osbm commited on
Commit
44466c0
·
verified ·
1 Parent(s): 0921e93

Upload 693 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/MLmodel +21 -0
  2. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/conda.yaml +17 -0
  3. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/model.pth +3 -0
  4. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/pickle_module_info.txt +1 -0
  5. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/MLmodel +21 -0
  6. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/conda.yaml +17 -0
  7. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/python_env.yaml +7 -0
  8. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/requirements.txt +10 -0
  9. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/python_env.yaml +7 -0
  10. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/requirements.txt +10 -0
  11. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/MLmodel +21 -0
  12. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/conda.yaml +17 -0
  13. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/model.pth +3 -0
  14. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/pickle_module_info.txt +1 -0
  15. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/MLmodel +21 -0
  16. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/conda.yaml +17 -0
  17. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/python_env.yaml +7 -0
  18. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/requirements.txt +10 -0
  19. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/python_env.yaml +7 -0
  20. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/requirements.txt +10 -0
  21. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/MLmodel +21 -0
  22. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/conda.yaml +17 -0
  23. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/model.pth +3 -0
  24. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/pickle_module_info.txt +1 -0
  25. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/MLmodel +21 -0
  26. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/conda.yaml +17 -0
  27. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/python_env.yaml +7 -0
  28. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/requirements.txt +10 -0
  29. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/python_env.yaml +7 -0
  30. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/requirements.txt +10 -0
  31. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/confusion_matrix.png +3 -0
  32. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/data.csv +0 -0
  33. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/history.csv +3 -0
  34. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/train_model.py +275 -0
  35. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/meta.yaml +15 -0
  36. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/cpu_utilization_percentage +21 -0
  37. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_available_megabytes +21 -0
  38. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_megabytes +21 -0
  39. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_percentage +21 -0
  40. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_megabytes +21 -0
  41. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_percentage +21 -0
  42. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_percentage +21 -0
  43. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_watts +21 -0
  44. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_utilization_percentage +21 -0
  45. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_receive_megabytes +21 -0
  46. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_transmit_megabytes +21 -0
  47. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_megabytes +21 -0
  48. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_percentage +21 -0
  49. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_accuracy +2 -0
  50. mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_f1 +2 -0
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/MLmodel ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_accuracy
2
+ flavors:
3
+ python_function:
4
+ config:
5
+ device: null
6
+ data: data
7
+ env:
8
+ conda: conda.yaml
9
+ virtualenv: python_env.yaml
10
+ loader_module: mlflow.pytorch
