Upload 693 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/MLmodel +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/conda.yaml +17 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/model.pth +3 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/pickle_module_info.txt +1 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/MLmodel +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/conda.yaml +17 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/python_env.yaml +7 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/requirements.txt +10 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/python_env.yaml +7 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/requirements.txt +10 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/MLmodel +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/conda.yaml +17 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/model.pth +3 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/pickle_module_info.txt +1 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/MLmodel +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/conda.yaml +17 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/python_env.yaml +7 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/requirements.txt +10 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/python_env.yaml +7 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/requirements.txt +10 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/MLmodel +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/conda.yaml +17 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/model.pth +3 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/pickle_module_info.txt +1 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/MLmodel +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/conda.yaml +17 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/python_env.yaml +7 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/requirements.txt +10 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/python_env.yaml +7 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/requirements.txt +10 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/confusion_matrix.png +3 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/data.csv +0 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/history.csv +3 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/train_model.py +275 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/meta.yaml +15 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/cpu_utilization_percentage +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_available_megabytes +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_megabytes +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_percentage +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_megabytes +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_percentage +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_percentage +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_watts +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_utilization_percentage +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_receive_megabytes +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_transmit_megabytes +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_megabytes +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_percentage +21 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_accuracy +2 -0
- mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_f1 +2 -0
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/MLmodel
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_path: best_accuracy
|
2 |
+
flavors:
|
3 |
+
python_function:
|
4 |
+
config:
|
5 |
+
device: null
|
6 |
+
data: data
|
7 |
+
env:
|
8 |
+
conda: conda.yaml
|
9 |
+
virtualenv: python_env.yaml
|
10 |
+
loader_module: mlflow.pytorch
|
11 |
+
pickle_module_name: mlflow.pytorch.pickle_module
|
12 |
+
python_version: 3.12.2
|
13 |
+
pytorch:
|
14 |
+
code: null
|
15 |
+
model_data: data
|
16 |
+
pytorch_version: 2.3.0+cu121
|
17 |
+
mlflow_version: 2.12.2
|
18 |
+
model_size_bytes: 94368710
|
19 |
+
model_uuid: 553bd7634b7b4386a4ad9f80f7e66a32
|
20 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
21 |
+
utc_time_created: '2024-05-19 22:24:47.347724'
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/conda.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
channels:
|
2 |
+
- conda-forge
|
3 |
+
dependencies:
|
4 |
+
- python=3.12.2
|
5 |
+
- pip<=24.0
|
6 |
+
- pip:
|
7 |
+
- mlflow==2.12.2
|
8 |
+
- cloudpickle==3.0.0
|
9 |
+
- numpy==1.26.4
|
10 |
+
- packaging==24.0
|
11 |
+
- pandas==2.2.2
|
12 |
+
- pynvml==11.5.0
|
13 |
+
- pyyaml==6.0.1
|
14 |
+
- torch==2.3.0
|
15 |
+
- torchvision==0.18.0
|
16 |
+
- tqdm==4.66.4
|
