:53:41.007999: val_loss -0.4302
69
+ 2023-07-24 09:53:41.008113: Pseudo dice [0.8359, 0.6439, 0.4462]
70
+ 2023-07-24 09:53:41.008215: Epoch time: 202.25 s
71
+ 2023-07-24 09:53:41.008303: Yayy! New best EMA pseudo Dice: 0.4292
72
+ 2023-07-24 09:53:43.767199:
73
+ 2023-07-24 09:53:43.767324: Epoch 6
74
+ 2023-07-24 09:53:43.767419: Current learning rate: 0.00995
75
+ 2023-07-24 09:57:16.562120: train_loss -0.4301
76
+ 2023-07-24 09:57:16.562339: val_loss -0.4084
77
+ 2023-07-24 09:57:16.562424: Pseudo dice [0.8011, 0.6376, 0.48]
78
+ 2023-07-24 09:57:16.562501: Epoch time: 212.8 s
79
+ 2023-07-24 09:57:16.562591: Yayy! New best EMA pseudo Dice: 0.4502
80
+ 2023-07-24 09:57:19.469062:
81
+ 2023-07-24 09:57:19.469288: Epoch 7
82
+ 2023-07-24 09:57:19.469407: Current learning rate: 0.00994
83
+ 2023-07-24 10:00:48.194506: train_loss -0.4578
84
+ 2023-07-24 10:00:48.194689: val_loss -0.4189
85
+ 2023-07-24 10:00:48.194808: Pseudo dice [0.8137, 0.6457, 0.4479]
86
+ 2023-07-24 10:00:48.194900: Epoch time: 208.73 s
87
+ 2023-07-24 10:00:48.194967: Yayy! New best EMA pseudo Dice: 0.4688
88
+ 2023-07-24 10:00:52.373474:
89
+ 2023-07-24 10:00:52.373721: Epoch 8
90
+ 2023-07-24 10:00:52.373865: Current learning rate: 0.00993
91
+ 2023-07-24 10:04:19.517230: train_loss -0.498
92
+ 2023-07-24 10:04:19.517421: val_loss -0.4187
93
+ 2023-07-24 10:04:19.517504: Pseudo dice [0.8555, 0.6358, 0.3124]
94
+ 2023-07-24 10:04:19.517583: Epoch time: 207.15 s
95
+ 2023-07-24 10:04:19.517648: Yayy! New best EMA pseudo Dice: 0.482
96
+ 2023-07-24 10:04:21.806987:
97
+ 2023-07-24 10:04:21.807117: Epoch 9
98
+ 2023-07-24 10:04:21.807218: Current learning rate: 0.00992
99
+ 2023-07-24 10:07:51.359195: train_loss -0.5027
100
+ 2023-07-24 10:07:51.370858: val_loss -0.4306
101
+ 2023-07-24 10:07:51.371073: Pseudo dice [0.8521, 0.6531, 0.3801]
102
+ 2023-07-24 10:07:51.371159: Epoch time: 209.55 s
103
+ 2023-07-24 10:07:51.371223: Yayy! New best EMA pseudo Dice: 0.4967
104
+ 2023-07-24 10:07:54.287527:
105
+ 2023-07-24 10:07:54.287659: Epoch 10
106
+ 2023-07-24 10:07:54.287776: Current learning rate: 0.00991
107
+ 2023-07-24 10:11:21.020047: train_loss -0.5007
108
+ 2023-07-24 10:11:21.020299: val_loss -0.4555
109
+ 2023-07-24 10:11:21.020390: Pseudo dice [0.8525, 0.6574, 0.5038]
110
+ 2023-07-24 10:11:21.020547: Epoch time: 206.73 s
111
+ 2023-07-24 10:11:21.020615: Yayy! New best EMA pseudo Dice: 0.5141
112
+ 2023-07-24 10:11:23.595996:
113
+ 2023-07-24 10:11:23.596125: Epoch 11
114
+ 2023-07-24 10:11:23.596240: Current learning rate: 0.0099
115
+ 2023-07-24 10:14:50.060935: train_loss -0.5114
116
+ 2023-07-24 10:14:50.061202: val_loss -0.4435
117
+ 2023-07-24 10:14:50.061292: Pseudo dice [0.8367, 0.6786, 0.3972]
118
+ 2023-07-24 10:14:50.061454: Epoch time: 206.47 s
119
+ 2023-07-24 10:14:50.061521: Yayy! New best EMA pseudo Dice: 0.5265
120