11
+ pickle_module_name: mlflow.pytorch.pickle_module
12
+ python_version: 3.12.2
13
+ pytorch:
14
+ code: null
15
+ model_data: data
16
+ pytorch_version: 2.3.0+cu121
17
+ mlflow_version: 2.12.2
18
+ model_size_bytes: 94368710
19
+ model_uuid: 553bd7634b7b4386a4ad9f80f7e66a32
20
+ run_id: 10cda43e9e42477388168fb0c51964bb
21
+ utc_time_created: '2024-05-19 22:24:47.347724'
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/conda.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.12.2
5
+ - pip<=24.0
6
+ - pip:
7
+ - mlflow==2.12.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.4
10
+ - packaging==24.0
11
+ - pandas==2.2.2
12
+ - pynvml==11.5.0
13
+ - pyyaml==6.0.1
14
+ - torch==2.3.0
15
+ - torchvision==0.18.0
16
+ - tqdm==4.66.4
17
+ name: mlflow-env
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d7463d94d00a5f0337203d2f3c2cb763f37ee6476c457bf67091f41e237527b
3
+ size 94368682
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/pickle_module_info.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ mlflow.pytorch.pickle_module
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/MLmodel ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_accuracy
2
+ flavors:
3
+ python_function:
4
+ config:
5
+ device: null
6
+ data: data
7
+ env:
8
+ conda: conda.yaml
9
+ virtualenv: python_env.yaml
10
+ loader_module: mlflow.pytorch
11
+ pickle_module_name: mlflow.pytorch.pickle_module
12
+ python_version: 3.12.2
13
+ pytorch:
14
+ code: null
15
+ model_data: data
16
+ pytorch_version: 2.3.0+cu121
17
+ mlflow_version: 2.12.2
18
+ model_size_bytes: 94368710
19
+ model_uuid: 553bd7634b7b4386a4ad9f80f7e66a32
20
+ run_id: 10cda43e9e42477388168fb0c51964bb
21
+ utc_time_created: '2024-05-19 22:24:47.347724'
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/conda.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.12.2
5
+ - pip<=24.0
6
+ - pip:
7
+ - mlflow==2.12.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.4
10
+ - packaging==24.0
11
+ - pandas==2.2.2
12
+ - pynvml==11.5.0
13
+ - pyyaml==6.0.1
14
+ - torch==2.3.0
15
+ - torchvision==0.18.0
16
+ - tqdm==4.66.4
17
+ name: mlflow-env
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.12.2
2
+ build_dependencies:
3
+ - pip==24.0
4
+ - setuptools==69.5.1
5
+ - wheel
6
+ dependencies:
7
+ - -r requirements.txt
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.12.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.4
4
+ packaging==24.0
5
+ pandas==2.2.2
6
+ pynvml==11.5.0
7
+ pyyaml==6.0.1
8
+ torch==2.3.0
9
+ torchvision==0.18.0
10
+ tqdm==4.66.4
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.12.2
2
+ build_dependencies:
3
+ - pip==24.0
4
+ - setuptools==69.5.1
5
+ - wheel
6
+ dependencies:
7
+ - -r requirements.txt
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.12.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.4
4
+ packaging==24.0
5
+ pandas==2.2.2
6
+ pynvml==11.5.0
7
+ pyyaml==6.0.1
8
+ torch==2.3.0
9
+ torchvision==0.18.0
10
+ tqdm==4.66.4
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/MLmodel ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_f1
2
+ flavors:
3
+ python_function:
4
+ config:
5
+ device: null
6
+ data: data
7
+ env:
8
+ conda: conda.yaml
9
+ virtualenv: python_env.yaml
10
+ loader_module: mlflow.pytorch
11
+ pickle_module_name: mlflow.pytorch.pickle_module
12
+ python_version: 3.12.2
13
+ pytorch:
14
+ code: null
15
+ model_data: data
16
+ pytorch_version: 2.3.0+cu121
17
+ mlflow_version: 2.12.2
18
+ model_size_bytes: 94368710
19
+ model_uuid: 7fef7485907c45bd93d5b9645fc18f72
20
+ run_id: 10cda43e9e42477388168fb0c51964bb
21
+ utc_time_created: '2024-05-19 22:24:45.499065'
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/conda.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.12.2
5
+ - pip<=24.0
6
+ - pip:
7
+ - mlflow==2.12.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.4
10
+ - packaging==24.0
11
+ - pandas==2.2.2
12
+ - pynvml==11.5.0
13
+ - pyyaml==6.0.1
14
+ - torch==2.3.0
15
+ - torchvision==0.18.0
16
+ - tqdm==4.66.4
17
+ name: mlflow-env
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d7463d94d00a5f0337203d2f3c2cb763f37ee6476c457bf67091f41e237527b
3
+ size 94368682
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/pickle_module_info.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ mlflow.pytorch.pickle_module
