Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lib/python3.10/site-packages/keras_core/_tf_keras/__init__.py +54 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/__init__.py +64 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/convnext/__init__.py +14 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/densenet/__init__.py +12 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/mobilenet/__init__.py +10 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/mobilenet_v2/__init__.py +10 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/mobilenet_v3/__init__.py +9 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/resnet/__init__.py +12 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/resnet50/__init__.py +10 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/resnet_v2/__init__.py +12 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/applications/vgg16/__init__.py +10 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/callbacks/__init__.py +20 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/config/__init__.py +21 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/__init__.py +14 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/boston_housing/__init__.py +9 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/cifar10/__init__.py +8 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/cifar100/__init__.py +8 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/fashion_mnist/__init__.py +8 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/imdb/__init__.py +9 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/mnist/__init__.py +8 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/datasets/reuters/__init__.py +10 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/export/__init__.py +8 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/layers/__init__.py +157 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/legacy/__init__.py +8 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/legacy/saving/__init__.py +9 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/optimizers/__init__.py +24 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/optimizers/schedules/__init__.py +16 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/regularizers/__init__.py +19 -0
- lib/python3.10/site-packages/keras_core/_tf_keras/saving/__init__.py +17 -0
- lib/python3.10/site-packages/keras_core/constraints/__init__.py +19 -0
- lib/python3.10/site-packages/keras_core/distribution/__init__.py +15 -0
- lib/python3.10/site-packages/keras_core/losses/__init__.py +45 -0
- lib/python3.10/site-packages/keras_core/mixed_precision/__init__.py +14 -0
- lib/python3.10/site-packages/keras_core/src/activations/__init__.py +102 -0
- lib/python3.10/site-packages/keras_core/src/activations/activations.py +440 -0
- lib/python3.10/site-packages/keras_core/src/constraints/__init__.py +62 -0
- lib/python3.10/site-packages/keras_core/src/constraints/constraints.py +220 -0
- lib/python3.10/site-packages/keras_core/src/distribution/__init__.py +1 -0
- lib/python3.10/site-packages/keras_core/src/distribution/distribution_lib.py +508 -0
- lib/python3.10/site-packages/keras_core/src/initializers/__init__.py +120 -0
- lib/python3.10/site-packages/keras_core/src/initializers/constant_initializers.py +154 -0
- lib/python3.10/site-packages/keras_core/src/initializers/initializer.py +84 -0
- lib/python3.10/site-packages/keras_core/src/losses/__init__.py +174 -0
- lib/python3.10/site-packages/keras_core/src/losses/loss.py +174 -0
- lib/python3.10/site-packages/keras_core/src/losses/losses.py +1861 -0
- lib/python3.10/site-packages/keras_core/src/metrics/__init__.py +203 -0
- lib/python3.10/site-packages/keras_core/src/metrics/accuracy_metrics.py +444 -0
- lib/python3.10/site-packages/keras_core/src/metrics/confusion_metrics.py +1575 -0
- lib/python3.10/site-packages/keras_core/src/metrics/f_score_metrics.py +319 -0
- lib/python3.10/site-packages/keras_core/src/metrics/hinge_metrics.py +95 -0
lib/python3.10/site-packages/keras_core/_tf_keras/__init__.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core import activations
|
| 9 |
+
from keras_core import applications
|
| 10 |
+
from keras_core import callbacks
|
| 11 |
+
from keras_core import config
|
| 12 |
+
from keras_core import constraints
|
| 13 |
+
from keras_core import datasets
|
| 14 |
+
from keras_core import distribution
|
| 15 |
+
from keras_core import export
|
| 16 |
+
from keras_core import initializers
|
| 17 |
+
from keras_core import legacy
|
| 18 |
+
from keras_core import metrics
|
| 19 |
+
from keras_core import mixed_precision
|
| 20 |
+
from keras_core import models
|
| 21 |
+
from keras_core import ops
|
| 22 |
+
from keras_core import optimizers
|
| 23 |
+
from keras_core import random
|
| 24 |
+
from keras_core import regularizers
|
| 25 |
+
from keras_core import utils
|
| 26 |
+
from keras_core.src.backend.common.keras_tensor import KerasTensor
|
| 27 |
+
from keras_core.src.backend.common.stateless_scope import StatelessScope
|
| 28 |
+
from keras_core.src.backend.exports import Variable
|
| 29 |
+
from keras_core.src.backend.exports import name_scope
|
| 30 |
+
from keras_core.src.initializers.initializer import Initializer
|
| 31 |
+
from keras_core.src.layers.core.input_layer import Input
|
| 32 |
+
from keras_core.src.layers.input_spec import InputSpec
|
| 33 |
+
from keras_core.src.layers.layer import Layer
|
| 34 |
+
from keras_core.src.losses.loss import Loss
|
| 35 |
+
from keras_core.src.metrics.metric import Metric
|
| 36 |
+
from keras_core.src.models.model import Model
|
| 37 |
+
from keras_core.src.models.sequential import Sequential
|
| 38 |
+
from keras_core.src.ops.function import Function
|
| 39 |
+
from keras_core.src.ops.operation import Operation
|
| 40 |
+
from keras_core.src.optimizers.optimizer import Optimizer
|
| 41 |
+
from keras_core.src.regularizers.regularizers import Regularizer
|
| 42 |
+
|
| 43 |
+
"""DO NOT EDIT.
|
| 44 |
+
|
| 45 |
+
This file was autogenerated. Do not edit it by hand,
|
| 46 |
+
since your modifications would be overwritten.
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
from keras_core._tf_keras import backend
|
| 51 |
+
from keras_core._tf_keras import layers
|
| 52 |
+
from keras_core._tf_keras import losses
|
| 53 |
+
from keras_core._tf_keras import metrics
|
| 54 |
+
from keras_core._tf_keras import preprocessing
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/__init__.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.applications import convnext
|
| 9 |
+
from keras_core.applications import densenet
|
| 10 |
+
from keras_core.applications import efficientnet
|
| 11 |
+
from keras_core.applications import efficientnet_v2
|
| 12 |
+
from keras_core.applications import imagenet_utils
|
| 13 |
+
from keras_core.applications import inception_resnet_v2
|
| 14 |
+
from keras_core.applications import inception_v3
|
| 15 |
+
from keras_core.applications import mobilenet
|
| 16 |
+
from keras_core.applications import mobilenet_v2
|
| 17 |
+
from keras_core.applications import mobilenet_v3
|
| 18 |
+
from keras_core.applications import nasnet
|
| 19 |
+
from keras_core.applications import resnet
|
| 20 |
+
from keras_core.applications import resnet50
|
| 21 |
+
from keras_core.applications import resnet_v2
|
| 22 |
+
from keras_core.applications import vgg16
|
| 23 |
+
from keras_core.applications import vgg19
|
| 24 |
+
from keras_core.applications import xception
|
| 25 |
+
from keras_core.src.applications.convnext import ConvNeXtBase
|
| 26 |
+
from keras_core.src.applications.convnext import ConvNeXtLarge
|
| 27 |
+
from keras_core.src.applications.convnext import ConvNeXtSmall
|
| 28 |
+
from keras_core.src.applications.convnext import ConvNeXtTiny
|
| 29 |
+
from keras_core.src.applications.convnext import ConvNeXtXLarge
|
| 30 |
+
from keras_core.src.applications.densenet import DenseNet121
|
| 31 |
+
from keras_core.src.applications.densenet import DenseNet169
|
| 32 |
+
from keras_core.src.applications.densenet import DenseNet201
|
| 33 |
+
from keras_core.src.applications.efficientnet import EfficientNetB0
|
| 34 |
+
from keras_core.src.applications.efficientnet import EfficientNetB1
|
| 35 |
+
from keras_core.src.applications.efficientnet import EfficientNetB2
|
| 36 |
+
from keras_core.src.applications.efficientnet import EfficientNetB3
|
| 37 |
+
from keras_core.src.applications.efficientnet import EfficientNetB4
|
| 38 |
+
from keras_core.src.applications.efficientnet import EfficientNetB5
|
| 39 |
+
from keras_core.src.applications.efficientnet import EfficientNetB6
|
| 40 |
+
from keras_core.src.applications.efficientnet import EfficientNetB7
|
| 41 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2B0
|
| 42 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2B1
|
| 43 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2B2
|
| 44 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2B3
|
| 45 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2L
|
| 46 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2M
|
| 47 |
+
from keras_core.src.applications.efficientnet_v2 import EfficientNetV2S
|
| 48 |
+
from keras_core.src.applications.inception_resnet_v2 import InceptionResNetV2
|
| 49 |
+
from keras_core.src.applications.inception_v3 import InceptionV3
|
| 50 |
+
from keras_core.src.applications.mobilenet import MobileNet
|
| 51 |
+
from keras_core.src.applications.mobilenet_v2 import MobileNetV2
|
| 52 |
+
from keras_core.src.applications.mobilenet_v3 import MobileNetV3Large
|
| 53 |
+
from keras_core.src.applications.mobilenet_v3 import MobileNetV3Small
|
| 54 |
+
from keras_core.src.applications.nasnet import NASNetLarge
|
| 55 |
+
from keras_core.src.applications.nasnet import NASNetMobile
|
| 56 |
+
from keras_core.src.applications.resnet import ResNet101
|
| 57 |
+
from keras_core.src.applications.resnet import ResNet152
|
| 58 |
+
from keras_core.src.applications.resnet import ResNet50
|
| 59 |
+
from keras_core.src.applications.resnet_v2 import ResNet101V2
|
| 60 |
+
from keras_core.src.applications.resnet_v2 import ResNet152V2
|
| 61 |
+
from keras_core.src.applications.resnet_v2 import ResNet50V2
|
| 62 |
+
from keras_core.src.applications.vgg16 import VGG16
|
| 63 |
+
from keras_core.src.applications.vgg19 import VGG19
|
| 64 |
+
from keras_core.src.applications.xception import Xception
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/convnext/__init__.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.convnext import ConvNeXtBase
|
| 9 |
+
from keras_core.src.applications.convnext import ConvNeXtLarge
|
| 10 |
+
from keras_core.src.applications.convnext import ConvNeXtSmall
|
| 11 |
+
from keras_core.src.applications.convnext import ConvNeXtTiny
|
| 12 |
+
from keras_core.src.applications.convnext import ConvNeXtXLarge
|
| 13 |
+
from keras_core.src.applications.convnext import decode_predictions
|
| 14 |
+
from keras_core.src.applications.convnext import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/densenet/__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.densenet import DenseNet121
|
| 9 |
+
from keras_core.src.applications.densenet import DenseNet169
|
| 10 |
+
from keras_core.src.applications.densenet import DenseNet201
|
| 11 |
+
from keras_core.src.applications.densenet import decode_predictions
|
| 12 |
+
from keras_core.src.applications.densenet import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/mobilenet/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.mobilenet import MobileNet
|
| 9 |
+
from keras_core.src.applications.mobilenet import decode_predictions
|
| 10 |
+
from keras_core.src.applications.mobilenet import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/mobilenet_v2/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.mobilenet_v2 import MobileNetV2
|
| 9 |
+
from keras_core.src.applications.mobilenet_v2 import decode_predictions
|
| 10 |
+
from keras_core.src.applications.mobilenet_v2 import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/mobilenet_v3/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.mobilenet_v3 import decode_predictions
|
| 9 |
+
from keras_core.src.applications.mobilenet_v3 import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/resnet/__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.resnet import ResNet101
|
| 9 |
+
from keras_core.src.applications.resnet import ResNet152
|
| 10 |
+
from keras_core.src.applications.resnet import ResNet50
|
| 11 |
+
from keras_core.src.applications.resnet import decode_predictions
|
| 12 |
+
from keras_core.src.applications.resnet import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/resnet50/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.resnet import ResNet50
|
| 9 |
+
from keras_core.src.applications.resnet import decode_predictions
|
| 10 |
+
from keras_core.src.applications.resnet import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/resnet_v2/__init__.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.resnet_v2 import ResNet101V2
|
| 9 |
+
from keras_core.src.applications.resnet_v2 import ResNet152V2
|
| 10 |
+
from keras_core.src.applications.resnet_v2 import ResNet50V2
|
| 11 |
+
from keras_core.src.applications.resnet_v2 import decode_predictions
|
| 12 |
+
from keras_core.src.applications.resnet_v2 import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/applications/vgg16/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.applications.vgg16 import VGG16
|
| 9 |
+
from keras_core.src.applications.vgg16 import decode_predictions
|
| 10 |
+
from keras_core.src.applications.vgg16 import preprocess_input
|
lib/python3.10/site-packages/keras_core/_tf_keras/callbacks/__init__.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.callbacks.callback import Callback
|
| 9 |
+
from keras_core.src.callbacks.callback_list import CallbackList
|
| 10 |
+
from keras_core.src.callbacks.csv_logger import CSVLogger
|
| 11 |
+
from keras_core.src.callbacks.early_stopping import EarlyStopping
|
| 12 |
+
from keras_core.src.callbacks.history import History
|
| 13 |
+
from keras_core.src.callbacks.lambda_callback import LambdaCallback
|
| 14 |
+
from keras_core.src.callbacks.learning_rate_scheduler import LearningRateScheduler
|
| 15 |
+
from keras_core.src.callbacks.model_checkpoint import ModelCheckpoint
|
| 16 |
+
from keras_core.src.callbacks.progbar_logger import ProgbarLogger
|
| 17 |
+
from keras_core.src.callbacks.reduce_lr_on_plateau import ReduceLROnPlateau
|
| 18 |
+
from keras_core.src.callbacks.remote_monitor import RemoteMonitor
|
| 19 |
+
from keras_core.src.callbacks.tensorboard import TensorBoard
|
| 20 |
+
from keras_core.src.callbacks.terminate_on_nan import TerminateOnNaN
|
