|
import json |
|
import pandas as pd |
|
import datasets |
|
from pathlib import Path |
|
from PIL import Image |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@article{LayoutLmv3 for CV extractions, |
|
title={LayoutLmv3for Key Information Extraction}, |
|
author={Misa R&D Team}, |
|
year={2022}, |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
CV is a collection of receipts. It contains, for each photo about cv personal, a list of OCRs - with the bounding box, text, and class. The goal is to benchmark "key information extraction" - extracting key information from documents |
|
https://arxiv.org/abs/2103.14470 |
|
""" |
|
|
|
|
|
def load_image(image_path): |
|
image = Image.open(image_path).convert("RGB") |
|
w, h = image.size |
|
|
|
return image, (w, h) |
|
|
|
def normalize_bbox(bbox, size): |
|
return [ |
|
int(1000 * bbox[0] / size[0]), |
|
int(1000 * bbox[1] / size[1]), |
|
int(1000 * bbox[2] / size[0]), |
|
int(1000 * bbox[3] / size[1]), |
|
] |
|
|
|
|
|
def _get_drive_url(url): |
|
base_url = 'https://drive.google.com/uc?id=' |
|
split_url = url.split('/') |
|
|
|
return base_url + split_url[5] |
|
|
|
_URLS = [ |
|
_get_drive_url("https://drive.google.com/file/d/1fHDcNKdYFu33Z0kOQzVemLwjuuc3tdg-/"), |
|
_get_drive_url("https://drive.google.com/file/d/1bqESdP3UhQ5H9ZEnn5NsH44FZmiQa0G_/"), |
|
_get_drive_url("https://drive.google.com/file/d/11SRDeRKUr8XacB7tauiGjkw1PXDGFKUx/"), |
|
_get_drive_url("https://drive.google.com/file/d/1KdDBmGP96lFc7jv2Bf4eqrO121ST-TCh/"), |
|
] |
|
|
|
class CVENConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for WildReceipt Dataset""" |
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for WildReceipt Dataset. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(CVENConfig, self).__init__(**kwargs) |
|
|
|
class CVDataset(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
CVENConfig(name="CV Extractions", version=datasets.Version("1.0.0"), description="CV dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"words": datasets.Sequence(datasets.Value("string")), |
|
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=['person_name', 'dob_field', 'gender_field', \ |
|
'phonenumber_field', 'email_field', \ |
|
'address_field', 'socical_address_field', \ |
|
'education', 'education_name', 'education_time', \ |
|
'experience', 'experience_name', 'experience_time', \ |
|
'information', 'undefined'] |
|
) |
|
), |
|
"image_path": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
homepage="", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
"""Uses local files located with data_dir""" |
|
downloaded_file = dl_manager.download_and_extract(_URLS) |
|
dest = Path(downloaded_file[0])/'data2' |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train_en.txt", "dest": dest} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test_en.txt", "dest": dest} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, dest): |
|
|
|
df = pd.read_csv(dest/'class_list.txt', delimiter='\s', header=None) |
|
id2labels = dict(zip(df[0].tolist(), df[1].tolist())) |
|
|
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
item_list = [] |
|
with open(filepath, 'r') as f: |
|
for line in f: |
|
item_list.append(line.rstrip('\n\r')) |
|
|
|
for guid, fname in enumerate(item_list): |
|
|
|
data = json.loads(fname) |
|
image_path = dest/data['file_name'] |
|
image, size = load_image(image_path) |
|
boxes = [[i['box'][6], i['box'][7], i['box'][2], i['box'][3]] for i in data['annotations']] |
|
|
|
text = [i['text'] for i in data['annotations']] |
|
label = [id2labels[i['label']] for i in data['annotations']] |
|
|
|
boxes = [normalize_bbox(box, size) for box in boxes] |
|
|
|
flag=0 |
|
for i in boxes: |
|
for j in i: |
|
if j>1000: |
|
flag+=1 |
|
pass |
|
if flag>0: print(image_path) |
|
|
|
yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path} |