17 |
+
name: mlflow-env
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d7463d94d00a5f0337203d2f3c2cb763f37ee6476c457bf67091f41e237527b
|
3 |
+
size 94368682
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/data/pickle_module_info.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
mlflow.pytorch.pickle_module
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/MLmodel
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_path: best_accuracy
|
2 |
+
flavors:
|
3 |
+
python_function:
|
4 |
+
config:
|
5 |
+
device: null
|
6 |
+
data: data
|
7 |
+
env:
|
8 |
+
conda: conda.yaml
|
9 |
+
virtualenv: python_env.yaml
|
10 |
+
loader_module: mlflow.pytorch
|
11 |
+
pickle_module_name: mlflow.pytorch.pickle_module
|
12 |
+
python_version: 3.12.2
|
13 |
+
pytorch:
|
14 |
+
code: null
|
15 |
+
model_data: data
|
16 |
+
pytorch_version: 2.3.0+cu121
|
17 |
+
mlflow_version: 2.12.2
|
18 |
+
model_size_bytes: 94368710
|
19 |
+
model_uuid: 553bd7634b7b4386a4ad9f80f7e66a32
|
20 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
21 |
+
utc_time_created: '2024-05-19 22:24:47.347724'
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/conda.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
channels:
|
2 |
+
- conda-forge
|
3 |
+
dependencies:
|
4 |
+
- python=3.12.2
|
5 |
+
- pip<=24.0
|
6 |
+
- pip:
|
7 |
+
- mlflow==2.12.2
|
8 |
+
- cloudpickle==3.0.0
|
9 |
+
- numpy==1.26.4
|
10 |
+
- packaging==24.0
|
11 |
+
- pandas==2.2.2
|
12 |
+
- pynvml==11.5.0
|
13 |
+
- pyyaml==6.0.1
|
14 |
+
- torch==2.3.0
|
15 |
+
- torchvision==0.18.0
|
16 |
+
- tqdm==4.66.4
|
17 |
+
name: mlflow-env
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/python_env.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python: 3.12.2
|
2 |
+
build_dependencies:
|
3 |
+
- pip==24.0
|
4 |
+
- setuptools==69.5.1
|
5 |
+
- wheel
|
6 |
+
dependencies:
|
7 |
+
- -r requirements.txt
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/metadata/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.12.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.26.4
|
4 |
+
packaging==24.0
|
5 |
+
pandas==2.2.2
|
6 |
+
pynvml==11.5.0
|
7 |
+
pyyaml==6.0.1
|
8 |
+
torch==2.3.0
|
9 |
+
torchvision==0.18.0
|
10 |
+
tqdm==4.66.4
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/python_env.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python: 3.12.2
|
2 |
+
build_dependencies:
|
3 |
+
- pip==24.0
|
4 |
+
- setuptools==69.5.1
|
5 |
+
- wheel
|
6 |
+
dependencies:
|
7 |
+
- -r requirements.txt
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_accuracy/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.12.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.26.4
|
4 |
+
packaging==24.0
|
5 |
+
pandas==2.2.2
|
6 |
+
pynvml==11.5.0
|
7 |
+
pyyaml==6.0.1
|
8 |
+
torch==2.3.0
|
9 |
+
torchvision==0.18.0
|
10 |
+
tqdm==4.66.4
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/MLmodel
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_path: best_f1
|
2 |
+
flavors:
|
3 |
+
python_function:
|
4 |
+
config:
|
5 |
+
device: null
|
6 |
+
data: data
|
7 |
+
env:
|
8 |
+
conda: conda.yaml
|
9 |
+
virtualenv: python_env.yaml
|
10 |
+
loader_module: mlflow.pytorch
|
11 |
+
pickle_module_name: mlflow.pytorch.pickle_module
|
12 |
+
python_version: 3.12.2
|
13 |
+
pytorch:
|
14 |
+
code: null
|
15 |
+
model_data: data
|
16 |
+
pytorch_version: 2.3.0+cu121
|
17 |
+
mlflow_version: 2.12.2
|
18 |
+
model_size_bytes: 94368710
|
19 |
+
model_uuid: 7fef7485907c45bd93d5b9645fc18f72
|
20 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
21 |
+
utc_time_created: '2024-05-19 22:24:45.499065'
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/conda.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
channels:
|
2 |
+
- conda-forge
|
3 |
+
dependencies:
|
4 |
+
- python=3.12.2
|
5 |
+
- pip<=24.0
|
6 |
+
- pip:
|
7 |
+
- mlflow==2.12.2
|
8 |
+
- cloudpickle==3.0.0
|
9 |
+
- numpy==1.26.4
|
10 |
+
- packaging==24.0
|
11 |
+
- pandas==2.2.2
|
12 |
+
- pynvml==11.5.0
|
13 |
+
- pyyaml==6.0.1
|
14 |
+
- torch==2.3.0
|
15 |
+
- torchvision==0.18.0
|
16 |
+
- tqdm==4.66.4
|
17 |
+
name: mlflow-env
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d7463d94d00a5f0337203d2f3c2cb763f37ee6476c457bf67091f41e237527b
|
3 |
+
size 94368682
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/data/pickle_module_info.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
mlflow.pytorch.pickle_module
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/MLmodel
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_path: best_f1
|
2 |
+
flavors:
|
3 |
+
python_function:
|
4 |
+
config:
|
5 |
+
device: null
|
6 |
+
data: data
|
7 |
+
env:
|
8 |
+
conda: conda.yaml
|
9 |
+
virtualenv: python_env.yaml
|
10 |
+
loader_module: mlflow.pytorch
|
11 |
+
