Upload cpu_training_transformers_image-classification_google/vit-base-patch16-224/benchmark.json with huggingface_hub
Browse files
cpu_training_transformers_image-classification_google/vit-base-patch16-224/benchmark.json
CHANGED
@@ -7,6 +7,7 @@
|
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
|
|
10 |
"model": "google/vit-base-patch16-224",
|
11 |
"processor": "google/vit-base-patch16-224",
|
12 |
"device": "cpu",
|
@@ -79,14 +80,14 @@
|
|
79 |
"environment": {
|
80 |
"cpu": " AMD EPYC 7763 64-Core Processor",
|
81 |
"cpu_count": 4,
|
82 |
-
"cpu_ram_mb": 16757.
|
83 |
"system": "Linux",
|
84 |
"machine": "x86_64",
|
85 |
"platform": "Linux-6.5.0-1023-azure-x86_64-with-glibc2.35",
|
86 |
"processor": "x86_64",
|
87 |
"python_version": "3.10.14",
|
88 |
"optimum_benchmark_version": "0.3.1",
|
89 |
-
"optimum_benchmark_commit": "
|
90 |
"transformers_version": "4.42.4",
|
91 |
"transformers_commit": null,
|
92 |
"accelerate_version": "0.32.1",
|
@@ -105,7 +106,7 @@
|
|
105 |
"overall": {
|
106 |
"memory": {
|
107 |
"unit": "MB",
|
108 |
-
"max_ram":
|
109 |
"max_global_vram": null,
|
110 |
"max_process_vram": null,
|
111 |
"max_reserved": null,
|
@@ -114,24 +115,24 @@
|
|
114 |
"latency": {
|
115 |
"unit": "s",
|
116 |
"count": 5,
|
117 |
-
"total": 7.
|
118 |
-
"mean": 1.
|
119 |
-
"stdev": 0.
|
120 |
-
"p50": 1.
|
121 |
-
"p90": 1.
|
122 |
-
"p95": 1.
|
123 |
-
"p99": 1.
|
124 |
"values": [
|
125 |
-
1.
|
126 |
-
1.
|
127 |
-
1.
|
128 |
-
1.
|
129 |
-
1.
|
130 |
]
|
131 |
},
|
132 |
"throughput": {
|
133 |
"unit": "samples/s",
|
134 |
-
"value": 6.
|
135 |
},
|
136 |
"energy": null,
|
137 |
"efficiency": null
|
@@ -139,7 +140,7 @@
|
|
139 |
"warmup": {
|
140 |
"memory": {
|
141 |
"unit": "MB",
|
142 |
-
"max_ram":
|
143 |
"max_global_vram": null,
|
144 |
"max_process_vram": null,
|
145 |
"max_reserved": null,
|
@@ -148,21 +149,21 @@
|
|
148 |
"latency": {
|
149 |
"unit": "s",
|
150 |
"count": 2,
|
151 |
-
"total": 3.
|
152 |
-
"mean": 1.
|
153 |
-
"stdev": 0.
|
154 |
-
"p50": 1.
|
155 |
-
"p90": 1.
|
156 |
-
"p95": 1.
|
157 |
-
"p99": 1.
|
158 |
"values": [
|
159 |
-
1.
|
160 |
-
1.
|
161 |
]
|
162 |
},
|
163 |
"throughput": {
|
164 |
"unit": "samples/s",
|
165 |
-
"value": 2.
|
166 |
},
|
167 |
"energy": null,
|
168 |
"efficiency": null
|
@@ -170,7 +171,7 @@
|
|
170 |
"train": {
|
171 |
"memory": {
|
172 |
"unit": "MB",
|
173 |
-
"max_ram":
|
174 |
"max_global_vram": null,
|
175 |
"max_process_vram": null,
|
176 |
"max_reserved": null,
|
@@ -179,22 +180,22 @@
|
|
179 |
"latency": {
|
180 |
"unit": "s",
|
181 |
"count": 3,
|
182 |
-
"total": 4.
|
183 |
-
"mean": 1.
|
184 |
-
"stdev": 0.
|
185 |
-
"p50": 1.
|
186 |
-
"p90": 1.
|
187 |
-
"p95": 1.
|
188 |
-
"p99": 1.
|
189 |
"values": [
|
190 |
-
1.
|
191 |
-
1.
|
192 |
-
1.
|
193 |
]
|
194 |
},
|
195 |
"throughput": {
|
196 |
"unit": "samples/s",
|
197 |
-
"value": 3.