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/MLmodel ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_f1
2
+ flavors:
3
+ python_function:
4
+ config:
5
+ device: null
6
+ data: data
7
+ env:
8
+ conda: conda.yaml
9
+ virtualenv: python_env.yaml
10
+ loader_module: mlflow.pytorch
11
+ pickle_module_name: mlflow.pytorch.pickle_module
12
+ python_version: 3.12.2
13
+ pytorch:
14
+ code: null
15
+ model_data: data
16
+ pytorch_version: 2.3.0+cu121
17
+ mlflow_version: 2.12.2
18
+ model_size_bytes: 94368710
19
+ model_uuid: 7fef7485907c45bd93d5b9645fc18f72
20
+ run_id: 10cda43e9e42477388168fb0c51964bb
21
+ utc_time_created: '2024-05-19 22:24:45.499065'
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/conda.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.12.2
5
+ - pip<=24.0
6
+ - pip:
7
+ - mlflow==2.12.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.4
10
+ - packaging==24.0
11
+ - pandas==2.2.2
12
+ - pynvml==11.5.0
13
+ - pyyaml==6.0.1
14
+ - torch==2.3.0
15
+ - torchvision==0.18.0
16
+ - tqdm==4.66.4
17
+ name: mlflow-env
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.12.2
2
+ build_dependencies:
3
+ - pip==24.0
4
+ - setuptools==69.5.1
5
+ - wheel
6
+ dependencies:
7
+ - -r requirements.txt
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.12.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.4
4
+ packaging==24.0
5
+ pandas==2.2.2
6
+ pynvml==11.5.0
7
+ pyyaml==6.0.1
8
+ torch==2.3.0
9
+ torchvision==0.18.0
10
+ tqdm==4.66.4
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.12.2
2
+ build_dependencies:
3
+ - pip==24.0
4
+ - setuptools==69.5.1
5
+ - wheel
6
+ dependencies:
7
+ - -r requirements.txt
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.12.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.4
4
+ packaging==24.0
5
+ pandas==2.2.2
6
+ pynvml==11.5.0
7
+ pyyaml==6.0.1
8
+ torch==2.3.0
9
+ torchvision==0.18.0
10
+ tqdm==4.66.4
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/MLmodel ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_loss
2
+ flavors:
3
+ python_function:
4
+ config:
5
+ device: null
6
+ data: data
7
+ env:
8
+ conda: conda.yaml
9
+ virtualenv: python_env.yaml
10
+ loader_module: mlflow.pytorch
11
+ pickle_module_name: mlflow.pytorch.pickle_module
12
+ python_version: 3.12.2
13
+ pytorch:
14
+ code: null
15
+ model_data: data
16
+ pytorch_version: 2.3.0+cu121
17
+ mlflow_version: 2.12.2
18
+ model_size_bytes: 94368710
19
+ model_uuid: fe081fb239cf427f9c17cb01bb1a7a48
20
+ run_id: 10cda43e9e42477388168fb0c51964bb
21
+ utc_time_created: '2024-05-19 22:24:43.309684'
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/conda.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.12.2
5
+ - pip<=24.0
6
+ - pip:
7
+ - mlflow==2.12.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.4
10
+ - packaging==24.0
11
+ - pandas==2.2.2
12
+ - pynvml==11.5.0
13
+ - pyyaml==6.0.1
14
+ - torch==2.3.0
15
+ - torchvision==0.18.0
16
+ - tqdm==4.66.4
17
+ name: mlflow-env
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d7463d94d00a5f0337203d2f3c2cb763f37ee6476c457bf67091f41e237527b
3
+ size 94368682
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/pickle_module_info.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ mlflow.pytorch.pickle_module
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/MLmodel ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_path: best_loss
2
+ flavors:
3
+ python_function:
4
+ config:
5
+ device: null
6
+ data: data
7
+ env:
8
+ conda: conda.yaml
9
+ virtualenv: python_env.yaml
10
+ loader_module: mlflow.pytorch
11
+ pickle_module_name: mlflow.pytorch.pickle_module
12
+ python_version: 3.12.2
13
+ pytorch:
14
+ code: null
15
+ model_data: data
16
+ pytorch_version: 2.3.0+cu121
17
+ mlflow_version: 2.12.2
18
+ model_size_bytes: 94368710
19
+ model_uuid: fe081fb239cf427f9c17cb01bb1a7a48
20
+ run_id: 10cda43e9e42477388168fb0c51964bb
21
+ utc_time_created: '2024-05-19 22:24:43.309684'
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/conda.yaml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ channels:
2
+ - conda-forge
3
+ dependencies:
4
+ - python=3.12.2
5
+ - pip<=24.0
6
+ - pip:
7
+ - mlflow==2.12.2
8
+ - cloudpickle==3.0.0
9
+ - numpy==1.26.4
10
+ - packaging==24.0
11