+ 2023-07-24 10:14:54.044929:
121
+ 2023-07-24 10:14:54.045076: Epoch 12
122
+ 2023-07-24 10:14:54.045194: Current learning rate: 0.00989
123
+ 2023-07-24 10:18:35.033546: train_loss -0.5262
124
+ 2023-07-24 10:18:35.033730: val_loss -0.4482
125
+ 2023-07-24 10:18:35.033818: Pseudo dice [0.8485, 0.6596, 0.5738]
126
+ 2023-07-24 10:18:35.033900: Epoch time: 220.99 s
127
+ 2023-07-24 10:18:35.033965: Yayy! New best EMA pseudo Dice: 0.5432
128
+ 2023-07-24 10:18:37.229037:
129
+ 2023-07-24 10:18:37.229155: Epoch 13
130
+ 2023-07-24 10:18:37.229270: Current learning rate: 0.00988
131
+ 2023-07-24 10:22:07.718349: train_loss -0.5297
132
+ 2023-07-24 10:22:07.718728: val_loss -0.4473
133
+ 2023-07-24 10:22:07.718979: Pseudo dice [0.8557, 0.6552, 0.5333]
134
+ 2023-07-24 10:22:07.719130: Epoch time: 210.49 s
135
+ 2023-07-24 10:22:07.719215: Yayy! New best EMA pseudo Dice: 0.557
136
+ 2023-07-24 10:22:12.377048:
137
+ 2023-07-24 10:22:12.377682: Epoch 14
138
+ 2023-07-24 10:22:12.377826: Current learning rate: 0.00987
139
+ 2023-07-24 10:25:35.042624: train_loss -0.544
140
+ 2023-07-24 10:25:35.042880: val_loss -0.4672
141
+ 2023-07-24 10:25:35.042980: Pseudo dice [0.8415, 0.6909, 0.5861]
142
+ 2023-07-24 10:25:35.043072: Epoch time: 202.67 s
143
+ 2023-07-24 10:25:35.043142: Yayy! New best EMA pseudo Dice: 0.5719
144
+ 2023-07-24 10:25:39.141425:
145
+ 2023-07-24 10:25:39.141566: Epoch 15
146
+ 2023-07-24 10:25:39.141699: Current learning rate: 0.00986
147
+ 2023-07-24 10:29:17.006086: train_loss -0.536
148
+ 2023-07-24 10:29:17.006276: val_loss -0.458
149
+ 2023-07-24 10:29:17.006367: Pseudo dice [0.8684, 0.6802, 0.4725]
150
+ 2023-07-24 10:29:17.006453: Epoch time: 217.87 s
151
+ 2023-07-24 10:29:17.006521: Yayy! New best EMA pseudo Dice: 0.5821
152
+ 2023-07-24 10:29:19.086107:
153
+ 2023-07-24 10:29:19.086326: Epoch 16
154
+ 2023-07-24 10:29:19.086447: Current learning rate: 0.00986
155
+ 2023-07-24 10:32:52.937337: train_loss -0.5573
156
+ 2023-07-24 10:32:52.937526: val_loss -0.4805
157
+ 2023-07-24 10:32:52.937625: Pseudo dice [0.8545, 0.6796, 0.6108]
158
+ 2023-07-24 10:32:52.937717: Epoch time: 213.85 s
159
+ 2023-07-24 10:32:52.937808: Yayy! New best EMA pseudo Dice: 0.5954
160
+ 2023-07-24 10:32:55.486784:
161
+ 2023-07-24 10:32:55.486909: Epoch 17
162
+ 2023-07-24 10:32:55.487025: Current learning rate: 0.00985
163
+ 2023-07-24 10:36:29.203138: train_loss -0.5585
164
+ 2023-07-24 10:36:29.203351: val_loss -0.4583
165
+ 2023-07-24 10:36:29.203443: Pseudo dice [0.8662, 0.6791, 0.4972]
166
+ 2023-07-24 10:36:29.203535: Epoch time: 213.72 s
167
+ 2023-07-24 10:36:29.203619: Yayy! New best EMA pseudo Dice: 0.604
168
+ 2023-07-24 10:36:34.055434:
169
+ 2023-07-24 10:36:34.055742: Epoch 18
170
+ 2023-07-24 10:36:34.055855: Current learning rate: 0.00984