pickle_module_name: mlflow.pytorch.pickle_module
|
12 |
+
python_version: 3.12.2
|
13 |
+
pytorch:
|
14 |
+
code: null
|
15 |
+
model_data: data
|
16 |
+
pytorch_version: 2.3.0+cu121
|
17 |
+
mlflow_version: 2.12.2
|
18 |
+
model_size_bytes: 94368710
|
19 |
+
model_uuid: 7fef7485907c45bd93d5b9645fc18f72
|
20 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
21 |
+
utc_time_created: '2024-05-19 22:24:45.499065'
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/conda.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
channels:
|
2 |
+
- conda-forge
|
3 |
+
dependencies:
|
4 |
+
- python=3.12.2
|
5 |
+
- pip<=24.0
|
6 |
+
- pip:
|
7 |
+
- mlflow==2.12.2
|
8 |
+
- cloudpickle==3.0.0
|
9 |
+
- numpy==1.26.4
|
10 |
+
- packaging==24.0
|
11 |
+
- pandas==2.2.2
|
12 |
+
- pynvml==11.5.0
|
13 |
+
- pyyaml==6.0.1
|
14 |
+
- torch==2.3.0
|
15 |
+
- torchvision==0.18.0
|
16 |
+
- tqdm==4.66.4
|
17 |
+
name: mlflow-env
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/python_env.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python: 3.12.2
|
2 |
+
build_dependencies:
|
3 |
+
- pip==24.0
|
4 |
+
- setuptools==69.5.1
|
5 |
+
- wheel
|
6 |
+
dependencies:
|
7 |
+
- -r requirements.txt
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/metadata/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.12.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.26.4
|
4 |
+
packaging==24.0
|
5 |
+
pandas==2.2.2
|
6 |
+
pynvml==11.5.0
|
7 |
+
pyyaml==6.0.1
|
8 |
+
torch==2.3.0
|
9 |
+
torchvision==0.18.0
|
10 |
+
tqdm==4.66.4
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/python_env.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python: 3.12.2
|
2 |
+
build_dependencies:
|
3 |
+
- pip==24.0
|
4 |
+
- setuptools==69.5.1
|
5 |
+
- wheel
|
6 |
+
dependencies:
|
7 |
+
- -r requirements.txt
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_f1/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.12.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.26.4
|
4 |
+
packaging==24.0
|
5 |
+
pandas==2.2.2
|
6 |
+
pynvml==11.5.0
|
7 |
+
pyyaml==6.0.1
|
8 |
+
torch==2.3.0
|
9 |
+
torchvision==0.18.0
|
10 |
+
tqdm==4.66.4
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/MLmodel
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_path: best_loss
|
2 |
+
flavors:
|
3 |
+
python_function:
|
4 |
+
config:
|
5 |
+
device: null
|
6 |
+
data: data
|
7 |
+
env:
|
8 |
+
conda: conda.yaml
|
9 |
+
virtualenv: python_env.yaml
|
10 |
+
loader_module: mlflow.pytorch
|
11 |
+
pickle_module_name: mlflow.pytorch.pickle_module
|
12 |
+
python_version: 3.12.2
|
13 |
+
pytorch:
|
14 |
+
code: null
|
15 |
+
model_data: data
|
16 |
+
pytorch_version: 2.3.0+cu121
|
17 |
+
mlflow_version: 2.12.2
|
18 |
+
model_size_bytes: 94368710
|
19 |
+
model_uuid: fe081fb239cf427f9c17cb01bb1a7a48
|
20 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
21 |
+
utc_time_created: '2024-05-19 22:24:43.309684'
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/conda.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
channels:
|
2 |
+
- conda-forge
|
3 |
+
dependencies:
|
4 |
+
- python=3.12.2
|
5 |
+
- pip<=24.0
|
6 |
+
- pip:
|
7 |
+
- mlflow==2.12.2
|
8 |
+
- cloudpickle==3.0.0
|
9 |
+
- numpy==1.26.4
|
10 |
+
- packaging==24.0
|
11 |
+
- pandas==2.2.2
|
12 |
+
- pynvml==11.5.0
|
13 |
+
- pyyaml==6.0.1
|
14 |
+
- torch==2.3.0
|
15 |
+
- torchvision==0.18.0
|
16 |
+
- tqdm==4.66.4
|
17 |
+
name: mlflow-env
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d7463d94d00a5f0337203d2f3c2cb763f37ee6476c457bf67091f41e237527b
|
3 |
+
size 94368682
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/data/pickle_module_info.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
mlflow.pytorch.pickle_module
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/MLmodel
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_path: best_loss
|
2 |
+
flavors:
|
3 |
+
python_function:
|
4 |
+
config:
|
5 |
+
device: null
|
6 |
+
data: data
|
7 |
+
env:
|
8 |
+
conda: conda.yaml
|
9 |
+
virtualenv: python_env.yaml
|
10 |
+
loader_module: mlflow.pytorch
|
11 |
+
pickle_module_name: mlflow.pytorch.pickle_module
|
12 |
+
python_version: 3.12.2
|
13 |
+
pytorch:
|
14 |
+
code: null
|
15 |
+
model_data: data
|
16 |
+
pytorch_version: 2.3.0+cu121
|
17 |
+
mlflow_version: 2.12.2
|
18 |
+
model_size_bytes: 94368710
|
19 |
+
model_uuid: fe081fb239cf427f9c17cb01bb1a7a48
|
20 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
21 |
+
utc_time_created: '2024-05-19 22:24:43.309684'
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/conda.yaml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
channels:
|
2 |
+
- conda-forge
|
3 |
+
dependencies:
|
4 |
+
- python=3.12.2
|
5 |
+
- pip<=24.0
|
6 |
+
- pip:
|
7 |
+
- mlflow==2.12.2
|
8 |
+
- cloudpickle==3.0.0