lib/python3.10/site-packages/keras_core/_tf_keras/config/__init__.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.backend.config import backend
|
| 9 |
+
from keras_core.src.backend.config import epsilon
|
| 10 |
+
from keras_core.src.backend.config import floatx
|
| 11 |
+
from keras_core.src.backend.config import image_data_format
|
| 12 |
+
from keras_core.src.backend.config import set_epsilon
|
| 13 |
+
from keras_core.src.backend.config import set_floatx
|
| 14 |
+
from keras_core.src.backend.config import set_image_data_format
|
| 15 |
+
from keras_core.src.saving.serialization_lib import enable_unsafe_deserialization
|
| 16 |
+
from keras_core.src.utils.io_utils import disable_interactive_logging
|
| 17 |
+
from keras_core.src.utils.io_utils import enable_interactive_logging
|
| 18 |
+
from keras_core.src.utils.io_utils import is_interactive_logging_enabled
|
| 19 |
+
from keras_core.src.utils.traceback_utils import disable_traceback_filtering
|
| 20 |
+
from keras_core.src.utils.traceback_utils import enable_traceback_filtering
|
| 21 |
+
from keras_core.src.utils.traceback_utils import is_traceback_filtering_enabled
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/__init__.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.datasets import boston_housing
|
| 9 |
+
from keras_core.datasets import cifar10
|
| 10 |
+
from keras_core.datasets import cifar100
|
| 11 |
+
from keras_core.datasets import fashion_mnist
|
| 12 |
+
from keras_core.datasets import imdb
|
| 13 |
+
from keras_core.datasets import mnist
|
| 14 |
+
from keras_core.datasets import reuters
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/boston_housing/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.boston_housing import load_data
|
| 9 |
+
from keras_core.src.datasets.california_housing import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/cifar10/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.cifar10 import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/cifar100/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.cifar100 import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/fashion_mnist/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.fashion_mnist import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/imdb/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.imdb import get_word_index
|
| 9 |
+
from keras_core.src.datasets.imdb import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/mnist/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.mnist import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/datasets/reuters/__init__.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.datasets.reuters import get_label_names
|
| 9 |
+
from keras_core.src.datasets.reuters import get_word_index
|
| 10 |
+
from keras_core.src.datasets.reuters import load_data
|
lib/python3.10/site-packages/keras_core/_tf_keras/export/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.export.export_lib import ExportArchive
|
lib/python3.10/site-packages/keras_core/_tf_keras/layers/__init__.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.export.export_lib import TFSMLayer
|
| 9 |
+
from keras_core.src.layers import deserialize
|
| 10 |
+
from keras_core.src.layers import serialize
|
| 11 |
+
from keras_core.src.layers.activations.activation import Activation
|
| 12 |
+
from keras_core.src.layers.activations.elu import ELU
|
| 13 |
+
from keras_core.src.layers.activations.leaky_relu import LeakyReLU
|
| 14 |
+
from keras_core.src.layers.activations.prelu import PReLU
|
| 15 |
+
from keras_core.src.layers.activations.relu import ReLU
|
| 16 |
+
from keras_core.src.layers.activations.softmax import Softmax
|
| 17 |
+
from keras_core.src.layers.attention.additive_attention import AdditiveAttention
|
| 18 |
+
from keras_core.src.layers.attention.attention import Attention
|
| 19 |
+
from keras_core.src.layers.attention.multi_head_attention import MultiHeadAttention
|
| 20 |
+
from keras_core.src.layers.convolutional.conv1d import Conv1D
|
| 21 |
+
from keras_core.src.layers.convolutional.conv1d import Conv1D as Convolution1D
|
| 22 |
+
from keras_core.src.layers.convolutional.conv1d_transpose import Conv1DTranspose
|
| 23 |
+
from keras_core.src.layers.convolutional.conv1d_transpose import Conv1DTranspose as Convolution1DTranspose
|
| 24 |
+
from keras_core.src.layers.convolutional.conv2d import Conv2D
|
| 25 |
+
from keras_core.src.layers.convolutional.conv2d import Conv2D as Convolution2D
|
| 26 |
+
from keras_core.src.layers.convolutional.conv2d_transpose import Conv2DTranspose
|
| 27 |
+
from keras_core.src.layers.convolutional.conv2d_transpose import Conv2DTranspose as Convolution2DTranspose
|
| 28 |
+
from keras_core.src.layers.convolutional.conv3d import Conv3D
|
| 29 |
+
from keras_core.src.layers.convolutional.conv3d import Conv3D as Convolution3D
|
| 30 |
+
from keras_core.src.layers.convolutional.conv3d_transpose import Conv3DTranspose
|
| 31 |
+
from keras_core.src.layers.convolutional.conv3d_transpose import Conv3DTranspose as Convolution3DTranspose
|
| 32 |
+
from keras_core.src.layers.convolutional.depthwise_conv1d import DepthwiseConv1D
|
| 33 |
+
from keras_core.src.layers.convolutional.depthwise_conv2d import DepthwiseConv2D
|
| 34 |
+
from keras_core.src.layers.convolutional.separable_conv1d import SeparableConv1D
|
| 35 |
+
from keras_core.src.layers.convolutional.separable_conv1d import SeparableConv1D as SeparableConvolution1D
|
| 36 |
+
from keras_core.src.layers.convolutional.separable_conv2d import SeparableConv2D
|
| 37 |
+
from keras_core.src.layers.convolutional.separable_conv2d import SeparableConv2D as SeparableConvolution2D
|
| 38 |
+
from keras_core.src.layers.core.dense import Dense
|
| 39 |
+
from keras_core.src.layers.core.einsum_dense import EinsumDense
|
| 40 |
+
from keras_core.src.layers.core.embedding import Embedding
|
| 41 |
+
from keras_core.src.layers.core.identity import Identity
|
| 42 |
+
from keras_core.src.layers.core.input_layer import Input
|
| 43 |
+
from keras_core.src.layers.core.input_layer import InputLayer
|
| 44 |
+
from keras_core.src.layers.core.lambda_layer import Lambda
|
| 45 |
+
from keras_core.src.layers.core.masking import Masking
|
| 46 |
+
from keras_core.src.layers.core.wrapper import Wrapper
|
| 47 |
+
from keras_core.src.layers.input_spec import InputSpec
|
| 48 |
+
from keras_core.src.layers.layer import Layer
|
| 49 |
+
from keras_core.src.layers.merging.add import Add
|
| 50 |
+
from keras_core.src.layers.merging.add import add
|
| 51 |
+
from keras_core.src.layers.merging.average import Average
|
| 52 |
+
from keras_core.src.layers.merging.average import average
|
| 53 |
+
from keras_core.src.layers.merging.concatenate import Concatenate
|
| 54 |
+
from keras_core.src.layers.merging.concatenate import concatenate
|
| 55 |
+
from keras_core.src.layers.merging.dot import Dot
|
| 56 |
+
from keras_core.src.layers.merging.dot import dot
|
| 57 |
+
from keras_core.src.layers.merging.maximum import Maximum
|
| 58 |
+
from keras_core.src.layers.merging.maximum import maximum
|
| 59 |
+
from keras_core.src.layers.merging.minimum import Minimum
|
| 60 |
+
from keras_core.src.layers.merging.minimum import minimum
|
| 61 |
+
from keras_core.src.layers.merging.multiply import Multiply
|
| 62 |
+
from keras_core.src.layers.merging.multiply import multiply
|
| 63 |
+
from keras_core.src.layers.merging.subtract import Subtract
|
| 64 |
+
from keras_core.src.layers.merging.subtract import subtract
|
| 65 |
+
from keras_core.src.layers.normalization.batch_normalization import BatchNormalization
|
| 66 |
+
from keras_core.src.layers.normalization.group_normalization import GroupNormalization
|
| 67 |
+
from keras_core.src.layers.normalization.layer_normalization import LayerNormalization
|
| 68 |
+
from keras_core.src.layers.normalization.spectral_normalization import SpectralNormalization
|
| 69 |
+
from keras_core.src.layers.normalization.unit_normalization import UnitNormalization
|
| 70 |
+
from keras_core.src.layers.pooling.average_pooling1d import AveragePooling1D
|
| 71 |
+
from keras_core.src.layers.pooling.average_pooling1d import AveragePooling1D as AvgPool1D
|
| 72 |
+
from keras_core.src.layers.pooling.average_pooling2d import AveragePooling2D
|
| 73 |
+
from keras_core.src.layers.pooling.average_pooling2d import AveragePooling2D as AvgPool2D
|
| 74 |
+
from keras_core.src.layers.pooling.average_pooling3d import AveragePooling3D
|
| 75 |
+
from keras_core.src.layers.pooling.average_pooling3d import AveragePooling3D as AvgPool3D
|
| 76 |
+
from keras_core.src.layers.pooling.global_average_pooling1d import GlobalAveragePooling1D
|
| 77 |
+
from keras_core.src.layers.pooling.global_average_pooling1d import GlobalAveragePooling1D as GlobalAvgPool1D
|
| 78 |
+
from keras_core.src.layers.pooling.global_average_pooling2d import GlobalAveragePooling2D
|
| 79 |
+
from keras_core.src.layers.pooling.global_average_pooling2d import GlobalAveragePooling2D as GlobalAvgPool2D
|
| 80 |
+
from keras_core.src.layers.pooling.global_average_pooling3d import GlobalAveragePooling3D
|
| 81 |
+
from keras_core.src.layers.pooling.global_average_pooling3d import GlobalAveragePooling3D as GlobalAvgPool3D
|
| 82 |
+
from keras_core.src.layers.pooling.global_max_pooling1d import GlobalMaxPooling1D
|
| 83 |
+
from keras_core.src.layers.pooling.global_max_pooling1d import GlobalMaxPooling1D as GlobalMaxPool1D
|
| 84 |
+
from keras_core.src.layers.pooling.global_max_pooling2d import GlobalMaxPooling2D
|
| 85 |
+
from keras_core.src.layers.pooling.global_max_pooling2d import GlobalMaxPooling2D as GlobalMaxPool2D
|
| 86 |
+
from keras_core.src.layers.pooling.global_max_pooling3d import GlobalMaxPooling3D
|
| 87 |
+
from keras_core.src.layers.pooling.global_max_pooling3d import GlobalMaxPooling3D as GlobalMaxPool3D
|
| 88 |
+
from keras_core.src.layers.pooling.max_pooling1d import MaxPooling1D
|
| 89 |
+
from keras_core.src.layers.pooling.max_pooling1d import MaxPooling1D as MaxPool1D
|
| 90 |
+
from keras_core.src.layers.pooling.max_pooling2d import MaxPooling2D
|
| 91 |
+
from keras_core.src.layers.pooling.max_pooling2d import MaxPooling2D as MaxPool2D
|
| 92 |
+
from keras_core.src.layers.pooling.max_pooling3d import MaxPooling3D
|
| 93 |
+
from keras_core.src.layers.pooling.max_pooling3d import MaxPooling3D as MaxPool3D
|
| 94 |
+
from keras_core.src.layers.preprocessing.category_encoding import CategoryEncoding
|
| 95 |
+
from keras_core.src.layers.preprocessing.center_crop import CenterCrop
|
| 96 |
+
from keras_core.src.layers.preprocessing.discretization import Discretization
|
| 97 |
+
from keras_core.src.layers.preprocessing.hashed_crossing import HashedCrossing
|
| 98 |
+
from keras_core.src.layers.preprocessing.hashing import Hashing
|
| 99 |
+
from keras_core.src.layers.preprocessing.integer_lookup import IntegerLookup
|
| 100 |
+
from keras_core.src.layers.preprocessing.normalization import Normalization
|
| 101 |
+
from keras_core.src.layers.preprocessing.random_brightness import RandomBrightness
|
| 102 |
+
from keras_core.src.layers.preprocessing.random_contrast import RandomContrast
|
| 103 |
+
from keras_core.src.layers.preprocessing.random_crop import RandomCrop
|
| 104 |
+
from keras_core.src.layers.preprocessing.random_flip import RandomFlip
|
| 105 |
+
from keras_core.src.layers.preprocessing.random_rotation import RandomRotation
|
| 106 |
+
from keras_core.src.layers.preprocessing.random_translation import RandomTranslation
|
| 107 |
+
from keras_core.src.layers.preprocessing.random_zoom import RandomZoom
|
| 108 |
+
from keras_core.src.layers.preprocessing.rescaling import Rescaling
|
| 109 |
+
from keras_core.src.layers.preprocessing.resizing import Resizing
|
| 110 |
+
from keras_core.src.layers.preprocessing.string_lookup import StringLookup
|
| 111 |
+
from keras_core.src.layers.preprocessing.text_vectorization import TextVectorization
|
| 112 |
+
from keras_core.src.layers.regularization.activity_regularization import ActivityRegularization
|
| 113 |
+
from keras_core.src.layers.regularization.dropout import Dropout
|
| 114 |
+
from keras_core.src.layers.regularization.gaussian_dropout import GaussianDropout
|
| 115 |
+
from keras_core.src.layers.regularization.gaussian_noise import GaussianNoise
|
| 116 |
+
from keras_core.src.layers.regularization.spatial_dropout import SpatialDropout1D
|
| 117 |
+
from keras_core.src.layers.regularization.spatial_dropout import SpatialDropout2D
|
| 118 |
+
from keras_core.src.layers.regularization.spatial_dropout import SpatialDropout3D
|
| 119 |
+
from keras_core.src.layers.reshaping.cropping1d import Cropping1D
|
| 120 |
+
from keras_core.src.layers.reshaping.cropping2d import Cropping2D
|
| 121 |
+
from keras_core.src.layers.reshaping.cropping3d import Cropping3D
|
| 122 |
+
from keras_core.src.layers.reshaping.flatten import Flatten
|
| 123 |
+
from keras_core.src.layers.reshaping.permute import Permute
|
| 124 |
+
from keras_core.src.layers.reshaping.repeat_vector import RepeatVector
|
| 125 |
+
from keras_core.src.layers.reshaping.reshape import Reshape
|
| 126 |
+
from keras_core.src.layers.reshaping.up_sampling1d import UpSampling1D
|
| 127 |
+
from keras_core.src.layers.reshaping.up_sampling2d import UpSampling2D
|
| 128 |
+
from keras_core.src.layers.reshaping.up_sampling3d import UpSampling3D
|
| 129 |
+
from keras_core.src.layers.reshaping.zero_padding1d import ZeroPadding1D
|
| 130 |
+
from keras_core.src.layers.reshaping.zero_padding2d import ZeroPadding2D
|
| 131 |
+
from keras_core.src.layers.reshaping.zero_padding3d import ZeroPadding3D
|
| 132 |
+
from keras_core.src.layers.rnn.bidirectional import Bidirectional
|
| 133 |
+
from keras_core.src.layers.rnn.conv_lstm1d import ConvLSTM1D
|
| 134 |
+
from keras_core.src.layers.rnn.conv_lstm2d import ConvLSTM2D
|
| 135 |
+
from keras_core.src.layers.rnn.conv_lstm3d import ConvLSTM3D
|
| 136 |
+
from keras_core.src.layers.rnn.gru import GRU
|
| 137 |
+
from keras_core.src.layers.rnn.gru import GRUCell
|
| 138 |
+
from keras_core.src.layers.rnn.lstm import LSTM
|
| 139 |
+
from keras_core.src.layers.rnn.lstm import LSTMCell
|
| 140 |
+
from keras_core.src.layers.rnn.rnn import RNN
|
| 141 |
+
from keras_core.src.layers.rnn.simple_rnn import SimpleRNN
|
| 142 |
+
from keras_core.src.layers.rnn.simple_rnn import SimpleRNNCell
|
| 143 |
+
from keras_core.src.layers.rnn.stacked_rnn_cells import StackedRNNCells
|
| 144 |
+
from keras_core.src.layers.rnn.time_distributed import TimeDistributed
|
| 145 |
+
from keras_core.src.utils.torch_utils import TorchModuleWrapper
|
| 146 |
+
|
| 147 |
+
"""DO NOT EDIT.
|
| 148 |
+
|
| 149 |
+
This file was autogenerated. Do not edit it by hand,
|
| 150 |
+
since your modifications would be overwritten.