Dataset001_Prostate158/nnUNetTrainer__nnUNetPlans__3d_fullres/plans.json ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "dataset_name": "Dataset001_Prostate158",
3
+ "plans_name": "nnUNetPlans",
4
+ "original_median_spacing_after_transp": [
5
+ 3.0,
6
+ 0.4017857015132904,
7
+ 0.4017857015132904
8
+ ],
9
+ "original_median_shape_after_transp": [
10
+ 25,
11
+ 270,
12
+ 270
13
+ ],
14
+ "image_reader_writer": "SimpleITKIO",
15
+ "transpose_forward": [
16
+ 0,
17
+ 1,
18
+ 2
19
+ ],
20
+ "transpose_backward": [
21
+ 0,
22
+ 1,
23
+ 2
24
+ ],
25
+ "configurations": {
26
+ "2d": {
27
+ "data_identifier": "nnUNetPlans_2d",
28
+ "preprocessor_name": "DefaultPreprocessor",
29
+ "batch_size": 31,
30
+ "patch_size": [
31
+ 320,
32
+ 320
33
+ ],
34
+ "median_image_size_in_voxels": [
35
+ 270.0,
36
+ 270.0
37
+ ],
38
+ "spacing": [
39
+ 0.4017857015132904,
40
+ 0.4017857015132904
41
+ ],
42
+ "normalization_schemes": [
43
+ "ZScoreNormalization",
44
+ "ZScoreNormalization",
45
+ "ZScoreNormalization"
46
+ ],
47
+ "use_mask_for_norm": [
48
+ false,
49
+ false,
50
+ false
51
+ ],
52
+ "UNet_class_name": "PlainConvUNet",
53
+ "UNet_base_num_features": 32,
54
+ "n_conv_per_stage_encoder": [
55
+ 2,
56
+ 2,
57
+ 2,
58
+ 2,
59
+ 2,
60
+ 2,
61
+ 2
62
+ ],
63
+ "n_conv_per_stage_decoder": [
64
+ 2,
65
+ 2,
66
+ 2,
67
+ 2,
68
+ 2,
69
+ 2
70
+ ],
71
+ "num_pool_per_axis": [
72
+ 6,
73
+ 6
74
+ ],
75
+ "pool_op_kernel_sizes": [
76
+ [
77
+ 1,
78
+ 1
79
+ ],
80
+ [
81
+ 2,
82
+ 2
83
+ ],
84
+ [
85
+ 2,
86
+ 2
87
+ ],
88
+ [
89
+ 2,
90
+ 2
91
+ ],
92
+ [
93
+ 2,
94
+ 2
95
+ ],
96
+ [
97
+ 2,
98
+ 2
99
+ ],
100
+ [
101
+ 2,
102
+ 2
103
+ ]
104
+ ],
105
+ "conv_kernel_sizes": [
106
+ [
107
+ 3,
108
+ 3
109
+ ],
110
+ [
111
+ 3,
112
+ 3
113
+ ],
114
+ [
115
+ 3,
116
+ 3
117
+ ],
118
+ [
119
+ 3,
120
+ 3
121
+ ],
122
+ [
123
+ 3,
124
+ 3
125
+ ],
126
+ [
127
+ 3,
128
+ 3
129
+ ],
130
+ [
131
+ 3,
132
+ 3
133
+ ]
134
+ ],
135
+ "unet_max_num_features": 512,
136
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
137
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
138
+ "resampling_fn_data_kwargs": {
139
+ "is_seg": false,
140
+ "order": 3,
141
+ "order_z": 0,
142
+ "force_separate_z": null
143
+ },
144
+ "resampling_fn_seg_kwargs": {
145
+ "is_seg": true,
146
+ "order": 1,
147
+ "order_z": 0,
148
+ "force_separate_z": null
149
+ },
150
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
151
+ "resampling_fn_probabilities_kwargs": {
152
+ "is_seg": false,
153
+ "order": 1,
154
+ "order_z": 0,
155
+ "force_separate_z": null
156
+ },
157
+ "batch_dice": true
158
+ },
159
+ "3d_fullres": {
160
+ "data_identifier": "nnUNetPlans_3d_fullres",
161
+ "preprocessor_name": "DefaultPreprocessor",
162
+ "batch_size": 2,
163
+ "patch_size": [
164
+ 28,
165
+ 256,
166
+ 256
167
+ ],
168
+ "median_image_size_in_voxels": [
169
+ 25.0,
170
+ 270.0,
171
+ 270.0
172
+ ],
173
+ "spacing": [
174
+ 2.999998998641968,