|
198 |
},
|
199 |
"energy": null,
|
200 |
"efficiency": null
|
|
|
7 |
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
|
8 |
"task": "image-classification",
|
9 |
"library": "transformers",
|
10 |
+
"model_type": "vit",
|
11 |
"model": "google/vit-base-patch16-224",
|
12 |
"processor": "google/vit-base-patch16-224",
|
13 |
"device": "cpu",
|
|
|
80 |
"environment": {
|
81 |
"cpu": " AMD EPYC 7763 64-Core Processor",
|
82 |
"cpu_count": 4,
|
83 |
+
"cpu_ram_mb": 16757.342208,
|
84 |
"system": "Linux",
|
85 |
"machine": "x86_64",
|
86 |
"platform": "Linux-6.5.0-1023-azure-x86_64-with-glibc2.35",
|
87 |
"processor": "x86_64",
|
88 |
"python_version": "3.10.14",
|
89 |
"optimum_benchmark_version": "0.3.1",
|
90 |
+
"optimum_benchmark_commit": "402644384abc46743e46dac65be6512bc68c9d92",
|
91 |
"transformers_version": "4.42.4",
|
92 |
"transformers_commit": null,
|
93 |
"accelerate_version": "0.32.1",
|
|
|
106 |
"overall": {
|
107 |
"memory": {
|
108 |
"unit": "MB",
|
109 |
+
"max_ram": 2454.822912,
|
110 |
"max_global_vram": null,
|
111 |
"max_process_vram": null,
|
112 |
"max_reserved": null,
|
|
|
115 |
"latency": {
|
116 |
"unit": "s",
|
117 |
"count": 5,
|
118 |
+
"total": 7.703915239000082,
|
119 |
+
"mean": 1.5407830478000164,
|
120 |
+
"stdev": 0.05219156050546416,
|
121 |
+
"p50": 1.5141081140000097,
|
122 |
+
"p90": 1.5959638832000338,
|
123 |
+
"p95": 1.62037545860004,
|
124 |
+
"p99": 1.639904718920045,
|
125 |
"values": [
|
126 |
+
1.6447870340000463,
|
127 |
+
1.5132309329999885,
|
128 |
+
1.5227291570000148,
|
129 |
+
1.509060001000023,
|
130 |
+
1.5141081140000097
|
131 |
]
|
132 |
},
|
133 |
"throughput": {
|
134 |
"unit": "samples/s",
|
135 |
+
"value": 6.490206401399826
|
136 |
},
|
137 |
"energy": null,
|
138 |
"efficiency": null
|
|
|
140 |
"warmup": {
|
141 |
"memory": {
|
142 |
"unit": "MB",
|
143 |
+
"max_ram": 2454.822912,
|
144 |
"max_global_vram": null,
|
145 |
"max_process_vram": null,
|
146 |
"max_reserved": null,
|
|
|
149 |
"latency": {
|
150 |
"unit": "s",
|
151 |
"count": 2,
|
152 |
+
"total": 3.158017967000035,
|
153 |
+
"mean": 1.5790089835000174,
|
154 |
+
"stdev": 0.06577805050002894,
|
155 |
+
"p50": 1.5790089835000174,
|
156 |
+
"p90": 1.6316314239000405,
|
157 |
+
"p95": 1.6382092289500434,
|
158 |
+
"p99": 1.6434714729900457,
|
159 |
"values": [
|
160 |
+
1.6447870340000463,
|
161 |
+
1.5132309329999885
|
162 |
]
|
163 |
},
|
164 |
"throughput": {
|
165 |
"unit": "samples/s",
|
166 |
+
"value": 2.5332344792197667
|
167 |
},
|
168 |
"energy": null,
|
169 |
"efficiency": null
|
|
|
171 |
"train": {
|
172 |
"memory": {
|
173 |
"unit": "MB",
|
174 |
+
"max_ram": 2454.822912,
|
175 |
"max_global_vram": null,
|
176 |
"max_process_vram": null,
|
177 |
"max_reserved": null,
|
|
|
180 |
"latency": {
|
181 |
"unit": "s",
|
182 |
"count": 3,
|
183 |
+
"total": 4.5458972720000475,
|
184 |
+
"mean": 1.5152990906666826,
|
185 |
+
"stdev": 0.005643596696165008,
|
186 |
+
"p50": 1.5141081140000097,
|
187 |
+
"p90": 1.5210049484000137,
|
188 |
+
"p95": 1.5218670527000142,
|
189 |
+
"p99": 1.5225567361400147,
|
190 |
"values": [
|
191 |
+
1.5227291570000148,
|
192 |
+
1.509060001000023,
|
193 |
+
1.5141081140000097
|
194 |
]
|
195 |
},
|
196 |
"throughput": {
|
197 |
"unit": "samples/s",
|
198 |
+
"value": 3.959614334197346
|
199 |
},
|
200 |
"energy": null,
|
201 |
"efficiency": null
|