oneonlee commited on
Commit
4cc07f0
1 Parent(s): 995a095

Upload 4 files

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. cleansed_dev.csv +0 -0
  3. cleansed_test.csv +0 -0
  4. cleansed_train.csv +0 -0
README.md CHANGED
@@ -1,3 +1,202 @@
1
  ---
 
 
 
 
2
  license: mpl-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - crowdsourced
6
  license: mpl-2.0
7
+ task_categories:
8
+ - text-classification
9
+ task_ids:
10
+ - sentiment-classification
11
+ language:
12
+ - en
13
+ tags:
14
+ - conversation
15
+ size_categories:
16
+ - 10K<n<100K
17
+ source_datasets:
18
+ - emo
19
+ pretty_name: Cleansed_EmoContext
20
+ dataset_info:
21
+ features:
22
+ - name: turn1
23
+ dtype: string
24
+ - name: turn2
25
+ dtype: string
26
+ - name: turn3
27
+ dtype: string
28
+ - name: label
29
+ dtype:
30
+ class_label:
31
+ names:
32
+ "0": others
33
+ "1": happy
34
+ "2": sad
35
+ "3": angry
36
+ config_name: cleansed_emo2019
37
+ # splits:
38
+ # - name: train
39
+ # num_bytes: 2433205
40
+ # num_examples: 30160
41
+ # - name: test
42
+ # num_bytes: 421555
43
+ # num_examples: 5509
44
+ # download_size: 3362556
45
+ # dataset_size: 2854760
46
  ---
47
+
48
+ # Dataset Card for "cleansed_emocontext"
49
+
50
+ - `cleansed_emocontext` is a **cleansed and normalized version** of [`emo`](https://huggingface.co/datasets/emo).
51
+ - For cleansing and normalization, [`data_cleansing.py`](https://github.com/oneonlee/cleansed_emocontext/blob/master/helpers/data_cleaning.py) was used, [modifying the code](https://github.com/oneonlee/cleansed_emocontext/commit/c09b020dfb49692a1c5fcd2099d531503d9bb8b5#diff-266912260148f110c4e7fe00b6cdef4c23b024dca8c693a0dd3c83f25ba56f54) provided on the [official EmoContext GitHub](https://github.com/DhruvDh/emocontext).
52
+
53
+ ## Table of Contents
54
+
55
+ - [Dataset Description](#dataset-description)
56
+ - [Dataset Summary](#dataset-summary)
57
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
58
+ - [Languages](#languages)
59
+ - [Dataset Structure](#dataset-structure)
60
+ - [Data Instances](#data-instances)
61
+ - [Data Fields](#data-fields)
62
+ - [Data Splits](#data-splits)
63
+ - [Dataset Creation](#dataset-creation)
64
+ - [Curation Rationale](#curation-rationale)
65
+ - [Source Data](#source-data)
66
+ - [Annotations](#annotations)
67
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
68
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
69
+ - [Social Impact of Dataset](#social-impact-of-dataset)
70
+ - [Discussion of Biases](#discussion-of-biases)
71
+ - [Other Known Limitations](#other-known-limitations)
72
+ - [Additional Information](#additional-information)
73
+ - [Dataset Curators](#dataset-curators)
74
+ - [Licensing Information](#licensing-information)
75
+ - [Citation Information](#citation-information)
76
+ - [Contributions](#contributions)
77
+
78
+ ## Dataset Description
79
+
80
+ - **Homepage:** [SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text](https://aclanthology.org/S19-2005/)
81
+ - **Repository:** [More Information Needed](https://github.com/DhruvDh/emocontext)
82
+ - **Paper:** [SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text](https://aclanthology.org/S19-2005/)
83
+ - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
84
+ - **Size of downloaded dataset files:** 3.37 MB
85
+ - **Size of the generated dataset:** 2.85 MB
86
+ - **Total amount of disk used:** 6.22 MB
87
+
88
+ ### Dataset Summary
89
+
90
+ In this dataset, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others.
91
+
92
+ ### Supported Tasks and Leaderboards
93
+
94
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
95
+
96
+ ### Languages
97
+
98
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
99
+
100
+ ## Dataset Structure
101
+
102
+ ### Data Instances
103
+
104
+ #### cleansed_emo2019
105
+
106
+ An example of 'train' looks as follows.
107
+
108
+ ```
109
+ {
110
+ "label": 0,
111
+ "turn1": "don't worry i'm girl",
112
+ "turn2": "hmm how do i know if you are",
113
+ "turn3": "what's your name ?"