|
9 |
+
- numpy==1.26.4
|
10 |
+
- packaging==24.0
|
11 |
+
- pandas==2.2.2
|
12 |
+
- pynvml==11.5.0
|
13 |
+
- pyyaml==6.0.1
|
14 |
+
- torch==2.3.0
|
15 |
+
- torchvision==0.18.0
|
16 |
+
- tqdm==4.66.4
|
17 |
+
name: mlflow-env
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/python_env.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python: 3.12.2
|
2 |
+
build_dependencies:
|
3 |
+
- pip==24.0
|
4 |
+
- setuptools==69.5.1
|
5 |
+
- wheel
|
6 |
+
dependencies:
|
7 |
+
- -r requirements.txt
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/metadata/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.12.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.26.4
|
4 |
+
packaging==24.0
|
5 |
+
pandas==2.2.2
|
6 |
+
pynvml==11.5.0
|
7 |
+
pyyaml==6.0.1
|
8 |
+
torch==2.3.0
|
9 |
+
torchvision==0.18.0
|
10 |
+
tqdm==4.66.4
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/python_env.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python: 3.12.2
|
2 |
+
build_dependencies:
|
3 |
+
- pip==24.0
|
4 |
+
- setuptools==69.5.1
|
5 |
+
- wheel
|
6 |
+
dependencies:
|
7 |
+
- -r requirements.txt
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/best_loss/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mlflow==2.12.2
|
2 |
+
cloudpickle==3.0.0
|
3 |
+
numpy==1.26.4
|
4 |
+
packaging==24.0
|
5 |
+
pandas==2.2.2
|
6 |
+
pynvml==11.5.0
|
7 |
+
pyyaml==6.0.1
|
8 |
+
torch==2.3.0
|
9 |
+
torchvision==0.18.0
|
10 |
+
tqdm==4.66.4
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/confusion_matrix.png
ADDED
![]() |
Git LFS Details
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/history.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
train_loss,valid_loss,train_accuracy,valid_accuracy,train_f1,valid_f1
|
2 |
+
0.21376326996621423,0.1515542075037956,tensor(0.9118),tensor(0.9392),tensor(0.9117),tensor(0.9392)
|
3 |
+
0.14085557462054898,0.3056702448055148,tensor(0.9418),tensor(0.8924),tensor(0.9421),tensor(0.8803)
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts/train_model.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torchvision.models as models
|
4 |
+
from tqdm import tqdm
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
from PIL import Image
|
8 |
+
import seaborn as sns
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
from torchvision import transforms
|
12 |
+
from mlflow import log_metric, log_param, log_artifacts
|
13 |
+
from torcheval.metrics import BinaryF1Score, BinaryAccuracy, BinaryConfusionMatrix
|
14 |
+
import mlflow
|
15 |
+
import warnings
|
16 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
17 |
+
|
18 |
+
|
19 |
+
class CatsDogsDataset(torch.utils.data.Dataset):
|
20 |
+
def __init__(self, df, transform=None):
|
21 |
+
self.df = df
|
22 |
+
self.transform = transform
|
23 |
+
self.label2int = {"Cat":0, "Dog":1}
|
24 |
+
self.image_cache = {}
|
25 |
+
|
26 |
+
def __len__(self):
|
27 |
+
return len(self.df)
|
28 |
+
|
29 |
+
def __getitem__(self, idx):
|
30 |
+
image_path = self.df.iloc[idx]['image_path']
|
31 |
+
|
32 |
+
if image_path not in self.image_cache:
|
33 |
+
image = Image.open(image_path)
|
34 |
+
image = image.convert('RGB')
|
35 |
+
image = np.array(image)
|
36 |
+
image = torch.from_numpy(image)
|
37 |
+
image = image.float() / 255
|
38 |
+
image = image.permute(2, 0, 1)
|
39 |
+
self.image_cache[image_path] = image
|
40 |
+
else:
|
41 |
+
image = self.image_cache[image_path]
|
42 |
+
|
43 |
+
label = self.df.iloc[idx]['image_class']
|
44 |
+
if self.transform is not None:
|
45 |
+
image = self.transform(image)
|
46 |
+
|
47 |
+
return image, torch.tensor([self.label2int[label]], dtype=torch.float32)
|
48 |
+
|
49 |
+
class CatsDogsDatasetNoCache(torch.utils.data.Dataset):
|
50 |
+
def __init__(self, df, transform=None):
|
51 |
+
self.df = df
|
52 |
+
self.transform = transform
|
53 |
+
self.label2int = {"Cat":0, "Dog":1}
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.df)
|
57 |
+
|
58 |
+
def __getitem__(self, idx):
|
59 |
+
image_path = self.df.iloc[idx]['image_path']
|
60 |
+
|
61 |
+
image = Image.open(image_path)
|
62 |
+
image = image.convert('RGB')
|
63 |
+
image = np.array(image)
|
64 |
+
image = torch.from_numpy(image)
|
65 |
+
image = image.float() / 255
|
66 |
+
image = image.permute(2, 0, 1)
|
67 |
+
|
68 |
+
label = self.df.iloc[idx]['image_class']
|
69 |
+
if self.transform is not None:
|
70 |
+
image = self.transform(image)
|
71 |
+
|
72 |
+
return image, torch.tensor([self.label2int[label]], dtype=torch.float32)
|
73 |
+
|
74 |
+
def train_model(
|
75 |
+
seed=42,
|
76 |
+
num_epochs=10,
|
77 |
+
batch_size=32,
|
78 |
+
final_size=224,
|
79 |
+
color_jitter=0.2,
|
80 |
+
test_size=0.1,
|
81 |
+
rotation=20,
|
82 |
+
):
|
83 |
+
df = pd.read_csv("data/data.csv")
|
84 |
+
|
85 |
+
