omasteam commited on
Commit
d03986c
·
verified ·
1 Parent(s): de9cfa1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -3
README.md CHANGED
@@ -1,3 +1,93 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+
4
+ ---
5
+ dataset_info:
6
+ features:
7
+ - name: image
8
+ dtype: image
9
+ - name: label
10
+ dtype:
11
+ class_label:
12
+ names:
13
+ - Metal
14
+ - Glass
15
+ - Biological
16
+ - Paper
17
+ - Battery
18
+ - Trash
19
+ - Cardboard
20
+ - Shoes
21
+ - Clothes
22
+ - Plastic
23
+ splits:
24
+ - name: train
25
+ num_examples: 19762
26
+ total_num_examples: 19762
27
+ task_templates:
28
+ - task: image-classification
29
+ input_schema: image
30
+ label_schema: class_label
31
+ ---
32
+
33
+ # Garbage Classification Dataset
34
+
35
+ ## Dataset Summary
36
+ This dataset contains images of garbage items categorized into **10 classes**, designed for machine learning and computer vision projects focusing on **recycling and waste management**.
37
+
38
+ It is ideal for building classification or object detection models, or developing **AI-powered solutions for sustainable waste disposal**.
39
+
40
+ - **Total Images:** 19,762
41
+ - **Number of Classes:** 10
42
+
43
+ ### Class Distribution
44
+ - **Metal:** 1020
45
+ - **Glass:** 3061
46
+ - **Biological:** 997
47
+ - **Paper:** 1680
48
+ - **Battery:** 944
49
+ - **Trash:** 947
50
+ - **Cardboard:** 1825
51
+ - **Shoes:** 1977
52
+ - **Clothes:** 5327
53
+ - **Plastic:** 1984
54
+
55
+ ---
56
+
57
+ ## Key Features
58
+ - **Diverse Categories:** Covers common household waste items for a wide range of applications.
59
+ - **Balanced Distribution:** Each class is sufficiently populated, ensuring robust model training.
60
+ - **High-Quality Images:** Clear and well-annotated images for better performance in computer vision tasks.
61
+ - **Real-World Applications:** Ideal for recycling solutions, waste segregation apps, and educational tools.
62
+
63
+ ---
64
+
65
+ ## Academic Reference
66
+ This dataset was featured in the research paper:
67
+ **_"Managing Household Waste Through Transfer Learning"_**
68
+ It demonstrates the dataset’s utility in **real-world waste management applications**. Researchers and developers can replicate or extend the experiments for further studies.
69
+
70
+ ---
71
+
72
+ ## Applications
73
+ - **AI for Sustainability:** Train AI models to classify garbage and promote automated waste management.
74
+ - **Recycling Programs:** Build systems to sort garbage into recyclable and non-recyclable materials.
75
+ - **Environmental Education:** Develop tools to teach kids and adults about proper waste disposal.
76
+
77
+ ---
78
+
79
+ ## Feedback
80
+ Thank you for your interest in our waste dataset!
81
+ Whether you have used the dataset or are considering its use, your feedback is crucial. Please share your thoughts and experiences to help us improve.
82
+
83
+ ---
84
+
85
+ ## Citation
86
+ If you use this dataset, please cite the following:
87
+
88
+ **Author:** *Suman Kunwar*
89
+ **Company:** *D.Waste.app*
90
+ **App Link:** [Deep Waste - Play Store](https://play.google.com/store/apps/details?id=com.hai.deep_waste&hl=en)
91
+
92
+
93
+ ---