orionweller commited on
Commit
3142fd2
·
verified ·
1 Parent(s): ff4a8f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -1
README.md CHANGED
@@ -54,4 +54,41 @@ size_categories:
54
 
55
  # LIMIT-small
56
 
57
- This dataset is an MTEB-compatible version of the [original dataset](https://github.com/google-deepmind/limit). Please see that link for more details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  # LIMIT-small
56
 
57
+ A retrieval dataset that exposes fundamental theoretical limitations of embedding-based retrieval models. Despite using simple queries like "Who likes Apples?", state-of-the-art embedding models achieve less than 20% recall@100 on LIMIT full and cannot solve LIMIT-small (46 docs).
58
+
59
+ ## Links
60
+
61
+ - **Paper**: [On the Theoretical Limitations of Embedding-Based Retrieval](TODO: add paper link)
62
+ - **Code**: [github.com/google-deepmind/limit](https://github.com/google-deepmind/limit)
63
+ - **Small version**: [LIMIT-small](https://huggingface.co/datasets/orionweller/LIMIT-small/) (46 documents only)
64
+
65
+ ## Dataset Details
66
+
67
+ **Queries** (1,000): Simple questions asking "Who likes [attribute]?"
68
+ - Examples: "Who likes Quokkas?", "Who likes Joshua Trees?", "Who likes Disco Music?"
69
+
70
+ **Corpus** (46 documents): Short biographical texts describing people and their preferences
71
+ - Format: "[Name] likes [attribute1] and [attribute2]."
72
+ - Example: "Geneva Durben likes Quokkas and Apples."
73
+
74
+ **Qrels** (2,000): Each query has exactly 2 relevant documents (score=1), creating all possible combinations of 2 documents from the 46 corpus documents (C(46,2) = 1,035 combinations).
75
+
76
+ ### Format
77
+ The dataset follows standard MTEB format with three configurations:
78
+ - `default`: Query-document relevance judgments (qrels), keys: `corpus-id`, `query-id`, `score` (1 for relevant)
79
+ - `queries`: Query texts with IDs , keys: `_id`, `text`
80
+ - `corpus`: Document texts with IDs, keys: `_id`, `title` (empty), and `text`
81
+
82
+ ### Purpose
83
+ Tests whether embedding models can represent all top-k combinations of relevant documents, based on theoretical results connecting embedding dimension to representational capacity. Despite the simple nature of queries, state-of-the-art models struggle due to fundamental dimensional limitations.
84
+
85
+ ## Citation
86
+
87
+ ```bibtex
88
+ @article{weller2025limit,
89
+ title={On the Theoretical Limitations of Embedding-Based Retrieval},
90
+ author={Weller, Orion and Boratko, Michael and Naim, Iftekhar and Lee, Jinhyuk},
91
+ journal={arXiv preprint arXiv:TODO},
92
+ year={2025}
93
+ }
94
+ ```"""