np.random.seed(seed)
|
86 |
+
torch.manual_seed(seed)
|
87 |
+
|
88 |
+
mlflow.enable_system_metrics_logging()
|
89 |
+
|
90 |
+
train_df, valid_df = train_test_split(
|
91 |
+
df,
|
92 |
+
test_size=test_size,
|
93 |
+
random_state=seed,
|
94 |
+
stratify=df["image_class"]
|
95 |
+
)
|
96 |
+
train_transform = transforms.Compose([
|
97 |
+
transforms.ToPILImage(), # Convert the image to a PIL Image
|
98 |
+
transforms.Resize((final_size, final_size)), # Resize the image to final_size x final_size
|
99 |
+
# transforms.RandomResizedCrop(final_size), # Crop the image to a random size and aspect ratio
|
100 |
+
transforms.RandomHorizontalFlip(), # Randomly flip the image horizontally
|
101 |
+
transforms.ColorJitter(color_jitter, color_jitter, color_jitter), # Randomly adjust brightness, contrast, saturation, and hue
|
102 |
+
transforms.RandomRotation(rotation), # Randomly rotate the image by up to 20 degrees
|
103 |
+
transforms.ToTensor(), # Convert the image to a PyTorch tensor
|
104 |
+
transforms.Normalize( # Normalize the image
|
105 |
+
mean=[0.485, 0.456, 0.406],
|
106 |
+
std=[0.229, 0.224, 0.225]
|
107 |
+
)
|
108 |
+
])
|
109 |
+
|
110 |
+
valid_transform = transforms.Compose([
|
111 |
+
transforms.ToPILImage(), # Convert the image to a PIL Image
|
112 |
+
transforms.Resize((final_size, final_size)), # Resize the image to final_size x final_size
|
113 |
+
transforms.ToTensor(), # Convert the image to a PyTorch tensor
|
114 |
+
transforms.Normalize( # Normalize the image
|
115 |
+
mean=[0.485, 0.456, 0.406],
|
116 |
+
std=[0.229, 0.224, 0.225]
|
117 |
+
)
|
118 |
+
])
|
119 |
+
|
120 |
+
train_ds = CatsDogsDatasetNoCache(train_df, transform=train_transform)
|
121 |
+
valid_ds = CatsDogsDatasetNoCache(valid_df, transform=valid_transform)
|
122 |
+
train_loader = torch.utils.data.DataLoader(
|
123 |
+
train_ds,
|
124 |
+
batch_size=batch_size,
|
125 |
+
shuffle=True,
|
126 |
+
)
|
127 |
+
|
128 |
+
valid_loader = torch.utils.data.DataLoader(
|
129 |
+
valid_ds,
|
130 |
+
batch_size=batch_size,
|
131 |
+
shuffle=False,
|
132 |
+
)
|
133 |
+
|
134 |
+
device = torch.device("cuda")
|
135 |
+
|
136 |
+
|
137 |
+
model = models.resnet50(pretrained=True)
|
138 |
+
num_ftrs = model.fc.in_features
|
139 |
+
model.fc = nn.Linear(num_ftrs, 1)
|
140 |
+
model.to(device)
|
141 |
+
|
142 |
+
criterion = nn.BCELoss()
|
143 |
+
optimizer = torch.optim.Adam(model.parameters())
|
144 |
+
|
145 |
+
f1_score = BinaryF1Score()
|
146 |
+
accuracy_score = BinaryAccuracy()
|
147 |
+
confusion_matrix = BinaryConfusionMatrix()
|
148 |
+
|
149 |
+
history = {
|
150 |
+
"train_loss": [],
|
151 |
+
"valid_loss": [],
|
152 |
+
"train_accuracy": [],
|
153 |
+
"valid_accuracy": [],
|
154 |
+
"train_f1": [],
|
155 |
+
"valid_f1": []
|
156 |
+
}
|
157 |
+
|
158 |
+
best_loss = float("inf")
|
159 |
+
best_f1 = 0
|
160 |
+
best_accuracy = 0
|
161 |
+
mlflow.set_experiment("PyTorch_cats_dogs")
|
162 |
+
with mlflow.start_run():
|
163 |
+
log_param("num_epochs", num_epochs)
|
164 |
+
log_param("batch_size", batch_size)
|
165 |
+
log_param("seed", seed)
|
166 |
+
log_param("final_size", final_size)
|
167 |
+
log_param("model", "resnet50")
|
168 |
+
log_param("optimizer", "Adam")
|
169 |
+
log_param("criterion", "BCELoss")
|
170 |
+
|
171 |
+
mlflow.log_artifact("data/data.csv")
|
172 |
+
mlflow.log_artifact(__file__)
|
173 |
+
|
174 |
+
for epoch_idx in range(num_epochs):
|
175 |
+
train_loss = 0
|
176 |
+
valid_loss = 0
|
177 |
+
train_accuracy = 0
|
178 |
+
valid_accuracy = 0
|
179 |
+
train_f1 = 0
|
180 |
+
valid_f1 = 0
|
181 |
+
|
182 |
+
model.train()
|
183 |
+
for x, y in tqdm(train_loader):
|
184 |
+
x, y = x.to(device), y.to(device)
|
185 |
+
output = model(x)
|
186 |
+
loss = criterion(torch.sigmoid(output), y)
|
187 |
+
train_loss += loss.item()
|
188 |
+
optimizer.zero_grad()
|
189 |
+
loss.backward()
|
190 |
+
optimizer.step()
|
191 |
+
|
192 |
+
f1_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
|
193 |
+
accuracy_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
|
194 |
+
|
195 |
+
history["train_loss"].append(train_loss / len(train_loader))
|
196 |
+
history["train_accuracy"].append(accuracy_score.compute())
|
197 |
+
history["train_f1"].append(f1_score.compute())
|
198 |
+
|
199 |
+
accuracy_score.reset()
|
200 |
+
f1_score.reset()
|
201 |
+
|
202 |
+
mlflow.log_metric("train_loss", history["train_loss"][-1], step=epoch_idx)
|
203 |
+
mlflow.log_metric("train_accuracy", history["train_accuracy"][-1], step=epoch_idx)
|
204 |
+
mlflow.log_metric("train_f1", history["train_f1"][-1], step=epoch_idx)
|
205 |
+
model.eval()
|
206 |
+
with torch.no_grad():
|
207 |
+
for x, y in tqdm(valid_loader):
|
208 |
+
x, y = x.to(device), y.to(device)
|
209 |
+
|
210 |
+
output = model(x)
|
211 |
+
loss = criterion(torch.sigmoid(output), y)