175
+ 0.4017857015132904,
176
+ 0.4017857015132904
177
+ ],
178
+ "normalization_schemes": [
179
+ "ZScoreNormalization",
180
+ "ZScoreNormalization",
181
+ "ZScoreNormalization"
182
+ ],
183
+ "use_mask_for_norm": [
184
+ false,
185
+ false,
186
+ false
187
+ ],
188
+ "UNet_class_name": "PlainConvUNet",
189
+ "UNet_base_num_features": 32,
190
+ "n_conv_per_stage_encoder": [
191
+ 2,
192
+ 2,
193
+ 2,
194
+ 2,
195
+ 2,
196
+ 2,
197
+ 2
198
+ ],
199
+ "n_conv_per_stage_decoder": [
200
+ 2,
201
+ 2,
202
+ 2,
203
+ 2,
204
+ 2,
205
+ 2
206
+ ],
207
+ "num_pool_per_axis": [
208
+ 2,
209
+ 6,
210
+ 6
211
+ ],
212
+ "pool_op_kernel_sizes": [
213
+ [
214
+ 1,
215
+ 1,
216
+ 1
217
+ ],
218
+ [
219
+ 1,
220
+ 2,
221
+ 2
222
+ ],
223
+ [
224
+ 1,
225
+ 2,
226
+ 2
227
+ ],
228
+ [
229
+ 2,
230
+ 2,
231
+ 2
232
+ ],
233
+ [
234
+ 2,
235
+ 2,
236
+ 2
237
+ ],
238
+ [
239
+ 1,
240
+ 2,
241
+ 2
242
+ ],
243
+ [
244
+ 1,
245
+ 2,
246
+ 2
247
+ ]
248
+ ],
249
+ "conv_kernel_sizes": [
250
+ [
251
+ 1,
252
+ 3,
253
+ 3
254
+ ],
255
+ [
256
+ 1,
257
+ 3,
258
+ 3
259
+ ],
260
+ [
261
+ 3,
262
+ 3,
263
+ 3
264
+ ],
265
+ [
266
+ 3,
267
+ 3,
268
+ 3
269
+ ],
270
+ [
271
+ 3,
272
+ 3,
273
+ 3
274
+ ],
275
+ [
276
+ 3,
277
+ 3,
278
+ 3
279
+ ],
280
+ [
281
+ 3,
282
+ 3,
283
+ 3
284
+ ]
285
+ ],
286
+ "unet_max_num_features": 320,
287
+ "resampling_fn_data": "resample_data_or_seg_to_shape",
288
+ "resampling_fn_seg": "resample_data_or_seg_to_shape",
289
+ "resampling_fn_data_kwargs": {
290
+ "is_seg": false,
291
+ "order": 3,
292
+ "order_z": 0,
293
+ "force_separate_z": null
294
+ },
295
+ "resampling_fn_seg_kwargs": {
296
+ "is_seg": true,
297
+ "order": 1,
298
+ "order_z": 0,
299
+ "force_separate_z": null
300
+ },
301
+ "resampling_fn_probabilities": "resample_data_or_seg_to_shape",
302
+ "resampling_fn_probabilities_kwargs": {
303
+ "is_seg": false,
304
+ "order": 1,
305
+ "order_z": 0,
306
+ "force_separate_z": null
307
+ },
308
+ "batch_dice": false
309
+ }
310
+ },
311
+ "experiment_planner_used": "ExperimentPlanner",
312
+ "label_manager": "LabelManager",
313
+ "foreground_intensity_properties_per_channel": {
314
+ "0": {
315
+ "max": 1694.0,
316
+ "mean": 267.35308837890625,
317
+ "median": 242.0,
318
+ "min": 0.0,
319
+ "percentile_00_5": 36.0,
320
+ "percentile_99_5": 768.0,
321
+ "std": 136.11251831054688
322
+ },
323
+ "1": {
324
+ "max": 3557.286865234375,
325
+ "mean": 1215.81591796875,
326
+ "median": 1203.8331298828125,
327
+ "min": 0.0,
328
+ "percentile_00_5": 0.0,
329
+ "percentile_99_5": 2259.82861328125,
330
+ "std": 338.6748352050781
331
+ },
332
+ "2": {
333
+ "max": 198.95455932617188,
334
+ "mean": 72.26309204101562,
335
+ "median": 70.3214340209961,
336
+ "min": 0.0,
337
+ "percentile_00_5": 34.534385681152344,
338
+ "percentile_99_5": 132.71939086914062,
339
+ "std": 18.909290313720703
340
+ }
341
+ }
342
+ }