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
from keras_core.src.legacy.layers import AlphaDropout
|
| 155 |
+
from keras_core.src.legacy.layers import RandomHeight
|
| 156 |
+
from keras_core.src.legacy.layers import RandomWidth
|
| 157 |
+
from keras_core.src.legacy.layers import ThresholdedReLU
|
lib/python3.10/site-packages/keras_core/_tf_keras/legacy/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.legacy import saving
|
lib/python3.10/site-packages/keras_core/_tf_keras/legacy/saving/__init__.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.legacy.saving.serialization import deserialize_keras_object
|
| 9 |
+
from keras_core.src.legacy.saving.serialization import serialize_keras_object
|
lib/python3.10/site-packages/keras_core/_tf_keras/optimizers/__init__.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.optimizers import schedules
|
| 9 |
+
from keras_core.src.optimizers import deserialize
|
| 10 |
+
from keras_core.src.optimizers import get
|
| 11 |
+
from keras_core.src.optimizers import serialize
|
| 12 |
+
from keras_core.src.optimizers.adadelta import Adadelta
|
| 13 |
+
from keras_core.src.optimizers.adafactor import Adafactor
|
| 14 |
+
from keras_core.src.optimizers.adagrad import Adagrad
|
| 15 |
+
from keras_core.src.optimizers.adam import Adam
|
| 16 |
+
from keras_core.src.optimizers.adamax import Adamax
|
| 17 |
+
from keras_core.src.optimizers.adamw import AdamW
|
| 18 |
+
from keras_core.src.optimizers.ftrl import Ftrl
|
| 19 |
+
from keras_core.src.optimizers.lion import Lion
|
| 20 |
+
from keras_core.src.optimizers.loss_scale_optimizer import LossScaleOptimizer
|
| 21 |
+
from keras_core.src.optimizers.nadam import Nadam
|
| 22 |
+
from keras_core.src.optimizers.optimizer import Optimizer
|
| 23 |
+
from keras_core.src.optimizers.rmsprop import RMSprop
|
| 24 |
+
from keras_core.src.optimizers.sgd import SGD
|
lib/python3.10/site-packages/keras_core/_tf_keras/optimizers/schedules/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import CosineDecay
|
| 9 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import CosineDecayRestarts
|
| 10 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import ExponentialDecay
|
| 11 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import InverseTimeDecay
|
| 12 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import LearningRateSchedule
|
| 13 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import PiecewiseConstantDecay
|
| 14 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import PolynomialDecay
|
| 15 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import deserialize
|
| 16 |
+
from keras_core.src.optimizers.schedules.learning_rate_schedule import serialize
|
lib/python3.10/site-packages/keras_core/_tf_keras/regularizers/__init__.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.regularizers import deserialize
|
| 9 |
+
from keras_core.src.regularizers import get
|
| 10 |
+
from keras_core.src.regularizers import serialize
|
| 11 |
+
from keras_core.src.regularizers.regularizers import L1
|
| 12 |
+
from keras_core.src.regularizers.regularizers import L1 as l1
|
| 13 |
+
from keras_core.src.regularizers.regularizers import L1L2
|
| 14 |
+
from keras_core.src.regularizers.regularizers import L1L2 as l1_l2
|
| 15 |
+
from keras_core.src.regularizers.regularizers import L2
|
| 16 |
+
from keras_core.src.regularizers.regularizers import L2 as l2
|
| 17 |
+
from keras_core.src.regularizers.regularizers import OrthogonalRegularizer
|
| 18 |
+
from keras_core.src.regularizers.regularizers import OrthogonalRegularizer as orthogonal_regularizer
|
| 19 |
+
from keras_core.src.regularizers.regularizers import Regularizer
|
lib/python3.10/site-packages/keras_core/_tf_keras/saving/__init__.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.saving.object_registration import CustomObjectScope
|
| 9 |
+
from keras_core.src.saving.object_registration import CustomObjectScope as custom_object_scope
|
| 10 |
+
from keras_core.src.saving.object_registration import get_custom_objects
|
| 11 |
+
from keras_core.src.saving.object_registration import get_registered_name
|
| 12 |
+
from keras_core.src.saving.object_registration import get_registered_object
|
| 13 |
+
from keras_core.src.saving.object_registration import register_keras_serializable
|
| 14 |
+
from keras_core.src.saving.saving_api import load_model
|
| 15 |
+
from keras_core.src.saving.saving_api import save_model
|
| 16 |
+
from keras_core.src.saving.serialization_lib import deserialize_keras_object
|
| 17 |
+
from keras_core.src.saving.serialization_lib import serialize_keras_object
|
lib/python3.10/site-packages/keras_core/constraints/__init__.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.constraints import deserialize
|
| 9 |
+
from keras_core.src.constraints import get
|
| 10 |
+
from keras_core.src.constraints import serialize
|
| 11 |
+
from keras_core.src.constraints.constraints import Constraint
|
| 12 |
+
from keras_core.src.constraints.constraints import MaxNorm
|
| 13 |
+
from keras_core.src.constraints.constraints import MaxNorm as max_norm
|
| 14 |
+
from keras_core.src.constraints.constraints import MinMaxNorm
|
| 15 |
+
from keras_core.src.constraints.constraints import MinMaxNorm as min_max_norm
|
| 16 |
+
from keras_core.src.constraints.constraints import NonNeg
|
| 17 |
+
from keras_core.src.constraints.constraints import NonNeg as non_neg
|
| 18 |
+
from keras_core.src.constraints.constraints import UnitNorm
|
| 19 |
+
from keras_core.src.constraints.constraints import UnitNorm as unit_norm
|
lib/python3.10/site-packages/keras_core/distribution/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.distribution.distribution_lib import DataParallel
|
| 9 |
+
from keras_core.src.distribution.distribution_lib import DeviceMesh
|
| 10 |
+
from keras_core.src.distribution.distribution_lib import LayoutMap
|
| 11 |
+
from keras_core.src.distribution.distribution_lib import ModelParallel
|
| 12 |
+
from keras_core.src.distribution.distribution_lib import TensorLayout
|
| 13 |
+
from keras_core.src.distribution.distribution_lib import distribution
|
| 14 |
+
from keras_core.src.distribution.distribution_lib import list_devices
|
| 15 |
+
from keras_core.src.distribution.distribution_lib import set_distribution
|
lib/python3.10/site-packages/keras_core/losses/__init__.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.losses import deserialize
|
| 9 |
+
from keras_core.src.losses import get
|
| 10 |
+
from keras_core.src.losses import serialize
|
| 11 |
+
from keras_core.src.losses.loss import Loss
|
| 12 |
+
from keras_core.src.losses.losses import BinaryCrossentropy
|
| 13 |
+
from keras_core.src.losses.losses import BinaryFocalCrossentropy
|
| 14 |
+
from keras_core.src.losses.losses import CategoricalCrossentropy
|
| 15 |
+
from keras_core.src.losses.losses import CategoricalFocalCrossentropy
|
| 16 |
+
from keras_core.src.losses.losses import CategoricalHinge
|
| 17 |
+
from keras_core.src.losses.losses import CosineSimilarity
|
| 18 |
+
from keras_core.src.losses.losses import Hinge
|
| 19 |
+
from keras_core.src.losses.losses import Huber
|
| 20 |
+
from keras_core.src.losses.losses import KLDivergence
|
| 21 |
+
from keras_core.src.losses.losses import LogCosh
|
| 22 |
+
from keras_core.src.losses.losses import MeanAbsoluteError
|
| 23 |
+
from keras_core.src.losses.losses import MeanAbsolutePercentageError
|
| 24 |
+
from keras_core.src.losses.losses import MeanSquaredError
|
| 25 |
+
from keras_core.src.losses.losses import MeanSquaredLogarithmicError
|
| 26 |
+
from keras_core.src.losses.losses import Poisson
|
| 27 |
+
from keras_core.src.losses.losses import SparseCategoricalCrossentropy
|
| 28 |
+
from keras_core.src.losses.losses import SquaredHinge
|
| 29 |
+
from keras_core.src.losses.losses import binary_crossentropy
|
| 30 |
+
from keras_core.src.losses.losses import binary_focal_crossentropy
|
| 31 |
+
from keras_core.src.losses.losses import categorical_crossentropy
|
| 32 |
+
from keras_core.src.losses.losses import categorical_focal_crossentropy
|
| 33 |
+
from keras_core.src.losses.losses import categorical_hinge
|
| 34 |
+
from keras_core.src.losses.losses import cosine_similarity
|
| 35 |
+
from keras_core.src.losses.losses import hinge
|
| 36 |
+
from keras_core.src.losses.losses import huber
|
| 37 |
+
from keras_core.src.losses.losses import kl_divergence
|
| 38 |
+
from keras_core.src.losses.losses import log_cosh
|
| 39 |
+
from keras_core.src.losses.losses import mean_absolute_error
|
| 40 |
+
from keras_core.src.losses.losses import mean_absolute_percentage_error
|
| 41 |
+
from keras_core.src.losses.losses import mean_squared_error
|
| 42 |
+
from keras_core.src.losses.losses import mean_squared_logarithmic_error
|
| 43 |
+
from keras_core.src.losses.losses import poisson
|
| 44 |
+
from keras_core.src.losses.losses import sparse_categorical_crossentropy
|
| 45 |
+
from keras_core.src.losses.losses import squared_hinge
|
lib/python3.10/site-packages/keras_core/mixed_precision/__init__.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""DO NOT EDIT.
|
| 2 |
+
|
| 3 |
+
This file was autogenerated. Do not edit it by hand,
|
| 4 |
+
since your modifications would be overwritten.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
from keras_core.src.mixed_precision.dtype_policy import DTypePolicy
|
| 9 |
+
from keras_core.src.mixed_precision.dtype_policy import DTypePolicy as Policy
|
| 10 |
+
from keras_core.src.mixed_precision.dtype_policy import dtype_policy
|
| 11 |
+
from keras_core.src.mixed_precision.dtype_policy import dtype_policy as global_policy
|
| 12 |
+
from keras_core.src.mixed_precision.dtype_policy import set_dtype_policy
|
| 13 |
+
from keras_core.src.mixed_precision.dtype_policy import set_dtype_policy as set_global_policy
|
| 14 |
+
from keras_core.src.optimizers.loss_scale_optimizer import LossScaleOptimizer
|
lib/python3.10/site-packages/keras_core/src/activations/__init__.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import types
|
| 2 |
+
|
| 3 |
+
from keras_core.src.activations.activations import elu
|
| 4 |
+
from keras_core.src.activations.activations import exponential
|
| 5 |
+
from keras_core.src.activations.activations import gelu
|
| 6 |
+
from keras_core.src.activations.activations import hard_sigmoid
|
| 7 |
+
from keras_core.src.activations.activations import leaky_relu
|
| 8 |
+
from keras_core.src.activations.activations import linear
|
| 9 |
+
from keras_core.src.activations.activations import log_softmax
|
| 10 |
+
from keras_core.src.activations.activations import mish
|
| 11 |
+
from keras_core.src.activations.activations import relu
|
| 12 |
+
from keras_core.src.activations.activations import relu6
|
| 13 |
+
from keras_core.src.activations.activations import selu
|
| 14 |
+
from keras_core.src.activations.activations import sigmoid
|
| 15 |
+
from keras_core.src.activations.activations import silu
|
| 16 |
+
from keras_core.src.activations.activations import softmax
|
| 17 |
+
from keras_core.src.activations.activations import softplus
|
| 18 |
+
from keras_core.src.activations.activations import softsign
|
| 19 |
+
from keras_core.src.activations.activations import tanh
|
| 20 |
+
from keras_core.src.api_export import keras_core_export
|
| 21 |
+
from keras_core.src.saving import object_registration
|
| 22 |
+
from keras_core.src.saving import serialization_lib
|
| 23 |
+
|
| 24 |
+
ALL_OBJECTS = {
|
| 25 |
+
relu,
|
| 26 |
+
leaky_relu,
|
| 27 |
+
relu6,
|
| 28 |
+
softmax,
|
| 29 |
+
elu,
|
| 30 |
+
selu,
|
| 31 |
+
softplus,
|
| 32 |
+
softsign,
|
| 33 |
+
silu,
|
| 34 |
+
gelu,
|
| 35 |
+
tanh,
|
| 36 |
+
sigmoid,
|
| 37 |
+
exponential,
|
| 38 |
+
hard_sigmoid,
|
| 39 |
+
linear,
|
| 40 |
+
mish,
|
| 41 |
+
log_softmax,
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
ALL_OBJECTS_DICT = {fn.__name__: fn for fn in ALL_OBJECTS}
|
| 45 |
+
# Additional aliases
|
| 46 |
+
ALL_OBJECTS_DICT["swish"] = silu
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@keras_core_export("keras_core.activations.serialize")
|
| 50 |
+
def serialize(activation):
|
| 51 |
+
fn_config = serialization_lib.serialize_keras_object(activation)
|
| 52 |
+
if "config" not in fn_config:
|
| 53 |
+
raise ValueError(
|
| 54 |
+
f"Unknown activation function '{activation}' cannot be "
|
| 55 |
+
"serialized due to invalid function name. Make sure to use "
|
| 56 |
+
"an activation name that matches the references defined in "
|
| 57 |
+
"activations.py or use "
|
| 58 |
+
"`@keras_core.saving.register_keras_serializable()`"
|
| 59 |
+
"to register any custom activations. "
|
| 60 |
+
f"config={fn_config}"
|
| 61 |
+
)
|
| 62 |
+
if not isinstance(activation, types.FunctionType):
|
| 63 |
+
# Case for additional custom activations represented by objects
|
| 64 |
+
return fn_config
|
| 65 |
+
if (
|
| 66 |
+
isinstance(fn_config["config"], str)
|
| 67 |
+
and fn_config["config"] not in globals()
|
| 68 |
+
):
|
| 69 |
+
# Case for custom activation functions from external activations modules
|
| 70 |
+
fn_config["config"] = object_registration.get_registered_name(
|
| 71 |
+
activation
|
| 72 |
+
)
|
| 73 |
+
return fn_config
|
| 74 |
+
# Case for keras.activations builtins (simply return name)
|
| 75 |
+
return fn_config["config"]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@keras_core_export("keras_core.activations.deserialize")
|
| 79 |
+
def deserialize(config, custom_objects=None):
|
| 80 |
+
"""Return a Keras activation function via its config."""
|
| 81 |
+
return serialization_lib.deserialize_keras_object(
|
| 82 |
+
config,
|
| 83 |
+
module_objects=ALL_OBJECTS_DICT,
|
| 84 |
+
custom_objects=custom_objects,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
@keras_core_export("keras_core.activations.get")
|
| 89 |
+
def get(identifier):
|
| 90 |
+
"""Retrieve a Keras activation function via an identifier."""
|
| 91 |
+
if identifier is None:
|
| 92 |
+
return linear
|
| 93 |
+
if isinstance(identifier, (str, dict)):
|
| 94 |
+
obj = deserialize(identifier)
|
| 95 |
+
else:
|
| 96 |
+
obj = identifier
|
| 97 |
+
if callable(obj):
|
| 98 |
+
return obj
|
| 99 |
+
raise ValueError(
|
| 100 |
+
f"Could not interpret activation function identifier: {identifier}"
|
| 101 |
+
)
|
| 102 |
+
|
lib/python3.10/site-packages/keras_core/src/activations/activations.py
ADDED
|
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src import backend
|
| 2 |
+
from keras_core.src import ops
|
| 3 |
+
from keras_core.src.api_export import keras_core_export
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@keras_core_export("keras_core.activations.relu")
|
| 7 |
+
def relu(x, negative_slope=0.0, max_value=None, threshold=0.0):
|
| 8 |
+
"""Applies the rectified linear unit activation function.
|
| 9 |
+
|
| 10 |
+
With default values, this returns the standard ReLU activation:
|
| 11 |
+
`max(x, 0)`, the element-wise maximum of 0 and the input tensor.
|
| 12 |
+
|
| 13 |
+
Modifying default parameters allows you to use non-zero thresholds,
|
| 14 |
+
change the max value of the activation,
|
| 15 |
+
and to use a non-zero multiple of the input for values below the threshold.
|
| 16 |
+
|
| 17 |
+
Examples:
|
| 18 |
+
|
| 19 |
+
>>> x = [-10, -5, 0.0, 5, 10]
|
| 20 |
+
>>> keras_core.activations.relu(x)
|
| 21 |
+
[ 0., 0., 0., 5., 10.]
|
| 22 |
+
>>> keras_core.activations.relu(x, negative_slope=0.5)
|
| 23 |
+
[-5. , -2.5, 0. , 5. , 10. ]
|
| 24 |
+
>>> keras_core.activations.relu(x, max_value=5.)
|
| 25 |
+
[0., 0., 0., 5., 5.]
|
| 26 |
+
>>> keras_core.activations.relu(x, threshold=5.)
|
| 27 |
+
[-0., -0., 0., 0., 10.]
|
| 28 |
+
|
| 29 |
+
Args:
|
| 30 |
+
x: Input tensor.
|
| 31 |
+
negative_slope: A `float` that controls the slope
|
| 32 |
+
for values lower than the threshold.
|
| 33 |
+
max_value: A `float` that sets the saturation threshold (the largest
|
| 34 |
+
value the function will return).
|
| 35 |
+
threshold: A `float` giving the threshold value of the activation
|
| 36 |
+
function below which values will be damped or set to zero.
