sjshailab
commited on
Commit
·
f6da3ce
1
Parent(s):
c68b3e2
update
Browse files- README.md +3 -4
- README_ZH.md +0 -3
- compare.py +2 -3
README.md
CHANGED
|
@@ -69,7 +69,6 @@ All data files are in JSONL format (one JSON object per line).
|
|
| 69 |
```json
|
| 70 |
{
|
| 71 |
"sha256": "SHA256 hash of the file",
|
| 72 |
-
"origin_path": "Original path of the PDF file",
|
| 73 |
"doi": "Digital Object Identifier",
|
| 74 |
"title": "Paper title",
|
| 75 |
"author": "Author name",
|
|
@@ -84,7 +83,6 @@ All data files are in JSONL format (one JSON object per line).
|
|
| 84 |
```json
|
| 85 |
{
|
| 86 |
"sha256": "SHA256 hash of the file",
|
| 87 |
-
"origin_path": "Original path of the PDF file",
|
| 88 |
"isbn": "International Standard Book Number",
|
| 89 |
"title": "Book title",
|
| 90 |
"author": "Author name",
|
|
@@ -214,7 +212,6 @@ print("Overall Accuracy:", accuracy)
|
|
| 214 |
The script generates an Excel file containing detailed sample-by-sample analysis:
|
| 215 |
|
| 216 |
- `sha256`: File identifier
|
| 217 |
-
- `origin_path`: Original file path
|
| 218 |
- For each field (e.g., `title`):
|
| 219 |
- `llm_title`: LLM extraction result
|
| 220 |
- `benchmark_title`: Benchmark data
|
|
@@ -282,4 +279,6 @@ If you have questions or suggestions, please contact us through Issues.
|
|
| 282 |
|
| 283 |
---
|
| 284 |
|
| 285 |
-
**Last Updated**: December 26, 2025
|
|
|
|
|
|
|
|
|
| 69 |
```json
|
| 70 |
{
|
| 71 |
"sha256": "SHA256 hash of the file",
|
|
|
|
| 72 |
"doi": "Digital Object Identifier",
|
| 73 |
"title": "Paper title",
|
| 74 |
"author": "Author name",
|
|
|
|
| 83 |
```json
|
| 84 |
{
|
| 85 |
"sha256": "SHA256 hash of the file",
|
|
|
|
| 86 |
"isbn": "International Standard Book Number",
|
| 87 |
"title": "Book title",
|
| 88 |
"author": "Author name",
|
|
|
|
| 212 |
The script generates an Excel file containing detailed sample-by-sample analysis:
|
| 213 |
|
| 214 |
- `sha256`: File identifier
|
|
|
|
| 215 |
- For each field (e.g., `title`):
|
| 216 |
- `llm_title`: LLM extraction result
|
| 217 |
- `benchmark_title`: Benchmark data
|
|
|
|
| 279 |
|
| 280 |
---
|
| 281 |
|
| 282 |
+
**Last Updated**: December 26, 2025
|
| 283 |
+
|
| 284 |
+
|
README_ZH.md
CHANGED
|
@@ -57,7 +57,6 @@ data/
|
|
| 57 |
```json
|
| 58 |
{
|
| 59 |
"sha256": "文件的 SHA256 哈希值",
|
| 60 |
-
"origin_path": "PDF 文件的原始路径",
|
| 61 |
"doi": "数字对象标识符",
|
| 62 |
"title": "论文标题",
|
| 63 |
"author": "作者姓名",
|
|
@@ -72,7 +71,6 @@ data/
|
|
| 72 |
```json
|
| 73 |
{
|
| 74 |
"sha256": "文件的 SHA256 哈希值",
|
| 75 |
-
"origin_path": "PDF 文件的原始路径",
|
| 76 |
"isbn": "国际标准书号",
|
| 77 |
"title": "书名",
|
| 78 |
"author": "作者姓名",
|
|
@@ -202,7 +200,6 @@ print("总体准确率:", accuracy)
|
|
| 202 |
脚本会生成一个 Excel 文件,包含详细的逐样本分析:
|
| 203 |
|
| 204 |
- `sha256`:文件标识
|
| 205 |
-
- `origin_path`:原始文件路径
|
| 206 |
- 对于每个字段(如 `title`):
|
| 207 |
- `llm_title`:LLM 提取的结果
|
| 208 |
- `benchmark_title`:基准数据
|
|
|
|
| 57 |
```json
|
| 58 |
{
|
| 59 |
"sha256": "文件的 SHA256 哈希值",
|
|
|
|
| 60 |
"doi": "数字对象标识符",
|
| 61 |
"title": "论文标题",
|
| 62 |
"author": "作者姓名",
|
|
|
|
| 71 |
```json
|
| 72 |
{
|
| 73 |
"sha256": "文件的 SHA256 哈希值",
|
|
|
|
| 74 |
"isbn": "国际标准书号",
|
| 75 |
"title": "书名",
|
| 76 |
"author": "作者姓名",
|
|
|
|
| 200 |
脚本会生成一个 Excel 文件,包含详细的逐样本分析:
|
| 201 |
|
| 202 |
- `sha256`:文件标识
|
|
|
|
| 203 |
- 对于每个字段(如 `title`):
|
| 204 |
- `llm_title`:LLM 提取的结果
|
| 205 |
- `benchmark_title`:基准数据
|
compare.py
CHANGED
|
@@ -85,8 +85,7 @@ def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_
|
|
| 85 |
|
| 86 |
for sha256, data in data_dict.items():
|
| 87 |
row = {
|
| 88 |
-
'sha256': sha256
|
| 89 |
-
'origin_path': data['benchmark_dict'].get('origin_path')
|
| 90 |
}
|
| 91 |
|
| 92 |
for field in key_list:
|
|
@@ -102,7 +101,7 @@ def write_similarity_data_to_excel(key_list, data_dict, output_file="similarity_
|
|
| 102 |
df = pd.DataFrame(rows)
|
| 103 |
|
| 104 |
# 定义列的顺序(可选,让Excel更易读)
|
| 105 |
-
column_order = ['sha256'
|
| 106 |
for field in key_list:
|
| 107 |
column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}'])
|
| 108 |
|
|
|
|
| 85 |
|
| 86 |
for sha256, data in data_dict.items():
|
| 87 |
row = {
|
| 88 |
+
'sha256': sha256
|
|
|
|
| 89 |
}
|
| 90 |
|
| 91 |
for field in key_list:
|
|
|
|
| 101 |
df = pd.DataFrame(rows)
|
| 102 |
|
| 103 |
# 定义列的顺序(可选,让Excel更易读)
|
| 104 |
+
column_order = ['sha256']
|
| 105 |
for field in key_list:
|
| 106 |
column_order.extend([f'llm_{field}', f'benchmark_{field}', f'similarity_{field}'])
|
| 107 |
|