|
212 |
+
valid_loss += loss.item()
|
213 |
+
|
214 |
+
f1_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
|
215 |
+
accuracy_score.update(torch.sigmoid(output).squeeze(), y.squeeze())
|
216 |
+
confusion_matrix.update(torch.sigmoid(output).squeeze(), y.squeeze().long())
|
217 |
+
|
218 |
+
history["valid_loss"].append(valid_loss / len(valid_loader))
|
219 |
+
history["valid_accuracy"].append(accuracy_score.compute())
|
220 |
+
history["valid_f1"].append(f1_score.compute())
|
221 |
+
|
222 |
+
confusion_matrix_values = confusion_matrix.compute()
|
223 |
+
confusion_matrix.reset()
|
224 |
+
print(confusion_matrix_values)
|
225 |
+
|
226 |
+
cm_df = pd.DataFrame(confusion_matrix_values, index=["True 0", "True 1"], columns=["Predicted 0", "Predicted 1"])
|
227 |
+
plt.figure(figsize=(10, 7))
|
228 |
+
cm_df = cm_df.astype(int)
|
229 |
+
sns.heatmap(cm_df, annot=True, fmt="d", cmap="Blues")
|
230 |
+
plt.title("Confusion Matrix")
|
231 |
+
plt.xlabel("Predicted")
|
232 |
+
plt.ylabel("True")
|
233 |
+
plt.savefig("confusion_matrix.png")
|
234 |
+
mlflow.log_artifact("confusion_matrix.png")
|
235 |
+
|
236 |
+
|
237 |
+
accuracy_score.reset()
|
238 |
+
f1_score.reset()
|
239 |
+
|
240 |
+
if history["valid_loss"][-1] < best_loss:
|
241 |
+
best_loss = history["valid_loss"][-1]
|
242 |
+
print(f"Found better loss: {best_loss}")
|
243 |
+
torch.save(model.state_dict(), "best_loss.pth")
|
244 |
+
mlflow.pytorch.log_model(model, "best_loss")
|
245 |
+
|
246 |
+
if history["valid_f1"][-1] > best_f1:
|
247 |
+
best_f1 = history["valid_f1"][-1]
|
248 |
+
print(f"Found better f1: {best_f1}")
|
249 |
+
torch.save(model.state_dict(), "best_f1.pth")
|
250 |
+
mlflow.pytorch.log_model(model, "best_f1")
|
251 |
+
|
252 |
+
if history["valid_accuracy"][-1] > best_accuracy:
|
253 |
+
best_accuracy = history["valid_accuracy"][-1]
|
254 |
+
print(f"Found better accuracy: {best_accuracy}")
|
255 |
+
torch.save(model.state_dict(), "best_accuracy.pth")
|
256 |
+
mlflow.pytorch.log_model(model, "best_accuracy")
|
257 |
+
|
258 |
+
mlflow.log_metric("valid_loss", history["valid_loss"][-1], step=epoch_idx)
|
259 |
+
mlflow.log_metric("valid_accuracy", history["valid_accuracy"][-1], step=epoch_idx)
|
260 |
+
mlflow.log_metric("valid_f1", history["valid_f1"][-1], step=epoch_idx)
|
261 |
+
|
262 |
+
print(
|
263 |
+
f"Epoch {epoch_idx + 1}/{num_epochs} "
|
264 |
+
f"Loss: {history['train_loss'][-1]:.4f}/{history['valid_loss'][-1]:.4f} "
|
265 |
+
f"Accuracy: {history['train_accuracy'][-1]:.4f}/{history['valid_accuracy'][-1]:.4f} "
|
266 |
+
f"F1: {history['train_f1'][-1]:.4f}/{history['valid_f1'][-1]:.4f}"
|
267 |
+
)
|
268 |
+
|
269 |
+
pd.DataFrame(history).to_csv("history.csv", index=False)
|
270 |
+
mlflow.log_artifact("history.csv")
|
271 |
+
return history["valid_f1"][-1]
|
272 |
+
|
273 |
+
|
274 |
+
if __name__ == "__main__":
|
275 |
+
train_model()
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/meta.yaml
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
artifact_uri: file:///home/osbm/Documents/github/ain3009-project/mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/artifacts
|
2 |
+
end_time: 1716157597240
|
3 |
+
entry_point_name: ''
|
4 |
+
experiment_id: '481616812065881245'
|
5 |
+
lifecycle_stage: active
|
6 |
+
run_id: 10cda43e9e42477388168fb0c51964bb
|
7 |
+
run_name: able-wren-338
|
8 |
+
run_uuid: 10cda43e9e42477388168fb0c51964bb
|
9 |
+
source_name: ''
|
10 |
+
source_type: 4
|
11 |
+
source_version: ''
|
12 |
+
start_time: 1716157377160
|
13 |
+
status: 3
|
14 |
+
tags: []
|
15 |
+
user_id: osbm
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/cpu_utilization_percentage
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 0.0 0
|
2 |
+
1716157397172 50.4 1
|
3 |
+
1716157407178 50.1 2
|
4 |
+
1716157417183 51.5 3
|
5 |
+
1716157427188 50.4 4
|
6 |
+
1716157437194 54.2 5
|
7 |
+
1716157447198 50.9 6
|
8 |
+
1716157457202 52.9 7
|
9 |
+
1716157467207 50.8 8
|
10 |
+
1716157477211 49.0 9
|
11 |
+
1716157487215 48.9 10
|
12 |
+
1716157497218 41.7 11
|
13 |
+
1716157507223 45.1 12
|
14 |
+
1716157517228 51.7 13
|
15 |
+
1716157527232 52.4 14
|
16 |
+
1716157537236 51.2 15
|
17 |
+
1716157547240 52.7 16
|
18 |
+
1716157557243 49.9 17
|
19 |
+
1716157567247 52.6 18
|
20 |
+
1716157577253 51.7 19
|
21 |
+
1716157587256 49.5 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_available_megabytes
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 1130245.8 0
|
2 |
+
1716157397172 1130244.7 1
|
3 |
+
1716157407178 1130244.7 2
|
4 |
+
1716157417183 1130244.6 3
|
5 |
+
1716157427188 1130244.6 4
|
6 |
+
1716157437194 1130244.6 5
|
7 |
+
1716157447198 1130244.6 6
|
8 |
+
1716157457202 1130244.6 7
|
9 |
+
1716157467207 1130244.2 8
|
10 |
+
1716157477211 1130244.3 9
|
11 |
+