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
A tensor with the same shape and dtype as input `x`.
|
| 40 |
+
"""
|
| 41 |
+
if backend.any_symbolic_tensors((x,)):
|
| 42 |
+
return ReLU(
|
| 43 |
+
negative_slope=negative_slope,
|
| 44 |
+
max_value=max_value,
|
| 45 |
+
threshold=threshold,
|
| 46 |
+
)(x)
|
| 47 |
+
return ReLU.static_call(
|
| 48 |
+
x,
|
| 49 |
+
negative_slope=negative_slope,
|
| 50 |
+
max_value=max_value,
|
| 51 |
+
threshold=threshold,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class ReLU(ops.Operation):
|
| 56 |
+
def __init__(
|
| 57 |
+
self, negative_slope=0.0, max_value=None, threshold=0.0, name=None
|
| 58 |
+
):
|
| 59 |
+
super().__init__(name=name)
|
| 60 |
+
self.negative_slope = negative_slope
|
| 61 |
+
self.max_value = max_value
|
| 62 |
+
self.threshold = threshold
|
| 63 |
+
|
| 64 |
+
def call(self, x):
|
| 65 |
+
return self.static_call(
|
| 66 |
+
x,
|
| 67 |
+
negative_slope=self.negative_slope,
|
| 68 |
+
max_value=self.max_value,
|
| 69 |
+
threshold=self.threshold,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
def compute_output_spec(self, x):
|
| 73 |
+
return backend.KerasTensor(x.shape, x.dtype)
|
| 74 |
+
|
| 75 |
+
@staticmethod
|
| 76 |
+
def static_call(x, negative_slope=0.0, max_value=None, threshold=0.0):
|
| 77 |
+
x = backend.convert_to_tensor(x)
|
| 78 |
+
if negative_slope != 0.0:
|
| 79 |
+
if max_value is None and threshold == 0:
|
| 80 |
+
return backend.nn.leaky_relu(x, negative_slope=negative_slope)
|
| 81 |
+
|
| 82 |
+
if threshold != 0:
|
| 83 |
+
negative_part = backend.nn.relu(-x + threshold)
|
| 84 |
+
else:
|
| 85 |
+
negative_part = backend.nn.relu(-x)
|
| 86 |
+
|
| 87 |
+
clip_max = max_value is not None
|
| 88 |
+
if threshold != 0:
|
| 89 |
+
# computes x for x > threshold else 0
|
| 90 |
+
threshold = ops.cast(threshold, dtype=x.dtype)
|
| 91 |
+
x = x * backend.cast(
|
| 92 |
+
backend.numpy.greater(x, threshold), dtype=x.dtype
|
| 93 |
+
)
|
| 94 |
+
elif max_value == 6:
|
| 95 |
+
# if no threshold, then can use nn.relu6 native op for performance
|
| 96 |
+
x = backend.nn.relu6(x)
|
| 97 |
+
clip_max = False
|
| 98 |
+
else:
|
| 99 |
+
x = backend.nn.relu(x)
|
| 100 |
+
|
| 101 |
+
if clip_max:
|
| 102 |
+
min_value = ops.cast(0.0, dtype=x.dtype)
|
| 103 |
+
max_value = ops.cast(max_value, dtype=x.dtype)
|
| 104 |
+
x = backend.numpy.clip(x, min_value, max_value)
|
| 105 |
+
|
| 106 |
+
if negative_slope != 0.0:
|
| 107 |
+
x -= negative_slope * negative_part
|
| 108 |
+
return x
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@keras_core_export("keras_core.activations.leaky_relu")
|
| 112 |
+
def leaky_relu(x, negative_slope=0.2):
|
| 113 |
+
"""Leaky relu activation function.
|
| 114 |
+
|
| 115 |
+
Args:
|
| 116 |
+
x: Input tensor.
|
| 117 |
+
negative_slope: A `float` that controls the slope
|
| 118 |
+
for values lower than the threshold.
|
| 119 |
+
"""
|
| 120 |
+
return ops.leaky_relu(x, negative_slope=negative_slope)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@keras_core_export("keras_core.activations.relu6")
|
| 124 |
+
def relu6(x):
|
| 125 |
+
"""Relu6 activation function.
|
| 126 |
+
|
| 127 |
+
It's the ReLU function, but truncated to a maximum value of 6.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
x: Input tensor.
|
| 131 |
+
"""
|
| 132 |
+
return ops.relu6(x)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
@keras_core_export("keras_core.activations.softmax")
|
| 136 |
+
def softmax(x, axis=-1):
|
| 137 |
+
"""Softmax converts a vector of values to a probability distribution.
|
| 138 |
+
|
| 139 |
+
The elements of the output vector are in range `[0, 1]` and sum to 1.
|
| 140 |
+
|
| 141 |
+
Each input vector is handled independently.
|
| 142 |
+
The `axis` argument sets which axis of the input the function
|
| 143 |
+
is applied along.
|
| 144 |
+
|
| 145 |
+
Softmax is often used as the activation for the last
|
| 146 |
+
layer of a classification network because the result could be interpreted as
|
| 147 |
+
a probability distribution.
|
| 148 |
+
|
| 149 |
+
The softmax of each vector x is computed as
|
| 150 |
+
`exp(x) / sum(exp(x))`.
|
| 151 |
+
|
| 152 |
+
The input values in are the log-odds of the resulting probability.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
x : Input tensor.
|
| 156 |
+
axis: Integer, axis along which the softmax is applied.
|
| 157 |
+
"""
|
| 158 |
+
output = ops.softmax(x, axis=axis)
|
| 159 |
+
# Cache the logits to use for crossentropy loss.
|
| 160 |
+
try:
|
| 161 |
+
output._keras_logits = x
|
| 162 |
+
except AttributeError:
|
| 163 |
+
# We're dealing with a C-type.
|
| 164 |
+
pass
|
| 165 |
+
return output
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
@keras_core_export("keras_core.activations.elu")
|
| 169 |
+
def elu(x, alpha=1.0):
|
| 170 |
+
"""Exponential Linear Unit.
|
| 171 |
+
|
| 172 |
+
The exponential linear unit (ELU) with `alpha > 0` is define as:
|
| 173 |
+
|
| 174 |
+
- `x` if `x > 0`
|
| 175 |
+
- alpha * `exp(x) - 1` if `x < 0`
|
| 176 |
+
|
| 177 |
+
ELUs have negative values which pushes the mean of the activations
|
| 178 |
+
closer to zero.
|
| 179 |
+
|
| 180 |
+
Mean activations that are closer to zero enable faster learning as they
|
| 181 |
+
bring the gradient closer to the natural gradient.
|
| 182 |
+
ELUs saturate to a negative value when the argument gets smaller.
|
| 183 |
+
Saturation means a small derivative which decreases the variation
|
| 184 |
+
and the information that is propagated to the next layer.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
x: Input tensor.
|
| 188 |
+
|
| 189 |
+
Reference:
|
| 190 |
+
|
| 191 |
+
- [Clevert et al., 2016](https://arxiv.org/abs/1511.07289)
|
| 192 |
+
"""
|
| 193 |
+
return ops.elu(x, alpha=alpha)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
@keras_core_export("keras_core.activations.selu")
|
| 197 |
+
def selu(x):
|
| 198 |
+
"""Scaled Exponential Linear Unit (SELU).
|
| 199 |
+
|
| 200 |
+
The Scaled Exponential Linear Unit (SELU) activation function is defined as:
|
| 201 |
+
|
| 202 |
+
- `scale * x` if `x > 0`
|
| 203 |
+
- `scale * alpha * (exp(x) - 1)` if `x < 0`
|
| 204 |
+
|
| 205 |
+
where `alpha` and `scale` are pre-defined constants
|
| 206 |
+
(`alpha=1.67326324` and `scale=1.05070098`).
|
| 207 |
+
|
| 208 |
+
Basically, the SELU activation function multiplies `scale` (> 1) with the
|
| 209 |
+
output of the `keras_core.activations.elu` function to ensure a slope larger
|
| 210 |
+
than one for positive inputs.
|
| 211 |
+
|
| 212 |
+
The values of `alpha` and `scale` are
|
| 213 |
+
chosen so that the mean and variance of the inputs are preserved
|
| 214 |
+
between two consecutive layers as long as the weights are initialized
|
| 215 |
+
correctly (see `keras_core.initializers.LecunNormal` initializer)
|
| 216 |
+
and the number of input units is "large enough"
|
| 217 |
+
(see reference paper for more information).
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
x: Input tensor.
|
| 221 |
+
|
| 222 |
+
Notes:
|
| 223 |
+
|
| 224 |
+
- To be used together with the
|
| 225 |
+
`keras_core.initializers.LecunNormal` initializer.
|
| 226 |
+
- To be used together with the dropout variant
|
| 227 |
+
`keras_core.layers.AlphaDropout` (rather than regular dropout).
|
| 228 |
+
|
| 229 |
+
Reference:
|
| 230 |
+
|
| 231 |
+
- [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515)
|
| 232 |
+
"""
|
| 233 |
+
return ops.selu(x)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
@keras_core_export("keras_core.activations.softplus")
|
| 237 |
+
def softplus(x):
|
| 238 |
+
"""Softplus activation function.
|
| 239 |
+
|
| 240 |
+
It is defined as: `softplus(x) = log(exp(x) + 1)`.
|
| 241 |
+
|
| 242 |
+
Args:
|
| 243 |
+
x: Input tensor.
|
| 244 |
+
"""
|
| 245 |
+
return ops.softplus(x)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
@keras_core_export("keras_core.activations.softsign")
|
| 249 |
+
def softsign(x):
|
| 250 |
+
"""Softsign activation function.
|
| 251 |
+
|
| 252 |
+
Softsign is defined as: `softsign(x) = x / (abs(x) + 1)`.
|
| 253 |
+
|
| 254 |
+
Args:
|
| 255 |
+
x: Input tensor.
|
| 256 |
+
"""
|
| 257 |
+
return ops.softsign(x)
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
@keras_core_export(
|
| 261 |
+
["keras_core.activations.silu", "keras_core.activations.swish"]
|
| 262 |
+
)
|
| 263 |
+
def silu(x):
|
| 264 |
+
"""Swish (or Silu) activation function.
|
| 265 |
+
|
| 266 |
+
It is defined as: `swish(x) = x * sigmoid(x)`.
|
| 267 |
+
|
| 268 |
+
The Swish (or Silu) activation function is a smooth,
|
| 269 |
+
non-monotonic function that is unbounded above and
|
| 270 |
+
bounded below.
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
x: Input tensor.
|
| 274 |
+
|
| 275 |
+
Reference:
|
| 276 |
+
|
| 277 |
+
- [Ramachandran et al., 2017](https://arxiv.org/abs/1710.05941)
|
| 278 |
+
"""
|
| 279 |
+
return ops.silu(x)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
@keras_core_export("keras_core.activations.gelu")
|
| 283 |
+
def gelu(x, approximate=False):
|
| 284 |
+
"""Gaussian error linear unit (GELU) activation function.
|
| 285 |
+
|
| 286 |
+
The Gaussian error linear unit (GELU) is defined as:
|
| 287 |
+
|
| 288 |
+
`gelu(x) = x * P(X <= x)` where `P(X) ~ N(0, 1)`,
|
| 289 |
+
i.e. `gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))`.
|
| 290 |
+
|
| 291 |
+
GELU weights inputs by their value, rather than gating
|
| 292 |
+
inputs by their sign as in ReLU.
|
| 293 |
+
|
| 294 |
+
Args:
|
| 295 |
+
x: Input tensor.
|
| 296 |
+
approximate: A `bool`, whether to enable approximation.
|
| 297 |
+
|
| 298 |
+
Reference:
|
| 299 |
+
|
| 300 |
+
- [Hendrycks et al., 2016](https://arxiv.org/abs/1606.08415)
|
| 301 |
+
"""
|
| 302 |
+
return ops.gelu(x, approximate=approximate)
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
@keras_core_export("keras_core.activations.tanh")
|
| 306 |
+
def tanh(x):
|
| 307 |
+
"""Hyperbolic tangent activation function.
|
| 308 |
+
|
| 309 |
+
It is defined as:
|
| 310 |
+
`tanh(x) = sinh(x) / cosh(x)`, i.e.
|
| 311 |
+
`tanh(x) = ((exp(x) - exp(-x)) / (exp(x) + exp(-x)))`.
|
| 312 |
+
|
| 313 |
+
Args:
|
| 314 |
+
x: Input tensor.
|
| 315 |
+
"""
|
| 316 |
+
return ops.tanh(x)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
@keras_core_export("keras_core.activations.sigmoid")
|
| 320 |
+
def sigmoid(x):
|
| 321 |
+
"""Sigmoid activation function.
|
| 322 |
+
|
| 323 |
+
It is defined as: `sigmoid(x) = 1 / (1 + exp(-x))`.
|
| 324 |
+
|
| 325 |
+
For small values (<-5),
|
| 326 |
+
`sigmoid` returns a value close to zero, and for large values (>5)
|
| 327 |
+
the result of the function gets close to 1.
|
| 328 |
+
|
| 329 |
+
Sigmoid is equivalent to a 2-element softmax, where the second element is
|
| 330 |
+
assumed to be zero. The sigmoid function always returns a value between
|
| 331 |
+
0 and 1.
|
| 332 |
+
|
| 333 |
+
Args:
|
| 334 |
+
x: Input tensor.
