sjshailab commited on
Commit
f6da3ce
·
1 Parent(s): c68b3e2
Files changed (3) hide show
  1. README.md +3 -4
  2. README_ZH.md +0 -3
  3. compare.py +2 -3
README.md CHANGED
@@ -69,7 +69,6 @@ All data files are in JSONL format (one JSON object per line).
69
  ```json
70
  {
71
  "sha256": "SHA256 hash of the file",
72
- "origin_path": "Original path of the PDF file",
73
  "doi": "Digital Object Identifier",
74
  "title": "Paper title",
75
  "author": "Author name",
@@ -84,7 +83,6 @@ All data files are in JSONL format (one JSON object per line).
84
  ```json
85
  {
86
  "sha256": "SHA256 hash of the file",
87
- "origin_path": "Original path of the PDF file",
88
  "isbn": "International Standard Book Number",
89
  "title": "Book title",
90
  "author": "Author name",
@@ -214,7 +212,6 @@ print("Overall Accuracy:", accuracy)
214
  The script generates an Excel file containing detailed sample-by-sample analysis:
215
 
216
  - `sha256`: File identifier
217
- - `origin_path`: Original file path
218
  - For each field (e.g., `title`):
219
  - `llm_title`: LLM extraction result
220
  - `benchmark_title`: Benchmark data
@@ -282,4 +279,6 @@ If you have questions or suggestions, please contact us through Issues.
282
 
283
  ---
284
 
285
- **Last Updated**: December 26, 2025
 
 
 
69
  ```json
70
  {
71
  "sha256": "SHA256 hash of the file",
 
72
  "doi": "Digital Object Identifier",
73
  "title": "Paper title",
74
  "author": "Author name",
 
83
  ```json
84
  {
85
  "sha256": "SHA256 hash of the file",
 
86
  "isbn": "International Standard Book Number",
87
  "title": "Book title",
88
  "author": "Author name",
 
212
  The script generates an Excel file containing detailed sample-by-sample analysis:
213
 
214
  - `sha256`: File identifier
 
215
  - For each field (e.g., `title`):
216
  - `llm_title`: LLM extraction result
217
  - `benchmark_title`: Benchmark data
 
279
 
280
  ---
281
 
282
+ **Last Updated**: December 26, 2025
283
+
284
+
README_ZH.md CHANGED
@@ -57,7 +57,6 @@ data/
57
  ```json
58
  {
59
  "sha256": "文件的 SHA256 哈希值",
60
- "origin_path": "PDF 文件的原始路径",
61
  "doi": "数字对象标识符",
62
  "title": "论文标题",
63
  "author": "作者姓名",
@@ -72,7 +71,6 @@ data/
72
  ```json
73
  {
74
  "sha256": "文件的 SHA256 哈希值",
75
- "origin_path": "PDF 文件的原始路径",
76
  "isbn": "国际标准书号",
77
  "title": "书名",
78
  "author": "作者姓名",
@@ -202,7 +200,6 @@ print("总体准确率:", accuracy)
202
  脚本会生成一个 Excel 文件,包含详细的逐样本分析:
203
 
204
  - `sha256`:文件标识
205
- - `origin_path`:原始文件路径
206
  - 对于每个字段(如 `title`):
207
  - `llm_title`:LLM 提取的结果
208
  - `benchmark_title`:基准数据
 
57
  ```json
58
  {
59
  "sha256": "文件的 SHA256 哈希值",
 
60
  "doi": "数字对象标识符",
61
  "title": "论文标题",
62
  "author": "作者姓名",
 
71
  ```json
72
  {
73
  "sha256": "文件的 SHA256 哈希值",
 
74
  "isbn": "国际标准书号",
75
  "title": "书名",
76
  "author": "作者姓名",
 
200
  脚本会生成一个 Excel 文件,包含详细的逐样本分析:
201
 
202
  - `sha256`:文件标识
 
203
  - 对于每个字段(如 `title`):
204
  - `llm_title`:LLM 提取的结果
205
  - `benchmark_title`:基准数据
compare.py CHANGED
@@ -85,8 +85,7 @@ def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_
85
 
86
  for sha256, data in data_dict.items():
87
  row = {
88
- 'sha256': sha256,
89
- 'origin_path': data['benchmark_dict'].get('origin_path')
90
  }
91
 
92
  for field in key_list:
@@ -102,7 +101,7 @@ def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_
102
  df = pd.DataFrame(rows)
103
 
104
  # 定义列的顺序(可选,让Excel更易读)
105
- column_order = ['sha256', 'origin_path']
106
  for field in key_list:
107
  column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}'])
108
 
 
85
 
86
  for sha256, data in data_dict.items():
87
  row = {
88
+ 'sha256': sha256
 
89
  }
90
 
91
  for field in key_list:
 
101
  df = pd.DataFrame(rows)
102
 
103
  # 定义列的顺序(可选,让Excel更易读)
104
+ column_order = ['sha256']
105
  for field in key_list:
106
  column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}'])
107