1716157487215 1130244.3 10
|
12 |
+
1716157497218 1130149.8 11
|
13 |
+
1716157507223 1129960.9 12
|
14 |
+
1716157517228 1129960.9 13
|
15 |
+
1716157527232 1129960.9 14
|
16 |
+
1716157537236 1129960.9 15
|
17 |
+
1716157547240 1129960.9 16
|
18 |
+
1716157557243 1129960.9 17
|
19 |
+
1716157567247 1129960.8 18
|
20 |
+
1716157577253 1129960.8 19
|
21 |
+
1716157587256 1129960.8 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_megabytes
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 713001.3 0
|
2 |
+
1716157397172 713002.3 1
|
3 |
+
1716157407178 713002.4 2
|
4 |
+
1716157417183 713002.4 3
|
5 |
+
1716157427188 713002.4 4
|
6 |
+
1716157437194 713002.4 5
|
7 |
+
1716157447198 713002.4 6
|
8 |
+
1716157457202 713002.4 7
|
9 |
+
1716157467207 713002.8 8
|
10 |
+
1716157477211 713002.7 9
|
11 |
+
1716157487215 713002.8 10
|
12 |
+
1716157497218 713097.2 11
|
13 |
+
1716157507223 713286.1 12
|
14 |
+
1716157517228 713286.1 13
|
15 |
+
1716157527232 713286.1 14
|
16 |
+
1716157537236 713286.1 15
|
17 |
+
1716157547240 713286.1 16
|
18 |
+
1716157557243 713286.1 17
|
19 |
+
1716157567247 713286.2 18
|
20 |
+
1716157577253 713286.2 19
|
21 |
+
1716157587256 713286.2 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/disk_usage_percentage
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 38.7 0
|
2 |
+
1716157397172 38.7 1
|
3 |
+
1716157407178 38.7 2
|
4 |
+
1716157417183 38.7 3
|
5 |
+
1716157427188 38.7 4
|
6 |
+
1716157437194 38.7 5
|
7 |
+
1716157447198 38.7 6
|
8 |
+
1716157457202 38.7 7
|
9 |
+
1716157467207 38.7 8
|
10 |
+
1716157477211 38.7 9
|
11 |
+
1716157487215 38.7 10
|
12 |
+
1716157497218 38.7 11
|
13 |
+
1716157507223 38.7 12
|
14 |
+
1716157517228 38.7 13
|
15 |
+
1716157527232 38.7 14
|
16 |
+
1716157537236 38.7 15
|
17 |
+
1716157547240 38.7 16
|
18 |
+
1716157557243 38.7 17
|
19 |
+
1716157567247 38.7 18
|
20 |
+
1716157577253 38.7 19
|
21 |
+
1716157587256 38.7 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_megabytes
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 1796.1 0
|
2 |
+
1716157397172 8720.9 1
|
3 |
+
1716157407178 8720.9 2
|
4 |
+
1716157417183 8710.4 3
|
5 |
+
1716157427188 8702.3 4
|
6 |
+
1716157437194 8717.3 5
|
7 |
+
1716157447198 8731.6 6
|
8 |
+
1716157457202 8759.2 7
|
9 |
+
1716157467207 8741.8 8
|
10 |
+
1716157477211 8741.8 9
|
11 |
+
1716157487215 8741.8 10
|
12 |
+
1716157497218 9291.9 11
|
13 |
+
1716157507223 8755.1 12
|
14 |
+
1716157517228 8759.4 13
|
15 |
+
1716157527232 8725.9 14
|
16 |
+
1716157537236 8747.7 15
|
17 |
+
1716157547240 8774.2 16
|
18 |
+
1716157557243 8745.5 17
|
19 |
+
1716157567247 8722.3 18
|
20 |
+
1716157577253 8718.3 19
|
21 |
+
1716157587256 8863.6 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_memory_usage_percentage
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 7.0 0
|
2 |
+
1716157397172 33.9 1
|
3 |
+
1716157407178 33.9 2
|
4 |
+
1716157417183 33.8 3
|
5 |
+
1716157427188 33.8 4
|
6 |
+
1716157437194 33.8 5
|
7 |
+
1716157447198 33.9 6
|
8 |
+
1716157457202 34.0 7
|
9 |
+
1716157467207 33.9 8
|
10 |
+
1716157477211 33.9 9
|
11 |
+
1716157487215 33.9 10
|
12 |
+
1716157497218 36.1 11
|
13 |
+
1716157507223 34.0 12
|
14 |
+
1716157517228 34.0 13
|
15 |
+
1716157527232 33.9 14
|
16 |
+
1716157537236 34.0 15
|
17 |
+
1716157547240 34.1 16
|
18 |
+
1716157557243 34.0 17
|
19 |
+
1716157567247 33.9 18
|
20 |
+
1716157577253 33.8 19
|
21 |
+
1716157587256 34.4 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_percentage
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 6.5 0
|
2 |
+
1716157397172 35.3 1
|
3 |
+
1716157407178 36.8 2
|
4 |
+
1716157417183 35.2 3
|
5 |
+
1716157427188 35.7 4
|
6 |
+
1716157437194 31.1 5
|
7 |
+
1716157447198 36.2 6
|
8 |
+
1716157457202 31.8 7
|
9 |
+
1716157467207 39.5 8
|
10 |
+
1716157477211 38.1 9
|
11 |
+
1716157487215 38.2 10
|
12 |
+
1716157497218 15.1 11
|
13 |
+
1716157507223 39.6 12
|
14 |
+
1716157517228 35.6 13
|
15 |
+
1716157527232 33.1 14
|
16 |
+
1716157537236 34.3 15
|
17 |
+
1716157547240 35.7 16
|
18 |
+
1716157557243 32.9 17
|
19 |
+
1716157567247 31.3 18
|
20 |
+
1716157577253 35.4 19
|
21 |
+
1716157587256 38.5 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_power_usage_watts
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 29.0 0
|
2 |
+
1716157397172 158.7 1
|
3 |
+
1716157407178 165.7 2
|
4 |
+
1716157417183 158.6 3
|
5 |
+
1716157427188 160.8 4
|
6 |
+
1716157437194 140.2 5
|
7 |
+
1716157447198 162.8 6
|
8 |
+
1716157457202 143.2 7
|
9 |
+
1716157467207 177.9 8
|
10 |
+
1716157477211 171.4 9
|
11 |
+
1716157487215 171.8 10
|
12 |
+
1716157497218 68.0 11
|
13 |
+
1716157507223 178.0 12
|
14 |
+
1716157517228 160.1 13
|
15 |
+
1716157527232 148.9 14
|
16 |
+
1716157537236 154.2 15
|
17 |
+
1716157547240 160.5 16
|
18 |
+