|
| 335 |
+
"""
|
| 336 |
+
output = ops.sigmoid(x)
|
| 337 |
+
# Cache the logits to use for crossentropy loss.
|
| 338 |
+
try:
|
| 339 |
+
output._keras_logits = x
|
| 340 |
+
except AttributeError:
|
| 341 |
+
# We're dealing with a C-type.
|
| 342 |
+
pass
|
| 343 |
+
return output
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
@keras_core_export("keras_core.activations.exponential")
|
| 347 |
+
def exponential(x):
|
| 348 |
+
"""Exponential activation function.
|
| 349 |
+
|
| 350 |
+
Args:
|
| 351 |
+
x: Input tensor.
|
| 352 |
+
"""
|
| 353 |
+
return ops.exp(x)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
@keras_core_export("keras_core.activations.hard_sigmoid")
|
| 357 |
+
def hard_sigmoid(x):
|
| 358 |
+
"""Hard sigmoid activation function.
|
| 359 |
+
|
| 360 |
+
The hard sigmoid activation is defined as:
|
| 361 |
+
|
| 362 |
+
- `0` if `if x < -2.5`
|
| 363 |
+
- `1` if `x > 2.5`
|
| 364 |
+
- `0.2 * x + 0.5` if `-2.5 <= x <= 2.5`
|
| 365 |
+
|
| 366 |
+
It's a faster, piecewise linear approximation
|
| 367 |
+
of the sigmoid activation.
|
| 368 |
+
|
| 369 |
+
Args:
|
| 370 |
+
x: Input tensor.
|
| 371 |
+
|
| 372 |
+
Reference:
|
| 373 |
+
|
| 374 |
+
- [Wikipedia "Hard sigmoid"](https://en.wikipedia.org/wiki/Hard_sigmoid)
|
| 375 |
+
"""
|
| 376 |
+
return ops.hard_sigmoid(x)
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
@keras_core_export("keras_core.activations.linear")
|
| 380 |
+
def linear(x):
|
| 381 |
+
"""Linear activation function (pass-through).
|
| 382 |
+
|
| 383 |
+
A "linear" activation is an identity function:
|
| 384 |
+
it returns the input, unmodified.
|
| 385 |
+
|
| 386 |
+
Args:
|
| 387 |
+
x: Input tensor.
|
| 388 |
+
"""
|
| 389 |
+
return x
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
class Mish(ops.Operation):
|
| 393 |
+
def call(self, x):
|
| 394 |
+
return self.static_call(x)
|
| 395 |
+
|
| 396 |
+
def compute_output_spec(self, x):
|
| 397 |
+
return backend.KerasTensor(x.shape, x.dtype)
|
| 398 |
+
|
| 399 |
+
@staticmethod
|
| 400 |
+
def static_call(x):
|
| 401 |
+
return x * backend.nn.tanh(backend.nn.softplus(x))
|
| 402 |
+
|
| 403 |
+
|
| 404 |
+
@keras_core_export("keras_core.activations.mish")
|
| 405 |
+
def mish(x):
|
| 406 |
+
"""Mish activation function.
|
| 407 |
+
|
| 408 |
+
It is defined as:
|
| 409 |
+
|
| 410 |
+
`mish(x) = x * tanh(softplus(x))`
|
| 411 |
+
|
| 412 |
+
where `softplus` is defined as:
|
| 413 |
+
|
| 414 |
+
`softplus(x) = log(exp(x) + 1)`
|
| 415 |
+
|
| 416 |
+
Args:
|
| 417 |
+
x: Input tensor.
|
| 418 |
+
|
| 419 |
+
Reference:
|
| 420 |
+
|
| 421 |
+
- [Misra, 2019](https://arxiv.org/abs/1908.08681)
|
| 422 |
+
"""
|
| 423 |
+
x = backend.convert_to_tensor(x)
|
| 424 |
+
return Mish.static_call(x)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
@keras_core_export("keras_core.activations.log_softmax")
|
| 428 |
+
def log_softmax(x, axis=-1):
|
| 429 |
+
"""Log-Softmax activation function.
|
| 430 |
+
|
| 431 |
+
Each input vector is handled independently.
|
| 432 |
+
The `axis` argument sets which axis of the input the function
|
| 433 |
+
is applied along.
|
| 434 |
+
|
| 435 |
+
Args:
|
| 436 |
+
x: Input tensor.
|
| 437 |
+
axis: Integer, axis along which the softmax is applied.
|
| 438 |
+
"""
|
| 439 |
+
return ops.log_softmax(x, axis=axis)
|
| 440 |
+
|
lib/python3.10/site-packages/keras_core/src/constraints/__init__.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
|
| 3 |
+
from keras_core.src.api_export import keras_core_export
|
| 4 |
+
from keras_core.src.constraints.constraints import Constraint
|
| 5 |
+
from keras_core.src.constraints.constraints import MaxNorm
|
| 6 |
+
from keras_core.src.constraints.constraints import MinMaxNorm
|
| 7 |
+
from keras_core.src.constraints.constraints import NonNeg
|
| 8 |
+
from keras_core.src.constraints.constraints import UnitNorm
|
| 9 |
+
from keras_core.src.saving import serialization_lib
|
| 10 |
+
from keras_core.src.utils.naming import to_snake_case
|
| 11 |
+
|
| 12 |
+
ALL_OBJECTS = {
|
| 13 |
+
Constraint,
|
| 14 |
+
MaxNorm,
|
| 15 |
+
MinMaxNorm,
|
| 16 |
+
NonNeg,
|
| 17 |
+
UnitNorm,
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS}
|
| 21 |
+
ALL_OBJECTS_DICT.update(
|
| 22 |
+
{to_snake_case(cls.__name__): cls for cls in ALL_OBJECTS}
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@keras_core_export("keras_core.constraints.serialize")
|
| 27 |
+
def serialize(constraint):
|
| 28 |
+
return serialization_lib.serialize_keras_object(constraint)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
@keras_core_export("keras_core.constraints.deserialize")
|
| 32 |
+
def deserialize(config, custom_objects=None):
|
| 33 |
+
"""Return a Keras constraint object via its config."""
|
| 34 |
+
return serialization_lib.deserialize_keras_object(
|
| 35 |
+
config,
|
| 36 |
+
module_objects=ALL_OBJECTS_DICT,
|
| 37 |
+
custom_objects=custom_objects,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@keras_core_export("keras_core.constraints.get")
|
| 42 |
+
def get(identifier):
|
| 43 |
+
"""Retrieve a Keras constraint object via an identifier."""
|
| 44 |
+
if identifier is None:
|
| 45 |
+
return None
|
| 46 |
+
if isinstance(identifier, dict):
|
| 47 |
+
obj = deserialize(identifier)
|
| 48 |
+
elif isinstance(identifier, str):
|
| 49 |
+
config = {"class_name": str(identifier), "config": {}}
|
| 50 |
+
obj = deserialize(config)
|
| 51 |
+
else:
|
| 52 |
+
obj = identifier
|
| 53 |
+
|
| 54 |
+
if callable(obj):
|
| 55 |
+
if inspect.isclass(obj):
|
| 56 |
+
obj = obj()
|
| 57 |
+
return obj
|
| 58 |
+
else:
|
| 59 |
+
raise ValueError(
|
| 60 |
+
f"Could not interpret constraint identifier: {identifier}"
|
| 61 |
+
)
|
| 62 |
+
|
lib/python3.10/site-packages/keras_core/src/constraints/constraints.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src import backend
|
| 2 |
+
from keras_core.src import ops
|
| 3 |
+
from keras_core.src.api_export import keras_core_export
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@keras_core_export("keras_core.constraints.Constraint")
|
| 7 |
+
class Constraint:
|
| 8 |
+
"""Base class for weight constraints.
|
| 9 |
+
|
| 10 |
+
A `Constraint` instance works like a stateless function.
|
| 11 |
+
Users who subclass this
|
| 12 |
+
class should override the `__call__()` method, which takes a single
|
| 13 |
+
weight parameter and return a projected version of that parameter
|
| 14 |
+
(e.g. normalized or clipped). Constraints can be used with various Keras
|
| 15 |
+
layers via the `kernel_constraint` or `bias_constraint` arguments.
|
| 16 |
+
|
| 17 |
+
Here's a simple example of a non-negative weight constraint:
|
| 18 |
+
|
| 19 |
+
>>> class NonNegative(keras_core.constraints.Constraint):
|
| 20 |
+
...
|
| 21 |
+
... def __call__(self, w):
|
| 22 |
+
... return w * ops.cast(ops.greater_equal(w, 0.), dtype=w.dtype)
|
| 23 |
+
|
| 24 |
+
>>> weight = ops.convert_to_tensor((-1.0, 1.0))
|
| 25 |
+
>>> NonNegative()(weight)
|
| 26 |
+
[0., 1.]
|
| 27 |
+
|
| 28 |
+
Usage in a layer:
|
| 29 |
+
|
| 30 |
+
>>> keras_core.layers.Dense(4, kernel_constraint=NonNegative())
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
def __call__(self, w):
|
| 34 |
+
"""Applies the constraint to the input weight variable.
|
| 35 |
+
|
| 36 |
+
By default, the inputs weight variable is not modified.
|
| 37 |
+
Users should override this method to implement their own projection
|
| 38 |
+
function.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
w: Input weight variable.
|
| 42 |
+
|
| 43 |
+
Returns:
|
| 44 |
+
Projected variable (by default, returns unmodified inputs).
|
| 45 |
+
"""
|
| 46 |
+
return w
|
| 47 |
+
|
| 48 |
+
def get_config(self):
|
| 49 |
+
"""Returns a Python dict of the object config.
|
| 50 |
+
|
| 51 |
+
A constraint config is a Python dictionary (JSON-serializable) that can
|
| 52 |
+
be used to reinstantiate the same object.
|
| 53 |
+
|
| 54 |
+
Returns:
|
| 55 |
+
Python dict containing the configuration of the constraint object.
|
| 56 |
+
"""
|
| 57 |
+
return {}
|
| 58 |
+
|
| 59 |
+
@classmethod
|
| 60 |
+
def from_config(cls, config):
|
| 61 |
+
"""Instantiates a weight constraint from a configuration dictionary.
|
| 62 |
+
|
| 63 |
+
Example:
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
constraint = UnitNorm()
|
| 67 |
+
config = constraint.get_config()
|
| 68 |
+
constraint = UnitNorm.from_config(config)
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
Args:
|
| 72 |
+
config: A Python dictionary, the output of `get_config()`.
|
| 73 |
+
|
| 74 |
+
Returns:
|
| 75 |
+
A `keras_core.constraints.Constraint` instance.
|
| 76 |
+
"""
|
| 77 |
+
return cls(**config)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@keras_core_export(
|
| 81 |
+
["keras_core.constraints.MaxNorm", "keras_core.constraints.max_norm"]
|
| 82 |
+
)
|
| 83 |
+
class MaxNorm(Constraint):
|
| 84 |
+
"""MaxNorm weight constraint.
|
| 85 |
+
|
| 86 |
+
Constrains the weights incident to each hidden unit
|
| 87 |
+
to have a norm less than or equal to a desired value.
|
| 88 |
+
|
| 89 |
+
Also available via the shortcut function `keras_core.constraints.max_norm`.
|
| 90 |
+
|
| 91 |
+
Args:
|
| 92 |
+
max_value: the maximum norm value for the incoming weights.
|
| 93 |
+
axis: integer, axis along which to calculate weight norms.
|
| 94 |
+
For instance, in a `Dense` layer the weight matrix
|
| 95 |
+
has shape `(input_dim, output_dim)`,
|
| 96 |
+
set `axis` to `0` to constrain each weight vector
|
| 97 |
+
of length `(input_dim,)`.
|
| 98 |
+
In a `Conv2D` layer with `data_format="channels_last"`,
|
| 99 |
+
the weight tensor has shape
|
| 100 |
+
`(rows, cols, input_depth, output_depth)`,
|
| 101 |
+
set `axis` to `[0, 1, 2]`
|
| 102 |
+
to constrain the weights of each filter tensor of size
|
| 103 |
+
`(rows, cols, input_depth)`.
|
| 104 |
+
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def __init__(self, max_value=2, axis=0):
|
| 108 |
+
self.max_value = max_value
|
| 109 |
+
self.axis = axis
|
| 110 |
+
|
| 111 |
+
def __call__(self, w):
|
| 112 |
+
w = backend.convert_to_tensor(w)
|
| 113 |
+
norms = ops.sqrt(ops.sum(ops.square(w), axis=self.axis, keepdims=True))
|
| 114 |
+
desired = ops.clip(norms, 0, self.max_value)
|
| 115 |
+
return w * (desired / (backend.epsilon() + norms))
|
| 116 |
+
|
| 117 |
+
def get_config(self):
|
| 118 |
+
return {"max_value": self.max_value, "axis": self.axis}
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
@keras_core_export(
|
| 122 |
+
["keras_core.constraints.NonNeg", "keras_core.constraints.non_neg"]
|
| 123 |
+
)
|
| 124 |
+
class NonNeg(Constraint):
|
| 125 |
+
"""Constrains the weights to be non-negative."""
|
| 126 |
+
|
| 127 |
+
def __call__(self, w):
|
| 128 |
+
w = backend.convert_to_tensor(w)
|
| 129 |
+
return w * ops.cast(ops.greater_equal(w, 0.0), dtype=w.dtype)
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
@keras_core_export(
|
| 133 |
+
["keras_core.constraints.UnitNorm", "keras_core.constraints.unit_norm"]
|
| 134 |
+
)
|
| 135 |
+
class UnitNorm(Constraint):
|
| 136 |
+
"""Constrains the weights incident to each hidden unit to have unit norm.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
axis: integer, axis along which to calculate weight norms.
|
| 140 |
+
For instance, in a `Dense` layer the weight matrix
|
| 141 |
+
has shape `(input_dim, output_dim)`,
|
| 142 |
+
set `axis` to `0` to constrain each weight vector
|
| 143 |
+
of length `(input_dim,)`.
|
| 144 |
+
In a `Conv2D` layer with `data_format="channels_last"`,
|
| 145 |
+
the weight tensor has shape
|
| 146 |
+
`(rows, cols, input_depth, output_depth)`,
|
| 147 |
+
set `axis` to `[0, 1, 2]`
|
| 148 |
+
to constrain the weights of each filter tensor of size
|
| 149 |
+
`(rows, cols, input_depth)`.
|
| 150 |
+
"""
|
| 151 |
+
|
| 152 |
+
def __init__(self, axis=0):
|
| 153 |
+
self.axis = axis
|
| 154 |
+
|
| 155 |
+
def __call__(self, w):
|
| 156 |
+
w = backend.convert_to_tensor(w)
|
| 157 |
+
return w / (
|
| 158 |
+
backend.epsilon()
|
| 159 |
+
+ ops.sqrt(ops.sum(ops.square(w), axis=self.axis, keepdims=True))
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
def get_config(self):
|
| 163 |
+
return {"axis": self.axis}
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@keras_core_export(
|
| 167 |
+
["keras_core.constraints.MinMaxNorm", "keras_core.constraints.min_max_norm"]
|
| 168 |
+
)
|
| 169 |
+
class MinMaxNorm(Constraint):
|
| 170 |
+
"""MinMaxNorm weight constraint.
|
| 171 |
+
|
| 172 |
+
Constrains the weights incident to each hidden unit
|
| 173 |
+
to have the norm between a lower bound and an upper bound.