+ - pandas==2.2.2
12
+ - pynvml==11.5.0
13
+ - pyyaml==6.0.1
14
+ - torch==2.3.0
15
+ - torchvision==0.18.0
16
+ - tqdm==4.66.4
17
+ name: mlflow-env
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.12.2
2
+ build_dependencies:
3
+ - pip==24.0
4
+ - setuptools==69.5.1
5
+ - wheel
6
+ dependencies:
7
+ - -r requirements.txt
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.12.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.4
4
+ packaging==24.0
5
+ pandas==2.2.2
6
+ pynvml==11.5.0
7
+ pyyaml==6.0.1
8
+ torch==2.3.0
9
+ torchvision==0.18.0
10
+ tqdm==4.66.4
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/python_env.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ python: 3.12.2
2
+ build_dependencies:
3
+ - pip==24.0
4
+ - setuptools==69.5.1
5
+ - wheel
6
+ dependencies:
7
+ - -r requirements.txt
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ mlflow==2.12.2
2
+ cloudpickle==3.0.0
3
+ numpy==1.26.4
4
+ packaging==24.0
5
+ pandas==2.2.2
6
+ pynvml==11.5.0
7
+ pyyaml==6.0.1
8
+ torch==2.3.0
9
+ torchvision==0.18.0
10
+ tqdm==4.66.4
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/confusion_matrix.png ADDED

Git LFS Details

  • SHA256: 785a79eb75b7a84d2fe330bc0e22dadfed84c4f532906dd30f28794cbc0c8233
  • Pointer size: 130 Bytes
  • Size of remote file: 22 kB
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/data.csv ADDED
The diff for this file is too large to render. See raw diff
 
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/history.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ train_loss,valid_loss,train_accuracy,valid_accuracy,train_f1,valid_f1
2
+ 0.21376326996621423,0.1515542075037956,tensor(0.9118),tensor(0.9392),tensor(0.9117),tensor(0.9392)
3
+ 0.14085557462054898,0.3056702448055148,tensor(0.9418),tensor(0.8924),tensor(0.9421),tensor(0.8803)
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/train_model.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import torchvision.models as models
4
+ from tqdm import tqdm
5
+ import numpy as np
6
+ import pandas as pd
7
+ from PIL import Image
8
+ import seaborn as sns
9
+ import matplotlib.pyplot as plt
10
+ from sklearn.model_selection import train_test_split
11
+ from torchvision import transforms
12
+ from mlflow import log_metric, log_param, log_artifacts
13
+ from torcheval.metrics import BinaryF1Score, BinaryAccuracy, BinaryConfusionMatrix
14
+ import mlflow
15
+ import warnings
16
+ warnings.filterwarnings("ignore", category=UserWarning)
17
+
18
+
19
+ class CatsDogsDataset(torch.utils.data.Dataset):
20
+ def __init__(self, df, transform=None):
21
+ self.df = df
22
+ self.transform = transform
23
+ self.label2int = {"Cat":0, "Dog":1}
24
+ self.image_cache = {}
25
+
26
+ def __len__(self):
27
+ return len(self.df)
28
+
29
+ def __getitem__(self, idx):
30
+ image_path = self.df.iloc[idx]['image_path']
31
+
32
+ if image_path not in self.image_cache:
33
+ image = Image.open(image_path)
34
+ image = image.convert('RGB')
35
+ image = np.array(image)
36
+ image = torch.from_numpy(image)
37
+ image = image.float() / 255
38
+ image = image.permute(2, 0, 1)
39
+ self.image_cache[image_path] = image
40
+ else:
41
+ image = self.image_cache[image_path]
42
+
43
+ label = self.df.iloc[idx]['image_class']
44
+ if self.transform is not None:
45
+ image = self.transform(image)
46
+
47
+ return image, torch.tensor([self.label2int[label]], dtype=torch.float32)
48
+
49
+ class CatsDogsDatasetNoCache(torch.utils.data.Dataset):
50
+ def __init__(self, df, transform=None):
51
+ self.df = df
52
+ self.transform = transform
53
+ self.label2int = {"Cat":0, "Dog":1}
54
+
55
+ def __len__(self):
56
+ return len(self.df)
57
+
58
+ def __getitem__(self, idx):
59
+ image_path = self.df.iloc[idx]['image_path']
60
+
61
+ image = Image.open(image_path)
62
+ image = image.convert('RGB')
63
+ image = np.array(image)
64
+ image = torch.from_numpy(image)
65
+ image = image.float() / 255
66
+ image = image.permute(2, 0, 1)
67
+
68
+ label = self.df.iloc[idx]['image_class']
69
+ if self.transform is not None:
70
+ image = self.transform(image)
71
+
72
+ return image, torch.tensor([self.label2int[label]], dtype=torch.float32)
73
+
74
+ def train_model(
75
+ seed=42,
76
+ num_epochs=10,
77
+ batch_size=32,
78
+ final_size=224,
79
+ color_jitter=0.2,
80
+ test_size=0.1,