1716157557243 148.2 17
|
19 |
+
1716157567247 140.7 18
|
20 |
+
1716157577253 159.5 19
|
21 |
+
1716157587256 173.1 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/gpu_0_utilization_percentage
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 19.0 0
|
2 |
+
1716157397172 44.0 1
|
3 |
+
1716157407178 45.0 2
|
4 |
+
1716157417183 25.0 3
|
5 |
+
1716157427188 20.0 4
|
6 |
+
1716157437194 6.0 5
|
7 |
+
1716157447198 49.0 6
|
8 |
+
1716157457202 29.0 7
|
9 |
+
1716157467207 40.0 8
|
10 |
+
1716157477211 45.0 9
|
11 |
+
1716157487215 23.0 10
|
12 |
+
1716157497218 0.0 11
|
13 |
+
1716157507223 45.0 12
|
14 |
+
1716157517228 45.0 13
|
15 |
+
1716157527232 48.0 14
|
16 |
+
1716157537236 46.0 15
|
17 |
+
1716157547240 45.0 16
|
18 |
+
1716157557243 2.0 17
|
19 |
+
1716157567247 46.0 18
|
20 |
+
1716157577253 40.0 19
|
21 |
+
1716157587256 15.0 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_receive_megabytes
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 0.0 0
|
2 |
+
1716157397172 0.552742999999964 1
|
3 |
+
1716157407178 1.2236440000000357 2
|
4 |
+
1716157417183 1.859866000000011 3
|
5 |
+
1716157427188 2.4165799999999535 4
|
6 |
+
1716157437194 3.1800650000000132 5
|
7 |
+
1716157447198 3.838602000000037 6
|
8 |
+
1716157457202 4.539927000000034 7
|
9 |
+
1716157467207 5.101938000000018 8
|
10 |
+
1716157477211 5.758834999999976 9
|
11 |
+
1716157487215 6.360147999999981 10
|
12 |
+
1716157497218 6.896897999999965 11
|
13 |
+
1716157507223 7.547311000000036 12
|
14 |
+
1716157517228 8.157455000000027 13
|
15 |
+
1716157527232 8.687618000000043 14
|
16 |
+
1716157537236 9.351946999999996 15
|
17 |
+
1716157547240 9.947024000000056 16
|
18 |
+
1716157557243 10.49046199999998 17
|
19 |
+
1716157567247 11.264426999999955 18
|
20 |
+
1716157577253 11.918447000000015 19
|
21 |
+
1716157587256 12.500130000000013 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/network_transmit_megabytes
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 0.0 0
|
2 |
+
1716157397172 5.578019999999981 1
|
3 |
+
1716157407178 13.062230999999997 2
|
4 |
+
1716157417183 19.055833000000007 3
|
5 |
+
1716157427188 24.678967 4
|
6 |
+
1716157437194 30.663456999999994 5
|
7 |
+
1716157447198 37.15130199999999 6
|
8 |
+
1716157457202 43.01544899999999 7
|
9 |
+
1716157467207 48.58469400000001 8
|
10 |
+
1716157477211 54.98207500000001 9
|
11 |
+
1716157487215 61.017724999999984 10
|
12 |
+
1716157497218 66.23653099999996 11
|
13 |
+
1716157507223 72.64846399999993 12
|
14 |
+
1716157517228 78.48806799999994 13
|
15 |
+
1716157527232 83.15234600000002 14
|
16 |
+
1716157537236 89.22182100000003 15
|
17 |
+
1716157547240 94.56739899999997 16
|
18 |
+
1716157557243 99.43237900000003 17
|
19 |
+
1716157567247 106.04701099999994 18
|
20 |
+
1716157577253 112.78150399999998 19
|
21 |
+
1716157587256 118.85109600000004 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_megabytes
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 7988.6 0
|
2 |
+
1716157397172 8517.4 1
|
3 |
+
1716157407178 8547.5 2
|
4 |
+
1716157417183 8526.8 3
|
5 |
+
1716157427188 8525.9 4
|
6 |
+
1716157437194 8623.0 5
|
7 |
+
1716157447198 8612.2 6
|
8 |
+
1716157457202 8621.8 7
|
9 |
+
1716157467207 8557.2 8
|
10 |
+
1716157477211 8556.6 9
|
11 |
+
1716157487215 8528.0 10
|
12 |
+
1716157497218 9058.6 11
|
13 |
+
1716157507223 8637.3 12
|
14 |
+
1716157517228 8616.1 13
|
15 |
+
1716157527232 8622.0 14
|
16 |
+
1716157537236 8665.0 15
|
17 |
+
1716157547240 8663.8 16
|
18 |
+
1716157557243 8628.1 17
|
19 |
+
1716157567247 8694.1 18
|
20 |
+
1716157577253 8664.3 19
|
21 |
+
1716157587256 8664.4 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/system/system_memory_usage_percentage
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1716157387167 11.9 0
|
2 |
+
1716157397172 12.7 1
|
3 |
+
1716157407178 12.7 2
|
4 |
+
1716157417183 12.7 3
|
5 |
+
1716157427188 12.7 4
|
6 |
+
1716157437194 12.8 5
|
7 |
+
1716157447198 12.8 6
|
8 |
+
1716157457202 12.8 7
|
9 |
+
1716157467207 12.7 8
|
10 |
+
1716157477211 12.7 9
|
11 |
+
1716157487215 12.7 10
|
12 |
+
1716157497218 13.5 11
|
13 |
+
1716157507223 12.8 12
|
14 |
+
1716157517228 12.8 13
|
15 |
+
1716157527232 12.8 14
|
16 |
+
1716157537236 12.9 15
|
17 |
+
1716157547240 12.9 16
|
18 |
+
1716157557243 12.8 17
|
19 |
+
1716157567247 12.9 18
|
20 |
+
1716157577253 12.9 19
|
21 |
+
1716157587256 12.9 20
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_accuracy
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
1716157477144 0.9117699265480042 0
|
2 |
+
1716157591484 0.941817045211792 1
|
mlruns/481616812065881245/10cda43e9e42477388168fb0c51964bb/metrics/train_f1
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
1716157477144 0.9116639494895935 0
|
2 |
+
1716157591485 0.9420514106750488 1
|