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
min_value: the minimum norm for the incoming weights.
|
| 177 |
+
max_value: the maximum norm for the incoming weights.
|
| 178 |
+
rate: rate for enforcing the constraint: weights will be
|
| 179 |
+
rescaled to yield
|
| 180 |
+
`(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
|
| 181 |
+
Effectively, this means that rate=1.0 stands for strict
|
| 182 |
+
enforcement of the constraint, while rate<1.0 means that
|
| 183 |
+
weights will be rescaled at each step to slowly move
|
| 184 |
+
towards a value inside the desired interval.
|
| 185 |
+
axis: integer, axis along which to calculate weight norms.
|
| 186 |
+
For instance, in a `Dense` layer the weight matrix
|
| 187 |
+
has shape `(input_dim, output_dim)`,
|
| 188 |
+
set `axis` to `0` to constrain each weight vector
|
| 189 |
+
of length `(input_dim,)`.
|
| 190 |
+
In a `Conv2D` layer with `data_format="channels_last"`,
|
| 191 |
+
the weight tensor has shape
|
| 192 |
+
`(rows, cols, input_depth, output_depth)`,
|
| 193 |
+
set `axis` to `[0, 1, 2]`
|
| 194 |
+
to constrain the weights of each filter tensor of size
|
| 195 |
+
`(rows, cols, input_depth)`.
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0):
|
| 199 |
+
self.min_value = min_value
|
| 200 |
+
self.max_value = max_value
|
| 201 |
+
self.rate = rate
|
| 202 |
+
self.axis = axis
|
| 203 |
+
|
| 204 |
+
def __call__(self, w):
|
| 205 |
+
w = backend.convert_to_tensor(w)
|
| 206 |
+
norms = ops.sqrt(ops.sum(ops.square(w), axis=self.axis, keepdims=True))
|
| 207 |
+
desired = (
|
| 208 |
+
self.rate * ops.clip(norms, self.min_value, self.max_value)
|
| 209 |
+
+ (1 - self.rate) * norms
|
| 210 |
+
)
|
| 211 |
+
return w * (desired / (backend.epsilon() + norms))
|
| 212 |
+
|
| 213 |
+
def get_config(self):
|
| 214 |
+
return {
|
| 215 |
+
"min_value": self.min_value,
|
| 216 |
+
"max_value": self.max_value,
|
| 217 |
+
"rate": self.rate,
|
| 218 |
+
"axis": self.axis,
|
| 219 |
+
}
|
| 220 |
+
|
lib/python3.10/site-packages/keras_core/src/distribution/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
lib/python3.10/site-packages/keras_core/src/distribution/distribution_lib.py
ADDED
|
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Unified high level distribution APIs across backends.
|
| 2 |
+
|
| 3 |
+
!!!DO NOT USE!!! Currently under development and APIs are not final.
|
| 4 |
+
|
| 5 |
+
Currently only the JAX backend has been implemented. The TensorFlow backend
|
| 6 |
+
will be implemented in the future (via tf.dtensor API).
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import collections
|
| 10 |
+
import contextlib
|
| 11 |
+
import re
|
| 12 |
+
import warnings
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
|
| 16 |
+
from keras_core.src.api_export import keras_core_export
|
| 17 |
+
from keras_core.src.backend import distribution_lib
|
| 18 |
+
from keras_core.src.backend.common import global_state
|
| 19 |
+
|
| 20 |
+
DEFAULT_BATCH_DIM_NAME = "batch"
|
| 21 |
+
GLOBAL_ATTRIBUTE_NAME = "distribution"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@keras_core_export("keras_core.distribution.list_devices")
|
| 25 |
+
def list_devices(device_type=None):
|
| 26 |
+
"""Return all the available devices based on the device type.
|
| 27 |
+
|
| 28 |
+
Note: in a distributed setting, global devices are returned.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
device_type: string, one of `"cpu"`, `"gpu"` or `"tpu"`.
|
| 32 |
+
Defaults to `"gpu"` or `"tpu"` if available when
|
| 33 |
+
`device_type` is not provided. Otherwise
|
| 34 |
+
will return the `"cpu"` devices.
|
| 35 |
+
|
| 36 |
+
Return:
|
| 37 |
+
List of devices that are available for distribute computation.
|
| 38 |
+
"""
|
| 39 |
+
return distribution_lib.list_devices(device_type)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@keras_core_export("keras_core.distribution.DeviceMesh")
|
| 43 |
+
class DeviceMesh:
|
| 44 |
+
"""A cluster of computation devices for distributed computation.
|
| 45 |
+
|
| 46 |
+
This API is aligned with `jax.sharding.Mesh` and `tf.dtensor.Mesh`, which
|
| 47 |
+
represents the computation devices in the global context.
|
| 48 |
+
|
| 49 |
+
See more details in [jax.sharding.Mesh](
|
| 50 |
+
https://jax.readthedocs.io/en/latest/jax.sharding.html#jax.sharding.Mesh)
|
| 51 |
+
and [tf.dtensor.Mesh](
|
| 52 |
+
https://www.tensorflow.org/api_docs/python/tf/experimental/dtensor/Mesh).
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
shape: tuple of list of integers. The shape of the overall
|
| 56 |
+
`DeviceMesh`, e.g. `(8,)` for a data parallel only distribution,
|
| 57 |
+
or `(4, 2)` for a model+data parallel distribution.
|
| 58 |
+
axis_names: List of string. The logical name of the each axis for
|
| 59 |
+
the `DeviceMesh`. The length of the `axis_names` should match to
|
| 60 |
+
the rank of the `shape`. The `axis_names` will be used to
|
| 61 |
+
match/create the `TensorLayout` when distribute the data and
|
| 62 |
+
variables.
|
| 63 |
+
devices: Optional list of devices. Defaults to all the available
|
| 64 |
+
devices locally from `keras_core.distribution.list_devices()`.
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
def __init__(
|
| 68 |
+
self,
|
| 69 |
+
shape,
|
| 70 |
+
axis_names,
|
| 71 |
+
devices=None,
|
| 72 |
+
):
|
| 73 |
+
if not shape or not axis_names:
|
| 74 |
+
raise ValueError(
|
| 75 |
+
"Shape and axis_names cannot be empty. Received: "
|
| 76 |
+
f"shape={shape}, axis_names={axis_names}"
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
if len(shape) != len(axis_names):
|
| 80 |
+
raise ValueError(
|
| 81 |
+
"Shape and axis_names should have same size. "
|
| 82 |
+
f"Received: shape={shape}, axis_names={axis_names}"
|
| 83 |
+
)
|
| 84 |
+
if devices is None:
|
| 85 |
+
devices = list_devices()
|
| 86 |
+
devices = np.array(devices)
|
| 87 |
+
if np.prod(shape) != np.prod(devices.shape):
|
| 88 |
+
raise ValueError(
|
| 89 |
+
"Shape does not match the number of devices. "
|
| 90 |
+
f"Received: shape={shape}; devices.shape="
|
| 91 |
+
f"{devices.shape}"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
self._shape = shape
|
| 95 |
+
self._axis_names = axis_names
|
| 96 |
+
self._devices = np.reshape(devices, shape)
|
| 97 |
+
|
| 98 |
+
@property
|
| 99 |
+
def shape(self):
|
| 100 |
+
return self._shape
|
| 101 |
+
|
| 102 |
+
@property
|
| 103 |
+
def axis_names(self):
|
| 104 |
+
return self._axis_names
|
| 105 |
+
|
| 106 |
+
@property
|
| 107 |
+
def devices(self):
|
| 108 |
+
return self._devices
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@keras_core_export("keras_core.distribution.TensorLayout")
|
| 112 |
+
class TensorLayout:
|
| 113 |
+
"""A layout to apply to a tensor.
|
| 114 |
+
|
| 115 |
+
This API is aligned with `jax.sharding.NamedSharding`
|
| 116 |
+
and `tf.dtensor.Layout`.
|
| 117 |
+
|
| 118 |
+
See more details in [jax.sharding.NamedSharding](
|
| 119 |
+
https://jax.readthedocs.io/en/latest/jax.sharding.html#jax.sharding.NamedSharding)
|
| 120 |
+
and [tf.dtensor.Layout](
|
| 121 |
+
https://www.tensorflow.org/api_docs/python/tf/experimental/dtensor/Layout).
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
axes: list of strings that should map to the `axis_names` in
|
| 125 |
+
a `DeviceMesh`. For any dimentions that doesn't need any sharding,
|
| 126 |
+
A `None` can be used a placeholder.
|
| 127 |
+
device_mesh: Optional `DeviceMesh` that will be used to create
|
| 128 |
+
the layout. The actual mapping of tensor to physical device
|
| 129 |
+
is not known until the mesh is specified.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
def __init__(self, axes, device_mesh=None):
|
| 133 |
+
self._axes = axes
|
| 134 |
+
self._device_mesh = device_mesh
|
| 135 |
+
self._validate_axes()
|
| 136 |
+
|
| 137 |
+
@property
|
| 138 |
+
def axes(self):
|
| 139 |
+
return self._axes
|
| 140 |
+
|
| 141 |
+
@property
|
| 142 |
+
def device_mesh(self):
|
| 143 |
+
return self._device_mesh
|
| 144 |
+
|
| 145 |
+
@device_mesh.setter
|
| 146 |
+
def device_mesh(self, device_mesh):
|
| 147 |
+
if self._device_mesh is not None:
|
| 148 |
+
raise ValueError(
|
| 149 |
+
"Cannot override device mesh value. Existing "
|
| 150 |
+
f"value is {self._device_mesh}"
|
| 151 |
+
)
|
| 152 |
+
self._device_mesh = device_mesh
|
| 153 |
+
self._validate_axes()
|
| 154 |
+
|
| 155 |
+
def _validate_axes(self):
|
| 156 |
+
if self._device_mesh:
|
| 157 |
+
valid_axis_names = set(self._device_mesh.axis_names)
|
| 158 |
+
axis_names = set(self._axes) - set([None])
|
| 159 |
+
if axis_names - valid_axis_names:
|
| 160 |
+
raise ValueError(
|
| 161 |
+
"Invalid axis names for Layout. Valid axis "
|
| 162 |
+
f"names: {valid_axis_names}, Got {axis_names}"
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class Distribution:
|
| 167 |
+
"""Base class for variable distribution strategies.
|
| 168 |
+
|
| 169 |
+
A `Distribution` has following key functionalities:
|
| 170 |
+
|
| 171 |
+
1. Distribute the model variables to a `DeviceMesh`.
|
| 172 |
+
2. Distribute the input data to a `DeviceMesh`.
|
| 173 |
+
|
| 174 |
+
It can create a context scope so that the framework to properly detect the
|
| 175 |
+
`Distribution` and distribute the variable/data accordingly.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
device_mesh: A `DeviceMesh` instance.
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
def __init__(self, device_mesh):
|
| 182 |
+
self._device_mesh = device_mesh
|
| 183 |
+
|
| 184 |
+
def get_data_layout(self, data_shape):
|
| 185 |
+
"""Retrieve the `TensorLayout` for the input data.
|
| 186 |
+
|
| 187 |
+
Args:
|
| 188 |
+
data_shape: shape for the input data in list or tuple format.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
The `TensorLayout` for the data, which can be used by
|
| 192 |
+
`backend.distribute_value()` to redistribute a input data.
|
| 193 |
+
"""
|
| 194 |
+
raise NotImplementedError()
|
| 195 |
+
|
| 196 |
+
def get_variable_layout(self, variable):
|
| 197 |
+
"""Retrieve the `TensorLayout` for the variable.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
variable: A `KerasVariable` instance.
|
| 201 |
+
|
| 202 |
+
return:
|
| 203 |
+
The `TensorLayout` for the variable, which can be used by
|
| 204 |
+
`backend.distribute_value()` to redistribute a variable.
|
| 205 |
+
"""
|
| 206 |
+
raise NotImplementedError()
|
| 207 |
+
|
| 208 |
+
@contextlib.contextmanager
|
| 209 |
+
def scope(self):
|
| 210 |
+
"""Context manager to make the `Distribution` current."""
|
| 211 |
+
original_scope = distribution()
|
| 212 |
+
set_distribution(self)
|
| 213 |
+
try:
|
| 214 |
+
yield
|
| 215 |
+
finally:
|
| 216 |
+
set_distribution(original_scope)
|
| 217 |
+
|
| 218 |
+
@property
|
| 219 |
+
def device_mesh(self):
|
| 220 |
+
return self._device_mesh
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
@keras_core_export("keras_core.distribution.DataParallel")
|
| 224 |
+
class DataParallel(Distribution):
|
| 225 |
+
"""Distribution for data parallelism.
|
| 226 |
+
|
| 227 |
+
You can choose to create this instance by either specifing
|
| 228 |
+
the `device_mesh` or `devices` arguments (but not both).
|
| 229 |
+
|
| 230 |
+
The `device_mesh` argument is expected to be a `DeviceMesh` instance,
|
| 231 |
+
and is expected to be 1D only. In case that the mesh has multiple axes,
|
| 232 |
+
then the first axis will be treated as the data parallel dimension
|
| 233 |
+
(and a warning will be raised).
|
| 234 |
+
|
| 235 |
+
When a list of `devices` are provided, they will be used to construct a
|
| 236 |
+
1D mesh.
|
| 237 |
+
|
| 238 |
+
When both `mesh` and `devices` are absent, then `list_devices()`
|
| 239 |
+
will be used to detect any available devices and create a 1D mesh from
|
| 240 |
+
them.
|
| 241 |
+
|
| 242 |
+
Args:
|
| 243 |
+
device_mesh: Optional `DeviceMesh` instance.
|
| 244 |
+
devices: Optional list of devices.