114
+ }
115
+ ```
116
+
117
+ ### Data Fields
118
+
119
+ The data fields are the same among all splits.
120
+
121
+ #### cleansed_emo2019
122
+
123
+ - `turn1`, `turn2`, `turn3`: a `string` feature.
124
+ - `label`: a classification label, with possible values including `others` (0), `happy` (1), `sad` (2), `angry` (3).
125
+
126
+ ### Data Splits
127
+
128
+ | name | train | dev | test |
129
+ | ---------------- | ----: | ---: | ---: |
130
+ | cleansed_emo2019 | 30160 | 2755 | 5509 |
131
+
132
+ ## Dataset Creation
133
+
134
+ ### Curation Rationale
135
+
136
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
137
+
138
+ ### Source Data
139
+
140
+ #### Initial Data Collection and Normalization
141
+
142
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
143
+
144
+ #### Who are the source language producers?
145
+
146
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
147
+
148
+ ### Annotations
149
+
150
+ #### Annotation process
151
+
152
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
153
+
154
+ #### Who are the annotators?
155
+
156
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
157
+
158
+ ### Personal and Sensitive Information
159
+
160
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
161
+
162
+ ## Considerations for Using the Data
163
+
164
+ ### Social Impact of Dataset
165
+
166
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
167
+
168
+ ### Discussion of Biases
169
+
170
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
171
+
172
+ ### Other Known Limitations
173
+
174
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
175
+
176
+ ## Additional Information
177
+
178
+ ### Dataset Curators
179
+
180
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
181
+
182
+ ### Licensing Information
183
+
184
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
185
+
186
+ ### Citation Information
187
+
188
+ ```
189
+ @inproceedings{chatterjee-etal-2019-semeval,
190
+ title={SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text},
191
+ author={Ankush Chatterjee and Kedhar Nath Narahari and Meghana Joshi and Puneet Agrawal},
192
+ booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation},
193
+ year={2019},
194
+ address={Minneapolis, Minnesota, USA},
195
+ publisher={Association for Computational Linguistics},
196
+ url={https://www.aclweb.org/anthology/S19-2005},
197
+ doi={10.18653/v1/S19-2005},
198
+ pages={39--48},
199
+ abstract={In this paper, we present the SemEval-2019 Task 3 - EmoContext: Contextual Emotion Detection in Text. Lack of facial expressions and voice modulations make detecting emotions in text a challenging problem. For instance, as humans, on reading ''Why don't you ever text me!'' we can either interpret it as a sad or angry emotion and the same ambiguity exists for machines. However, the context of dialogue can prove helpful in detection of the emotion. In this task, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others. To facilitate the participation in this task, textual dialogues from user interaction with a conversational agent were taken and annotated for emotion classes after several data processing steps. A training data set of 30160 dialogues, and two evaluation data sets, Test1 and Test2, containing 2755 and 5509 dialogues respectively were released to the participants. A total of 311 teams made submissions to this task. The final leader-board was evaluated on Test2 data set, and the highest ranked submission achieved 79.59 micro-averaged F1 score. Our analysis of systems submitted to the task indicate that Bi-directional LSTM was the most common choice of neural architecture used, and most of the systems had the best performance for the Sad emotion class, and the worst for the Happy emotion class}
200
+ }
201
+
202
+ ```
cleansed_dev.csv ADDED
The diff for this file is too large to render. See raw diff
 
cleansed_test.csv ADDED
The diff for this file is too large to render. See raw diff
 
cleansed_train.csv ADDED
The diff for this file is too large to render. See raw diff