|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@misc{multipl-e, |
|
doi = {10.48550/ARXIV.2208.08227}, |
|
url = {https://arxiv.org/abs/2208.08227}, |
|
author = {Cassano, Federico and Gouwar, John and Nguyen, Daniel and |
|
Nguyen, Sydney and Phipps-Costin, Luna and Pinckney, Donald and |
|
Yee, Ming-Ho and Zi, Yangtian and Anderson, Carolyn Jane and |
|
Feldman, Molly Q and Guha, Arjun and |
|
Greenberg, Michael and Jangda, Abhinav}, |
|
title = {A Scalable and Extensible Approach to Benchmarking NL2Code for 18 |
|
Programming Languages}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MultiPL-E is a dataset for evaluating large language models for code \ |
|
generation that supports 18 programming languages. It takes the OpenAI \ |
|
"HumanEval" Python benchmarks and uses little compilers to translate them \ |
|
to other languages. It is easy to add support for new languages and benchmarks. |
|
""" |
|
|
|
_LANGUAGES = [ |
|
"cpp", "cs", "d", "go", "java", "jl", "js", "lua", "php", "pl", "py", "r", |
|
"rb", "rkt", "rs", "scala", "sh", "swift", "ts" |
|
] |
|
|
|
_VARIATIONS = [ "keep", "transform", "reworded", "remove" ] |
|
|
|
class MultiPLEConfig(datasets.BuilderConfig): |
|
|
|
def __init__(self, language, variation): |
|
super(MultiPLEConfig, self).__init__(version=datasets.Version("1.0.0")) |
|
self.name = language + "-" + variation |
|
|
|
self.language = language |
|
self.variation = variation |
|
self.url = f"./data/{language}-{variation}.json" |
|
self.data_files = self.url |
|
|
|
|
|
|
|
class MultiPLE(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
MultiPLEConfig(language=language, variation=variation) for language in _LANGUAGES for variation in _VARIATIONS |
|
] |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
license="MIT", |
|
features=datasets.Features({ |
|
"name": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"doctests": datasets.Value("string"), |
|
"original": datasets.Value("string"), |
|
"prompt_terminology": datasets.Value("string"), |
|
"tests": datasets.Value("string"), |
|
"stop_tokens": datasets.features.Sequence(datasets.Value("string")), |
|
}), |
|
supervised_keys=None, |
|
homepage="https://nuprl.github.io/MultiPL-E/", |
|
citation=_CITATION, |
|
task_templates=[] |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
files = dl_manager.download(self.config.data_files) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": files, |
|
"split": datasets.Split.TEST, |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for id_, row in enumerate(data): |
|
yield id_, row |