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
def __init__(self, device_mesh=None, devices=None):
|
| 248 |
+
if device_mesh:
|
| 249 |
+
self._initialize_with_device_mesh(device_mesh)
|
| 250 |
+
elif devices:
|
| 251 |
+
self._initialize_mesh_from_devices(devices)
|
| 252 |
+
else:
|
| 253 |
+
self._initialize_mesh_from_list_devices()
|
| 254 |
+
|
| 255 |
+
self._batch_dim_name = self.device_mesh.axis_names[0]
|
| 256 |
+
|
| 257 |
+
def _initialize_with_device_mesh(self, device_mesh):
|
| 258 |
+
if not isinstance(device_mesh, DeviceMesh):
|
| 259 |
+
raise ValueError(
|
| 260 |
+
"Expect `mesh` to be an instance of `DeviceMesh`. "
|
| 261 |
+
f"Received: mesh={device_mesh} (of type {type(device_mesh)})"
|
| 262 |
+
)
|
| 263 |
+
super().__init__(device_mesh)
|
| 264 |
+
if self.device_mesh.devices.ndim != 1:
|
| 265 |
+
warnings.warn(
|
| 266 |
+
"Expect the input mesh to be 1D, but received "
|
| 267 |
+
"mesh.devices.ndim=%d. "
|
| 268 |
+
"The first axis will be used for data-parallel sharding.",
|
| 269 |
+
device_mesh.devices.ndim,
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
def _initialize_mesh_from_devices(self, devices):
|
| 273 |
+
devices = np.array(devices)
|
| 274 |
+
device_mesh = DeviceMesh(
|
| 275 |
+
shape=devices.shape,
|
| 276 |
+
axis_names=[DEFAULT_BATCH_DIM_NAME],
|
| 277 |
+
devices=devices,
|
| 278 |
+
)
|
| 279 |
+
super().__init__(device_mesh)
|
| 280 |
+
|
| 281 |
+
def _initialize_mesh_from_list_devices(self):
|
| 282 |
+
devices = np.array(list_devices())
|
| 283 |
+
device_mesh = DeviceMesh(
|
| 284 |
+
shape=devices.shape,
|
| 285 |
+
axis_names=[DEFAULT_BATCH_DIM_NAME],
|
| 286 |
+
devices=devices,
|
| 287 |
+
)
|
| 288 |
+
super().__init__(device_mesh)
|
| 289 |
+
|
| 290 |
+
def get_data_layout(self, data_shape):
|
| 291 |
+
data_shard_spec = [None] * len(data_shape)
|
| 292 |
+
data_shard_spec[0] = self._batch_dim_name # Shard on the first dim
|
| 293 |
+
return TensorLayout(data_shard_spec, self.device_mesh)
|
| 294 |
+
|
| 295 |
+
def get_variable_layout(self, variable):
|
| 296 |
+
variable_shard_spec = [None] * len(variable.shape)
|
| 297 |
+
return TensorLayout(variable_shard_spec, self.device_mesh)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
@keras_core_export("keras_core.distribution.ModelParallel")
|
| 301 |
+
class ModelParallel(Distribution):
|
| 302 |
+
"""Distribution that shards model variables.
|
| 303 |
+
|
| 304 |
+
Compare to `DataParallel` which replicates the variables across all devices,
|
| 305 |
+
`ModelParallel` allows you to shard variables in addition to the input data.
|
| 306 |
+
|
| 307 |
+
To construct a `ModelParallel` distribution, you need to provide a
|
| 308 |
+
`DeviceMesh` and a `LayoutMap`.
|
| 309 |
+
|
| 310 |
+
1. `DeviceMesh` contains physcial device information. The axis names in
|
| 311 |
+
the mesh will be used to map the variable and data layout.
|
| 312 |
+
2. `LayoutMap` contains the mapping between variable paths to their
|
| 313 |
+
corresponding `TensorLayout`.
|
| 314 |
+
|
| 315 |
+
Example:
|
| 316 |
+
|
| 317 |
+
```python
|
| 318 |
+
devices = list_devices() # Assume there are 8 devices.
|
| 319 |
+
|
| 320 |
+
# Create a mesh with 2 devices for data parallelism and 4 devices for
|
| 321 |
+
# model parallelism.
|
| 322 |
+
device_mesh = DeviceMesh(shape=(2, 4), axis_names=('batch', 'model'),
|
| 323 |
+
devices=devices)
|
| 324 |
+
# Create a layout map that shard the `Dense` layer and `Conv2D`
|
| 325 |
+
# layer variables on the last dimension.
|
| 326 |
+
# Based on the `device_mesh`, this means the variables
|
| 327 |
+
# will be split across 4 devices. Any other variable that doesn't
|
| 328 |
+
# match any key in the layout map will be fully replicated.
|
| 329 |
+
layout_map = LayoutMap(device_mesh)
|
| 330 |
+
layout_map['.*dense.*kernel'] = TensorLayout([None, 'model'])
|
| 331 |
+
layout_map['.*dense.*bias'] = TensorLayout(['model'])
|
| 332 |
+
layout_map['.*conv2d.*kernel'] = TensorLayout([None, None, None, 'model'])
|
| 333 |
+
layout_map['.*conv2d.*bias'] = TensorLayout(['model'])
|
| 334 |
+
|
| 335 |
+
distribution = ModelParallel(device_mesh=device_mesh,
|
| 336 |
+
layout_map=layout_map,
|
| 337 |
+
batch_dim_name='batch')
|
| 338 |
+
# Set the global distribution, or via `with distribution.scope():`
|
| 339 |
+
set_distribution(distribution)
|
| 340 |
+
|
| 341 |
+
model = model_creation()
|
| 342 |
+
model.compile()
|
| 343 |
+
model.fit(data)
|
| 344 |
+
```
|
| 345 |
+
|
| 346 |
+
You can quickly update the device mesh shape to change the sharding factor
|
| 347 |
+
of the variables. E.g.
|
| 348 |
+
```
|
| 349 |
+
# With only the shape change for the device mesh, the variables will be
|
| 350 |
+
# sharded across 8 devices instead of 4, which further reduces the memory
|
| 351 |
+
# footprint of variables on each of the device.
|
| 352 |
+
device_mesh = DeviceMesh(shape=(1, 8), axis_names=('batch', 'model'),
|
| 353 |
+
devices=devices)
|
| 354 |
+
```
|
| 355 |
+
|
| 356 |
+
To figure out a proper layout mapping rule for all the model variables, you
|
| 357 |
+
can first list out all the model variable paths, which will be used as the
|
| 358 |
+
key to map the variables to `TensorLayout`.
|
| 359 |
+
|
| 360 |
+
e.g.
|
| 361 |
+
```
|
| 362 |
+
model = create_model()
|
| 363 |
+
for v in model.variables:
|
| 364 |
+
print(v.path)
|
| 365 |
+
```
|
| 366 |
+
|
| 367 |
+
Args:
|
| 368 |
+
device_mesh: `DeviceMesh` instance for physical device and its
|
| 369 |
+
logical mapping.
|
| 370 |
+
layout_map: `LayoutMap` instance which map the variable path to the
|
| 371 |
+
corresponding `TensorLayout`. The axis names of the
|
| 372 |
+
`TensorLayout`s should match to the axis names in the
|
| 373 |
+
device_mesh, or exception will be raised.
|
| 374 |
+
batch_dim_name: optional string, the axis name in the `device_mesh`
|
| 375 |
+
that will be used to distribute data. If unspecified, the
|
| 376 |
+
first axis from the `device_mesh` will be used.
|
| 377 |
+
"""
|
| 378 |
+
|
| 379 |
+
def __init__(self, device_mesh, layout_map, batch_dim_name=None):
|
| 380 |
+
super().__init__(device_mesh)
|
| 381 |
+
self._layout_map = layout_map
|
| 382 |
+
self._batch_dim_name = batch_dim_name or self.device_mesh.axis_names[0]
|
| 383 |
+
|
| 384 |
+
def get_data_layout(self, data_shape):
|
| 385 |
+
data_shard_spec = [None] * len(data_shape)
|
| 386 |
+
data_shard_spec[0] = self._batch_dim_name # Shard on the first dim
|
| 387 |
+
return TensorLayout(data_shard_spec, self.device_mesh)
|
| 388 |
+
|
| 389 |
+
def get_variable_layout(self, variable):
|
| 390 |
+
variable_layout = self._layout_map[variable.path]
|
| 391 |
+
if variable_layout is not None:
|
| 392 |
+
return variable_layout
|
| 393 |
+
variable_shard_spec = [None] * len(variable.shape)
|
| 394 |
+
return TensorLayout(variable_shard_spec, self.device_mesh)
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
@keras_core_export("keras_core.distribution.LayoutMap")
|
| 398 |
+
class LayoutMap(collections.abc.MutableMapping):
|
| 399 |
+
"""A dict-like object that maps string to `TensorLayout` instances.
|
| 400 |
+
|
| 401 |
+
`LayoutMap` uses a string as key and a `TensorLayout` as value. There is a
|
| 402 |
+
behavior difference between a normal Python dict and this class. The string
|
| 403 |
+
key will be treated as a regex when retrieving the value. See the docstring
|
| 404 |
+
of `get` for more details.
|
| 405 |
+
|
| 406 |
+
See below for a usage example. You can define the naming schema
|
| 407 |
+
of the `TensorLayout`, and then retrieve the corresponding
|
| 408 |
+
`TensorLayout` instance.
|
| 409 |
+
|
| 410 |
+
In the normal case, the key to query is usually the `variable.path`, which
|
| 411 |
+
is the idenifier of the variable.
|
| 412 |
+
|
| 413 |
+
```python
|
| 414 |
+
layout_map = LayoutMap(device_mesh=None)
|
| 415 |
+
layout_map['.*dense.*kernel'] = layout_2d
|
| 416 |
+
layout_map['.*dense.*bias'] = layout_1d
|
| 417 |
+
layout_map['.*conv2d.*kernel'] = layout_4d
|
| 418 |
+
layout_map['.*conv2d.*bias'] = layout_1d
|
| 419 |
+
|
| 420 |
+
layout_1 = layout_map['dense_1.kernel'] # layout_1 == layout_2d
|
| 421 |
+
layout_2 = layout_map['dense_1.bias'] # layout_2 == layout_1d
|
| 422 |
+
layout_3 = layout_map['dense_2.kernel'] # layout_3 == layout_2d
|
| 423 |
+
layout_4 = layout_map['dense_2.bias'] # layout_4 == layout_1d
|
| 424 |
+
layout_5 = layout_map['my_model/conv2d_123/kernel'] # layout_5 == layout_4d
|
| 425 |
+
layout_6 = layout_map['my_model/conv2d_123/bias'] # layout_6 == layout_1d
|
| 426 |
+
layout_7 = layout_map['my_model/conv3d_1/kernel'] # layout_7 == None
|
| 427 |
+
layout_8 = layout_map['my_model/conv3d_1/bias'] # layout_8 == None
|
| 428 |
+
```
|
| 429 |
+
|
| 430 |
+
Args:
|
| 431 |
+
device_mesh: An optional `DeviceMesh` that can be used to populate the
|
| 432 |
+
`TensorLayout.device_mesh` if `TensorLayout.device_mesh` is not set.
|
| 433 |
+
"""
|
| 434 |
+
|
| 435 |
+
def __init__(self, device_mesh=None):
|
| 436 |
+
self._layout_map = collections.OrderedDict()
|
| 437 |
+
self._device_mesh = device_mesh
|
| 438 |
+
|
| 439 |
+
def __getitem__(self, key):
|
| 440 |
+
"""Retrieves the corresponding layout by the string key.
|
| 441 |
+
|
| 442 |
+
When there isn't an exact match, all the existing keys in the layout map
|
| 443 |
+
will be treated as a regex and map against the input key again. The
|
| 444 |
+
first match will be returned, based on the key insertion order. Returns
|
| 445 |
+
`None` if there isn't any match found.
|
| 446 |
+
|
| 447 |
+
Args:
|
| 448 |
+
key: String key to query a layout.
|
| 449 |
+
|
| 450 |
+
Returns:
|
| 451 |
+
Corresponding layout based on the query.
|
| 452 |
+
"""
|
| 453 |
+
if key in self._layout_map:
|
| 454 |
+
return self._layout_map[key]
|
| 455 |
+
|
| 456 |
+
for k in self._layout_map:
|
| 457 |
+
if re.match(k, key):
|
| 458 |
+
return self._layout_map[k]
|
| 459 |
+
return None
|
| 460 |
+
|
| 461 |
+
def __setitem__(self, key, layout):
|
| 462 |
+
if key in self._layout_map:
|
| 463 |
+
raise ValueError(
|
| 464 |
+
f"{key} already exist in the LayoutMap with "
|
| 465 |
+
f"value {self._layout_map[key]}. Please make sure to "
|
| 466 |
+
"not use duplicated keys."
|
| 467 |
+
)
|
| 468 |
+
if not isinstance(layout, TensorLayout):
|
| 469 |
+
raise ValueError(
|
| 470 |
+
f"{layout} should be a TensorLayout type, got {type(layout)}"
|
| 471 |
+
)
|
| 472 |
+
self._maybe_populate_device_mesh(layout)
|
| 473 |
+
self._layout_map[key] = layout
|
| 474 |
+
|
| 475 |
+
def __delitem__(self, key):
|
| 476 |
+
# let the dict to handle the key missing error
|
| 477 |
+
return self._layout_map.pop(key)
|
| 478 |
+
|
| 479 |
+
def __len__(self):
|
| 480 |
+
return len(self._layout_map)
|
| 481 |
+
|
| 482 |
+
def __iter__(self):
|
| 483 |
+
return iter(self._layout_map)
|
| 484 |
+
|
| 485 |
+
@property
|
| 486 |
+
def device_mesh(self):
|
| 487 |
+
return self._device_mesh
|
| 488 |
+
|
| 489 |
+
def _maybe_populate_device_mesh(self, layout):
|
| 490 |
+
if layout.device_mesh is None and self.device_mesh is not None:
|
| 491 |
+
layout.device_mesh = self.device_mesh
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
@keras_core_export("keras_core.distribution.distribution")
|
| 495 |
+
def distribution():
|
| 496 |
+
"""Retrieve the current distribution from global context."""
|
| 497 |
+
return global_state.get_global_attribute(GLOBAL_ATTRIBUTE_NAME)
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
@keras_core_export("keras_core.distribution.set_distribution")
|
| 501 |
+
def set_distribution(value):
|
| 502 |
+
"""Set the distribution as the global distribution setting.
|
| 503 |
+
|
| 504 |
+
Args:
|
| 505 |
+
value: a `Distribution` instance.
|
| 506 |
+
"""
|
| 507 |
+
global_state.set_global_attribute(GLOBAL_ATTRIBUTE_NAME, value)
|
| 508 |
+
|
lib/python3.10/site-packages/keras_core/src/initializers/__init__.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import inspect
|
| 2 |
+
|
| 3 |
+
from keras_core.src.api_export import keras_core_export
|
| 4 |
+
from keras_core.src.initializers.constant_initializers import Constant
|
| 5 |
+
from keras_core.src.initializers.constant_initializers import Identity
|
| 6 |
+
from keras_core.src.initializers.constant_initializers import Ones
|
| 7 |
+
from keras_core.src.initializers.constant_initializers import Zeros
|
| 8 |
+
from keras_core.src.initializers.initializer import Initializer
|
| 9 |
+
from keras_core.src.initializers.random_initializers import GlorotNormal
|
| 10 |
+
from keras_core.src.initializers.random_initializers import GlorotUniform
|
| 11 |
+
from keras_core.src.initializers.random_initializers import HeNormal
|
| 12 |
+
from keras_core.src.initializers.random_initializers import HeUniform
|
| 13 |
+
from keras_core.src.initializers.random_initializers import LecunNormal
|
| 14 |
+
from keras_core.src.initializers.random_initializers import LecunUniform
|
| 15 |
+
from keras_core.src.initializers.random_initializers import OrthogonalInitializer
|
| 16 |
+
from keras_core.src.initializers.random_initializers import RandomNormal
|
| 17 |
+
from keras_core.src.initializers.random_initializers import RandomUniform
|
| 18 |
+
from keras_core.src.initializers.random_initializers import TruncatedNormal
|
| 19 |
+
from keras_core.src.initializers.random_initializers import VarianceScaling
|
| 20 |
+
from keras_core.src.saving import serialization_lib
|
| 21 |
+
from keras_core.src.utils.naming import to_snake_case
|
| 22 |
+
|
| 23 |
+
ALL_OBJECTS = {
|
| 24 |
+
Initializer,
|
| 25 |
+
Constant,
|
| 26 |
+
Ones,
|
| 27 |
+
Zeros,
|
| 28 |
+
GlorotNormal,
|
| 29 |
+
GlorotUniform,
|
| 30 |
+
HeNormal,
|
| 31 |
+
HeUniform,
|
| 32 |
+
LecunNormal,
|
| 33 |
+
LecunUniform,
|
| 34 |
+
RandomNormal,
|
| 35 |
+
TruncatedNormal,
|
| 36 |
+
RandomUniform,
|
| 37 |
+
VarianceScaling,
|
| 38 |
+
OrthogonalInitializer,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS}
|
| 42 |
+
ALL_OBJECTS_DICT.update(
|
| 43 |
+
{to_snake_case(cls.__name__): cls for cls in ALL_OBJECTS}
|
| 44 |
+
)
|
| 45 |
+
# Aliases
|
| 46 |
+
ALL_OBJECTS_DICT.update(
|
| 47 |
+
{
|
| 48 |
+
"uniform": RandomUniform,
|
| 49 |
+
"normal": RandomNormal,
|
| 50 |
+
"orthogonal": OrthogonalInitializer,
|
| 51 |
+
"one": Ones,
|
| 52 |
+
"zero": Zeros,
|
| 53 |
+
}
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
@keras_core_export("keras_core.initializers.serialize")
|
| 58 |
+
def serialize(initializer):
|
| 59 |
+
"""Returns the initializer configuration as a Python dict."""