81
+ rotation=20,
82
+ ):
83
+ df = pd.read_csv("data/data.csv")
84
+
85
+ np.random.seed(seed)
86
+ torch.manual_seed(seed)
87
+
88
+ mlflow.enable_system_metrics_logging()
89
+
90
+ train_df, valid_df = train_test_split(
91
+ df,
92
+ test_size=test_size,
93
+ random_state=seed,
94
+ stratify=df["image_class"]
95
+ )
96
+ train_transform = transforms.Compose([
97
+ transforms.ToPILImage(), # Convert the image to a PIL Image
98
+ transforms.Resize((final_size, final_size)), # Resize the image to final_size x final_size
99
+ # transforms.RandomResizedCrop(final_size), # Crop the image to a random size and aspect ratio
100
+ transforms.RandomHorizontalFlip(), # Randomly flip the image horizontally
101
+ transforms.ColorJitter(color_jitter, color_jitter, color_jitter), # Randomly adjust brightness, contrast, saturation, and hue
102
+ transforms.RandomRotation(rotation), # Randomly rotate the image by up to 20 degrees
103
+ transforms.ToTensor(), # Convert the image to a PyTorch tensor
104
+ transforms.Normalize( # Normalize the image
105
+ mean=[0.485, 0.456, 0.406],
106
+ std=[0.229, 0.224, 0.225]
107
+ )
108
+ ])
109
+
110
+ valid_transform = transforms.Compose([
111
+ transforms.ToPILImage(), # Convert the image to a PIL Image
112
+ transforms.Resize((final_size, final_size)), # Resize the image to final_size x final_size
113
+ transforms.ToTensor(), # Convert the image to a PyTorch tensor
114
+ transforms.Normalize( # Normalize the image
115
+ mean=[0.485, 0.456, 0.406],
116
+ std=[0.229, 0.224, 0.225]
117
+ )
118
+ ])
119
+
120
+ train_ds = CatsDogsDatasetNoCache(train_df, transform=train_transform)
121
+ valid_ds = CatsDogsDatasetNoCache(valid_df, transform=valid_transform)
122
+ train_loader = torch.utils.data.DataLoader(
123
+ train_ds,
124
+ batch_size=batch_size,
125
+ shuffle=True,
126
+ )
127
+
128
+ valid_loader = torch.utils.data.DataLoader(
129
+ valid_ds,
130
+ batch_size=batch_size,
131
+ shuffle=False,
132
+ )
133
+
134
+ device = torch.device("cuda")
135
+
136
+
137
+ model = models.resnet50(pretrained=True)
138
+ num_ftrs = model.fc.in_features
139
+ model.fc = nn.Linear(num_ftrs, 1)
140
+ model.to(device)
141
+
142
+ criterion = nn.BCELoss()
143
+ optimizer = torch.optim.Adam(model.parameters())
144
+
145
+ f1_score = BinaryF1Score()
146
+ accuracy_score = BinaryAccuracy()
147
+ confusion_matrix = BinaryConfusionMatrix()
148
+
149
+ history = {
150
+ "train_loss": [],
151
+ "valid_loss": [],
152
+ "train_accuracy": [],
153
+ "valid_accuracy": [],
154
+ "train_f1": [],
155
+ "valid_f1": []
156
+ }
157
+
158
+ best_loss = float("inf")
159
+ best_f1 = 0
160
+ best_accuracy = 0
161
+ mlflow.set_experiment("PyTorch_cats_dogs")
162
+ with mlflow.start_run():
163
+ log_param("num_epochs", num_epochs)
164
+ log_param("batch_size", batch_size)
165
+ log_param("seed", seed)
166
+ log_param("final_size", final_size)
167
+ log_param("model", "resnet50")
168
+ log_param("optimizer", "Adam")
169
+ log_param("criterion", "BCELoss")
170
+
171
+ mlflow.log_artifact("data/data.csv")
172
+ mlflow.log_artifact(__file__)
173
+
174
+ for epoch_idx in range(num_epochs):
175
+ train_loss = 0
176
+ valid_loss = 0
177
+ train_accuracy = 0
178
+ valid_accuracy = 0
179
+ train_f1 = 0
180
+ valid_f1 = 0
181
+
182
+ model.train()
183
+ for x, y in tqdm(train_loader):
184
+ x, y = x.to(device), y.to(device)
185
+ output = model(x)
186
+ loss = criterion(torch.sigmoid(output), y)
187
+ train_loss += loss.item()
188
+ optimizer.zero_grad()
189
+ loss.backward()
190
+ optimizer.step()
191
+
192
+ f1_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
193
+ accuracy_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
194
+
195
+ history["train_loss"].append(train_loss / len(train_loader))
196
+ history["train_accuracy"].append(accuracy_score.compute())
197
+ history["train_f1"].append(f1_score.compute())
198
+
199
+ accuracy_score.reset()
200
+ f1_score.reset()
201
+
202
+ mlflow.log_metric("train_loss", history["train_loss"][-1], step=epoch_idx)
203
+ mlflow.log_metric("train_accuracy", history["train_accuracy"][-1], step=epoch_idx)
204
+ mlflow.log_metric("train_f1", history["train_f1"][-1], step=epoch_idx)
205
+ model.eval()
206
+ with torch.no_grad():
207
+ for x, y in tqdm(valid_loader):
208
+ x, y = x.to(device), y.to(device)
209
+
210
+ output = model(x)
211
+ loss = criterion(torch.sigmoid(output), y)
212
+ valid_loss += loss.item()
213
+
214
+ f1_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
215
+ accuracy_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
216
+ confusion_matrix.update(torch.sigmoid(output).squeeze(), y.squeeze().long())
217
+
218
+ history["valid_loss"].append(valid_loss / len(valid_loader))
219
+ history["valid_accuracy"].append(accuracy_score.compute())
220
+ history["valid_f1"].append(f1_score.compute())
221
+
222
+ confusion_matrix_values = confusion_matrix.compute()
223
+ confusion_matrix.reset()
224
+ print(confusion_matrix_values)
225
+
226
+ cm_df = pd.DataFrame(confusion_matrix_values, index=["True 0", "True 1"], columns=["Predicted 0", "Predicted 1"])
227
+ plt.figure(figsize=(10, 7))
228
+ cm_df = cm_df.astype(int)
229
+ sns.heatmap(cm_df, annot=True, fmt="d", cmap="Blues")
230
+ plt.title("Confusion Matrix")
231
+ plt.xlabel("Predicted")
232
+ plt.ylabel("True")
233
+ plt.savefig("confusion_matrix.png")
234
+ mlflow.log_artifact("confusion_matrix.png")
235
+
236
+
237
+ accuracy_score.reset()
238
+ f1_score.reset()
239
+
240
+ if history["valid_loss"][-1] < best_loss:
241
+ best_loss = history["valid_loss"][-1]
242
+ print(f"Found better loss: {best_loss}")
243
+ torch.save(model.state_dict(), "best_loss.pth")
244
+ mlflow.pytorch.log_model(model, "best_loss")
245
+
246
+ if history["valid_f1"][-1] > best_f1:
247
+ best_f1 = history["valid_f1"][-1]
248
+ print(f"Found better f1: {best_f1}")
249
+ torch.save(model.state_dict(), "best_f1.pth")
250
+ mlflow.pytorch.log_model(model, "best_f1")
251
+
252
+ if history["valid_accuracy"][-1] > best_accuracy:
253
+ best_accuracy = history["valid_accuracy"][-1]
254
+ print(f"Found better accuracy: {best_accuracy}")
255
+ torch.save(model.state_dict(), "best_accuracy.pth")
256
+ mlflow.pytorch.log_model(model, "best_accuracy")
257
+
258
+ mlflow.log_metric("valid_loss", history["valid_loss"][-1], step=epoch_idx)
259
+ mlflow.log_metric("valid_accuracy", history["valid_accuracy"][-1], step=epoch_idx)
260
+ mlflow.log_metric("valid_f1", history["valid_f1"][-1], step=epoch_idx)
261
+
262
+ print(
263
+ f"Epoch {epoch_idx + 1}/{num_epochs} "
264
+ f"Loss: {history['train_loss'][-1]:.4f}/{history['valid_loss'][-1]:.4f} "
265
+ f"Accuracy: {history['train_accuracy'][-1]:.4f}/{history['valid_accuracy'][-1]:.4f} "
266
+ f"F1: {history['train_f1'][-1]:.4f}/{history['valid_f1'][-1]:.4f}"
267
+ )
268
+
269
+ pd.DataFrame(history).to_csv("history.csv", index=False)
270
+ mlflow.log_artifact("history.csv")
271
+ return history["valid_f1"][-1]
272
+
273
+
274
+ if __name__ == "__main__":
275
+ train_model()
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/meta.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ artifact_uri: file:///home/osbm/Documents/github/ain3009-project/mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts
2
+ end_time: 1716157597240
3
+ entry_point_name: ''
4
+ experiment_id: '481616812065881245'
5
+ lifecycle_stage: active
6
+ run_id: 10cda43e9e42477388168fb0c51964bb
7
+ run_name: able-wren-338
8
+ run_uuid: 10cda43e9e42477388168fb0c51964bb
9
+ source_name: ''
10
+ source_type: 4
11
+ source_version: ''
12
+ start_time: 1716157377160
13
+ status: 3
14
+ tags: []
15
+ user_id: osbm
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/cpu_utilization_percentage ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 0.0 0
2
+ 1716157397172 50.4 1
3
+ 1716157407178 50.1 2
4
+ 1716157417183 51.5 3
5
+ 1716157427188 50.4 4
6
+ 1716157437194 54.2 5
7
+ 1716157447198 50.9 6
8
+ 1716157457202 52.9 7
9
+ 1716157467207 50.8 8
10
+ 1716157477211 49.0 9
11
+ 1716157487215 48.9 10
12
+ 1716157497218 41.7 11
13
+ 1716157507223 45.1 12
14
+ 1716157517228 51.7 13
15
+ 1716157527232 52.4 14
16
+ 1716157537236 51.2 15
17
+ 1716157547240 52.7 16
18
+ 1716157557243 49.9 17
19
+ 1716157567247 52.6 18
20
+ 1716157577253 51.7 19
21
+ 1716157587256 49.5 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_available_megabytes ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 1130245.8 0
2
+ 1716157397172 1130244.7 1
3
+ 1716157407178 1130244.7 2
4
+ 1716157417183 1130244.6 3
5
+ 1716157427188 1130244.6 4
6
+ 1716157437194 1130244.6 5
7
+ 1716157447198 1130244.6 6
8
+ 1716157457202 1130244.6 7
9
+ 1716157467207 1130244.2 8
10
+ 1716157477211 1130244.3 9
11
+ 1716157487215 1130244.3 10
12
+ 1716157497218 1130149.8 11
13
+ 1716157507223 1129960.9 12
14
+ 1716157517228 1129960.9 13
15
+ 1716157527232 1129960.9 14
16
+ 1716157537236 1129960.9 15
17
+ 1716157547240 1129960.9 16
18
+ 1716157557243 1129960.9 17
19
+ 1716157567247 1129960.8 18
20
+ 1716157577253 1129960.8 19
21
+ 1716157587256 1129960.8 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_megabytes ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 713001.3 0
2
+ 1716157397172 713002.3 1
3
+ 1716157407178 713002.4 2
4
+ 1716157417183 713002.4 3
5
+ 1716157427188 713002.4 4
6
+ 1716157437194 713002.4 5
7
+ 1716157447198 713002.4 6
8
+ 1716157457202 713002.4 7
9
+ 1716157467207 713002.8 8
10
+ 1716157477211 713002.7 9
11
+ 1716157487215 713002.8 10
12
+ 1716157497218 713097.2 11
13
+ 1716157507223 713286.1 12
14
+ 1716157517228 713286.1 13
15
+ 1716157527232 713286.1 14
16
+ 1716157537236 713286.1 15
17
+ 1716157547240 713286.1 16
18
+ 1716157557243 713286.1 17
19
+ 1716157567247 713286.2 18
20
+ 1716157577253 713286.2 19
21
+ 1716157587256 713286.2 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_percentage ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 38.7 0
2
+ 1716157397172 38.7 1
3
+ 1716157407178 38.7 2
4
+ 1716157417183 38.7 3
5
+ 1716157427188 38.7 4
6
+ 1716157437194 38.7 5
7
+ 1716157447198 38.7 6
8
+ 1716157457202 38.7 7
9
+ 1716157467207 38.7 8
10
+ 1716157477211 38.7 9
11
+ 1716157487215 38.7 10
12
+ 1716157497218 38.7 11
13
+ 1716157507223 38.7 12
14
+ 1716157517228 38.7 13
15
+ 1716157527232 38.7 14
16
+ 1716157537236 38.7 15
17
+ 1716157547240 38.7 16
18
+ 1716157557243 38.7 17
19
+ 1716157567247 38.7 18
20
+ 1716157577253 38.7 19
21
+ 1716157587256 38.7 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_megabytes ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 1796.1 0
2
+ 1716157397172 8720.9 1
3
+ 1716157407178 8720.9 2
4
+ 1716157417183 8710.4 3
5
+ 1716157427188 8702.3 4
6
+ 1716157437194 8717.3 5
7
+ 1716157447198 8731.6 6
8
+ 1716157457202 8759.2 7
9
+ 1716157467207 8741.8 8
10
+ 1716157477211 8741.8 9
11
+ 1716157487215 8741.8 10
12
+ 1716157497218 9291.9 11
13
+ 1716157507223 8755.1 12
14
+ 1716157517228 8759.4 13
15
+ 1716157527232 8725.9 14
16
+ 1716157537236 8747.7 15
17
+ 1716157547240 8774.2 16
18
+ 1716157557243 8745.5 17
19
+ 1716157567247 8722.3 18
20
+ 1716157577253 8718.3 19
21
+ 1716157587256 8863.6 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_percentage ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 7.0 0
2
+ 1716157397172 33.9 1
3
+ 1716157407178 33.9 2
4
+ 1716157417183 33.8 3
5
+ 1716157427188 33.8 4
6
+ 1716157437194 33.8 5
7
+ 1716157447198 33.9 6
8
+ 1716157457202 34.0 7
9
+ 1716157467207 33.9 8
10
+ 1716157477211 33.9 9
11
+ 1716157487215 33.9 10
12
+ 1716157497218 36.1 11
13
+ 1716157507223 34.0 12
14
+ 1716157517228 34.0 13
15
+ 1716157527232 33.9 14
16
+ 1716157537236 34.0 15
17
+ 1716157547240 34.1 16
18
+ 1716157557243 34.0 17
19
+ 1716157567247 33.9 18
20
+ 1716157577253 33.8 19
21
+ 1716157587256 34.4 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_percentage ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 6.5 0
2
+ 1716157397172 35.3 1
3
+ 1716157407178 36.8 2
4
+ 1716157417183 35.2 3
5
+ 1716157427188 35.7 4
6
+ 1716157437194 31.1 5
7
+ 1716157447198 36.2 6
8
+ 1716157457202 31.8 7
9
+ 1716157467207 39.5 8
10
+ 1716157477211 38.1 9
11
+ 1716157487215 38.2 10
12
+ 1716157497218 15.1 11
13
+ 1716157507223 39.6 12
14
+ 1716157517228 35.6 13
15
+ 1716157527232 33.1 14
16
+ 1716157537236 34.3 15
17
+ 1716157547240 35.7 16
18
+ 1716157557243 32.9 17
19
+ 1716157567247 31.3 18
20
+ 1716157577253 35.4 19
21
+ 1716157587256 38.5 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_watts ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 29.0 0
2
+ 1716157397172 158.7 1
3
+ 1716157407178 165.7 2
4
+ 1716157417183 158.6 3
5
+ 1716157427188 160.8 4
6
+ 1716157437194 140.2 5
7
+ 1716157447198 162.8 6
8
+ 1716157457202 143.2 7
9
+ 1716157467207 177.9 8
10
+ 1716157477211 171.4 9
11
+ 1716157487215 171.8 10
12
+ 1716157497218 68.0 11
13
+ 1716157507223 178.0 12
14
+ 1716157517228 160.1 13
15
+ 1716157527232 148.9 14
16
+ 1716157537236 154.2 15
17
+ 1716157547240 160.5 16
18
+ 1716157557243 148.2 17
19
+ 1716157567247 140.7 18
20
+ 1716157577253 159.5 19
21
+ 1716157587256 173.1 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_utilization_percentage ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 19.0 0
2
+ 1716157397172 44.0 1
3
+ 1716157407178 45.0 2
4
+ 1716157417183 25.0 3
5
+ 1716157427188 20.0 4
6
+ 1716157437194 6.0 5
7
+ 1716157447198 49.0 6
8
+ 1716157457202 29.0 7
9
+ 1716157467207 40.0 8
10
+ 1716157477211 45.0 9
11
+ 1716157487215 23.0 10
12
+ 1716157497218 0.0 11
13
+ 1716157507223 45.0 12
14
+ 1716157517228 45.0 13
15
+ 1716157527232 48.0 14
16
+ 1716157537236 46.0 15
17
+ 1716157547240 45.0 16
18
+ 1716157557243 2.0 17
19
+ 1716157567247 46.0 18
20
+ 1716157577253 40.0 19
21
+ 1716157587256 15.0 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_receive_megabytes ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 0.0 0
2
+ 1716157397172 0.552742999999964 1
3
+ 1716157407178 1.2236440000000357 2
4
+ 1716157417183 1.859866000000011 3
5
+ 1716157427188 2.4165799999999535 4
6
+ 1716157437194 3.1800650000000132 5
7
+ 1716157447198 3.838602000000037 6
8
+ 1716157457202 4.539927000000034 7
9
+ 1716157467207 5.101938000000018 8
10
+ 1716157477211 5.758834999999976 9
11
+ 1716157487215 6.360147999999981 10
12
+ 1716157497218 6.896897999999965 11
13
+ 1716157507223 7.547311000000036 12
14
+ 1716157517228 8.157455000000027 13
15
+ 1716157527232 8.687618000000043 14
16
+ 1716157537236 9.351946999999996 15
17
+ 1716157547240 9.947024000000056 16
18
+ 1716157557243 10.49046199999998 17
19
+ 1716157567247 11.264426999999955 18
20
+ 1716157577253 11.918447000000015 19
21
+ 1716157587256 12.500130000000013 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_transmit_megabytes ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 0.0 0
2
+ 1716157397172 5.578019999999981 1
3
+ 1716157407178 13.062230999999997 2
4
+ 1716157417183 19.055833000000007 3
5
+ 1716157427188 24.678967 4
6
+ 1716157437194 30.663456999999994 5
7
+ 1716157447198 37.15130199999999 6
8
+ 1716157457202 43.01544899999999 7
9
+ 1716157467207 48.58469400000001 8
10
+ 1716157477211 54.98207500000001 9
11
+ 1716157487215 61.017724999999984 10
12
+ 1716157497218 66.23653099999996 11
13
+ 1716157507223 72.64846399999993 12
14
+ 1716157517228 78.48806799999994 13
15
+ 1716157527232 83.15234600000002 14
16
+ 1716157537236 89.22182100000003 15
17
+ 1716157547240 94.56739899999997 16
18
+ 1716157557243 99.43237900000003 17
19
+ 1716157567247 106.04701099999994 18
20
+ 1716157577253 112.78150399999998 19
21
+ 1716157587256 118.85109600000004 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_megabytes ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 7988.6 0
2
+ 1716157397172 8517.4 1
3
+ 1716157407178 8547.5 2
4
+ 1716157417183 8526.8 3
5
+ 1716157427188 8525.9 4
6
+ 1716157437194 8623.0 5
7
+ 1716157447198 8612.2 6
8
+ 1716157457202 8621.8 7
9
+ 1716157467207 8557.2 8
10
+ 1716157477211 8556.6 9
11
+ 1716157487215 8528.0 10
12
+ 1716157497218 9058.6 11
13
+ 1716157507223 8637.3 12
14
+ 1716157517228 8616.1 13
15
+ 1716157527232 8622.0 14
16
+ 1716157537236 8665.0 15
17
+ 1716157547240 8663.8 16
18
+ 1716157557243 8628.1 17
19
+ 1716157567247 8694.1 18
20
+ 1716157577253 8664.3 19
21
+ 1716157587256 8664.4 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_percentage ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1716157387167 11.9 0
2
+ 1716157397172 12.7 1
3
+ 1716157407178 12.7 2
4
+ 1716157417183 12.7 3
5
+ 1716157427188 12.7 4
6
+ 1716157437194 12.8 5
7
+ 1716157447198 12.8 6
8
+ 1716157457202 12.8 7
9
+ 1716157467207 12.7 8
10
+ 1716157477211 12.7 9
11
+ 1716157487215 12.7 10
12
+ 1716157497218 13.5 11
13
+ 1716157507223 12.8 12
14
+ 1716157517228 12.8 13
15
+ 1716157527232 12.8 14
16
+ 1716157537236 12.9 15
17
+ 1716157547240 12.9 16
18
+ 1716157557243 12.8 17
19
+ 1716157567247 12.9 18
20
+ 1716157577253 12.9 19
21
+ 1716157587256 12.9 20
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_accuracy ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 1716157477144 0.9117699265480042 0
2
+ 1716157591484 0.941817045211792 1
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_f1 ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ 1716157477144 0.9116639494895935 0
2
+ 1716157591485 0.9420514106750488 1