|
| 60 |
+
return serialization_lib.serialize_keras_object(initializer)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@keras_core_export("keras_core.initializers.deserialize")
|
| 64 |
+
def deserialize(config, custom_objects=None):
|
| 65 |
+
"""Returns a Keras initializer object via its configuration."""
|
| 66 |
+
return serialization_lib.deserialize_keras_object(
|
| 67 |
+
config,
|
| 68 |
+
module_objects=ALL_OBJECTS_DICT,
|
| 69 |
+
custom_objects=custom_objects,
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@keras_core_export("keras_core.initializers.get")
|
| 74 |
+
def get(identifier):
|
| 75 |
+
"""Retrieves a Keras initializer object via an identifier.
|
| 76 |
+
|
| 77 |
+
The `identifier` may be the string name of a initializers function or class
|
| 78 |
+
(case-sensitively).
|
| 79 |
+
|
| 80 |
+
>>> identifier = 'Ones'
|
| 81 |
+
>>> keras_core.initializers.deserialize(identifier)
|
| 82 |
+
<...keras_core.initializers.initializers.Ones...>
|
| 83 |
+
|
| 84 |
+
You can also specify `config` of the initializer to this function by passing
|
| 85 |
+
dict containing `class_name` and `config` as an identifier. Also note that
|
| 86 |
+
the `class_name` must map to a `Initializer` class.
|
| 87 |
+
|
| 88 |
+
>>> cfg = {'class_name': 'Ones', 'config': {}}
|
| 89 |
+
>>> keras_core.initializers.deserialize(cfg)
|
| 90 |
+
<...keras_core.initializers.initializers.Ones...>
|
| 91 |
+
|
| 92 |
+
In the case that the `identifier` is a class, this method will return a new
|
| 93 |
+
instance of the class by its constructor.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
identifier: String or dict that contains the initializer name or
|
| 97 |
+
configurations.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
Initializer instance base on the input identifier.
|
| 101 |
+
"""
|
| 102 |
+
if identifier is None:
|
| 103 |
+
return None
|
| 104 |
+
if isinstance(identifier, dict):
|
| 105 |
+
obj = deserialize(identifier)
|
| 106 |
+
elif isinstance(identifier, str):
|
| 107 |
+
config = {"class_name": str(identifier), "config": {}}
|
| 108 |
+
obj = deserialize(config)
|
| 109 |
+
else:
|
| 110 |
+
obj = identifier
|
| 111 |
+
|
| 112 |
+
if callable(obj):
|
| 113 |
+
if inspect.isclass(obj):
|
| 114 |
+
obj = obj()
|
| 115 |
+
return obj
|
| 116 |
+
else:
|
| 117 |
+
raise ValueError(
|
| 118 |
+
f"Could not interpret initializer identifier: {identifier}"
|
| 119 |
+
)
|
| 120 |
+
|
lib/python3.10/site-packages/keras_core/src/initializers/constant_initializers.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src import ops
|
| 2 |
+
from keras_core.src.api_export import keras_core_export
|
| 3 |
+
from keras_core.src.backend import standardize_dtype
|
| 4 |
+
from keras_core.src.initializers.initializer import Initializer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@keras_core_export(
|
| 8 |
+
["keras_core.initializers.Constant", "keras_core.initializers.constant"]
|
| 9 |
+
)
|
| 10 |
+
class Constant(Initializer):
|
| 11 |
+
"""Initializer that generates tensors with constant values.
|
| 12 |
+
|
| 13 |
+
Only scalar values are allowed.
|
| 14 |
+
The constant value provided must be convertible to the dtype requested
|
| 15 |
+
when calling the initializer.
|
| 16 |
+
|
| 17 |
+
Examples:
|
| 18 |
+
|
| 19 |
+
>>> # Standalone usage:
|
| 20 |
+
>>> initializer = Constant(10.)
|
| 21 |
+
>>> values = initializer(shape=(2, 2))
|
| 22 |
+
|
| 23 |
+
>>> # Usage in a Keras layer:
|
| 24 |
+
>>> initializer = Constant(10.)
|
| 25 |
+
>>> layer = Dense(3, kernel_initializer=initializer)
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
value: A Python scalar.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
def __init__(self, value=0.0):
|
| 32 |
+
self.value = value
|
| 33 |
+
|
| 34 |
+
def __call__(self, shape, dtype=None):
|
| 35 |
+
dtype = standardize_dtype(dtype)
|
| 36 |
+
return ops.cast(self.value, dtype=dtype) * ops.ones(
|
| 37 |
+
shape=shape, dtype=dtype
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def get_config(self):
|
| 41 |
+
return {"value": self.value}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@keras_core_export(
|
| 45 |
+
["keras_core.initializers.Zeros", "keras_core.initializers.zeros"]
|
| 46 |
+
)
|
| 47 |
+
class Zeros(Initializer):
|
| 48 |
+
"""Initializer that generates tensors initialized to 0.
|
| 49 |
+
|
| 50 |
+
Examples:
|
| 51 |
+
|
| 52 |
+
>>> # Standalone usage:
|
| 53 |
+
>>> initializer = Zeros()
|
| 54 |
+
>>> values = initializer(shape=(2, 2))
|
| 55 |
+
|
| 56 |
+
>>> # Usage in a Keras layer:
|
| 57 |
+
>>> initializer = Zeros()
|
| 58 |
+
>>> layer = Dense(units=3, kernel_initializer=initializer)
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __call__(self, shape, dtype=None):
|
| 62 |
+
"""Returns a tensor object initialized as specified by the initializer.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
shape: Shape of the tensor.
|
| 66 |
+
dtype: Optional dtype of the tensor. Only numeric or boolean dtypes
|
| 67 |
+
are supported. If not specified, `keras_core.backend.floatx()`
|
| 68 |
+
is used, which default to `float32` unless you configured it
|
| 69 |
+
otherwise (via `keras_core.backend.set_floatx(float_dtype)`).
|
| 70 |
+
"""
|
| 71 |
+
dtype = standardize_dtype(dtype)
|
| 72 |
+
return ops.zeros(shape, dtype=dtype)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@keras_core_export(
|
| 76 |
+
["keras_core.initializers.Ones", "keras_core.initializers.ones"]
|
| 77 |
+
)
|
| 78 |
+
class Ones(Initializer):
|
| 79 |
+
"""Initializer that generates tensors initialized to 1.
|
| 80 |
+
|
| 81 |
+
Also available via the shortcut function `ones`.
|
| 82 |
+
|
| 83 |
+
Examples:
|
| 84 |
+
|
| 85 |
+
>>> # Standalone usage:
|
| 86 |
+
>>> initializer = Ones()
|
| 87 |
+
>>> values = initializer(shape=(2, 2))
|
| 88 |
+
|
| 89 |
+
>>> # Usage in a Keras layer:
|
| 90 |
+
>>> initializer = Ones()
|
| 91 |
+
>>> layer = Dense(3, kernel_initializer=initializer)
|
| 92 |
+
"""
|
| 93 |
+
|
| 94 |
+
def __call__(self, shape, dtype=None):
|
| 95 |
+
"""Returns a tensor object initialized as specified by the initializer.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
shape: Shape of the tensor.
|
| 99 |
+
dtype: Optional dtype of the tensor. Only numeric or boolean dtypes
|
| 100 |
+
are supported. If not specified, `keras_core.backend.floatx()`
|
| 101 |
+
is used, which default to `float32` unless you configured it
|
| 102 |
+
otherwise (via `keras_core.backend.set_floatx(float_dtype)`).
|
| 103 |
+
"""
|
| 104 |
+
dtype = standardize_dtype(dtype)
|
| 105 |
+
return ops.ones(shape, dtype=dtype)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@keras_core_export(
|
| 109 |
+
[
|
| 110 |
+
"keras_core.initializers.IdentityInitializer",
|
| 111 |
+
"keras_core.initializers.Identity",
|
| 112 |
+
"keras_core.initializers.identity",
|
| 113 |
+
]
|
| 114 |
+
)
|
| 115 |
+
class Identity(Initializer):
|
| 116 |
+
"""Initializer that generates the identity matrix.
|
| 117 |
+
|
| 118 |
+
Only usable for generating 2D matrices.
|
| 119 |
+
|
| 120 |
+
Examples:
|
| 121 |
+
|
| 122 |
+
>>> # Standalone usage:
|
| 123 |
+
>>> initializer = Identity()
|
| 124 |
+
>>> values = initializer(shape=(2, 2))
|
| 125 |
+
|
| 126 |
+
>>> # Usage in a Keras layer:
|
| 127 |
+
>>> initializer = Identity()
|
| 128 |
+
>>> layer = Dense(3, kernel_initializer=initializer)
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
gain: Multiplicative factor to apply to the identity matrix.
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
def __init__(self, gain=1.0):
|
| 135 |
+
self.gain = gain
|
| 136 |
+
|
| 137 |
+
def __call__(self, shape, dtype=None):
|
| 138 |
+
"""Returns a tensor object initialized as specified by the initializer.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
shape: Shape of the tensor.
|
| 142 |
+
dtype: Optional dtype of the tensor. Only numeric or boolean dtypes
|
| 143 |
+
are supported. If not specified, `keras_core.backend.floatx()`
|
| 144 |
+
is used, which default to `float32` unless you configured it
|
| 145 |
+
otherwise (via `keras_core.backend.set_floatx(float_dtype)`).
|
| 146 |
+
"""
|
| 147 |
+
if len(shape) != 2:
|
| 148 |
+
raise ValueError(
|
| 149 |
+
"Identity matrix initializer can only be used for 2D matrices. "
|
| 150 |
+
f"Received: shape={shape} of rank {len(shape)}."
|
| 151 |
+
)
|
| 152 |
+
dtype = standardize_dtype(dtype)
|
| 153 |
+
return self.gain * ops.eye(*shape, dtype=dtype)
|
| 154 |
+
|
lib/python3.10/site-packages/keras_core/src/initializers/initializer.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src.api_export import keras_core_export
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
@keras_core_export(
|
| 5 |
+
["keras_core.Initializer", "keras_core.initializers.Initializer"]
|
| 6 |
+
)
|
| 7 |
+
class Initializer:
|
| 8 |
+
"""Initializer base class: all Keras initializers inherit from this class.
|
| 9 |
+
|
| 10 |
+
Initializers should implement a `__call__()` method with the following
|
| 11 |
+
signature:
|
| 12 |
+
|
| 13 |
+
```python
|
| 14 |
+
def __call__(self, shape, dtype=None, **kwargs):
|
| 15 |
+
# returns a tensor of shape `shape` and dtype `dtype`
|
| 16 |
+
# containing values drawn from a distribution of your choice.
|
| 17 |
+
```
|
| 18 |
+
|
| 19 |
+
Optionally, you an also implement the method `get_config()` and the class
|
| 20 |
+
method `from_config` in order to support serialization -- just like with
|
| 21 |
+
any Keras object.
|
| 22 |
+
|
| 23 |
+
Here's a simple example: a random normal initializer.
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
class ExampleRandomNormal(Initializer):
|
| 27 |
+
def __init__(self, mean, stddev):
|
| 28 |
+
self.mean = mean
|
| 29 |
+
self.stddev = stddev
|
| 30 |
+
|
| 31 |
+
def __call__(self, shape, dtype=None, **kwargs):
|
| 32 |
+
return keras_core.random.normal(
|
| 33 |
+
shape, mean=self.mean, stddev=self.stddev, dtype=dtype
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def get_config(self): # To support serialization
|
| 37 |
+
return {"mean": self.mean, "stddev": self.stddev}
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
Note that we don't have to implement `from_config()` in the example above
|
| 41 |
+
since the constructor arguments of the class the keys in the config returned
|
| 42 |
+
by `get_config()` are the same. In this case, the default `from_config()`
|
| 43 |
+
works fine.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __call__(self, shape, dtype=None):
|
| 47 |
+
"""Returns a tensor object initialized as specified by the initializer.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
shape: Shape of the tensor.
|
| 51 |
+
dtype: Optional dtype of the tensor.
|
| 52 |
+
"""
|
| 53 |
+
raise NotImplementedError(
|
| 54 |
+
"Initializer subclasses must implement the `__call__()` method."
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
def get_config(self):
|
| 58 |
+
"""Returns the initializer's configuration as a JSON-serializable dict.
|
| 59 |
+
|
| 60 |
+
Returns:
|
| 61 |
+
A JSON-serializable Python dict.
|
| 62 |
+
"""
|
| 63 |
+
return {}
|
| 64 |
+
|
| 65 |
+
@classmethod
|
| 66 |
+
def from_config(cls, config):
|
| 67 |
+
"""Instantiates an initializer from a configuration dictionary.
|
| 68 |
+
|
| 69 |
+
Example:
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
initializer = RandomUniform(-1, 1)
|
| 73 |
+
config = initializer.get_config()
|
| 74 |
+
initializer = RandomUniform.from_config(config)
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
config: A Python dictionary, the output of `get_config()`.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
An `Initializer` instance.
|
| 82 |
+
"""
|
| 83 |
+
return cls(**config)
|
| 84 |
+
|
lib/python3.10/site-packages/keras_core/src/losses/__init__.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src.api_export import keras_core_export
|
| 2 |
+
from keras_core.src.losses.loss import Loss
|
| 3 |
+
from keras_core.src.losses.losses import BinaryCrossentropy
|
| 4 |
+
from keras_core.src.losses.losses import CategoricalCrossentropy
|
| 5 |
+
from keras_core.src.losses.losses import CategoricalHinge
|
| 6 |
+
from keras_core.src.losses.losses import CosineSimilarity
|
| 7 |
+
from keras_core.src.losses.losses import Hinge
|
| 8 |
+
from keras_core.src.losses.losses import Huber
|
| 9 |
+
from keras_core.src.losses.losses import KLDivergence
|
| 10 |
+
from keras_core.src.losses.losses import LogCosh
|
| 11 |
+
from keras_core.src.losses.losses import LossFunctionWrapper
|
| 12 |
+
from keras_core.src.losses.losses import MeanAbsoluteError
|
| 13 |
+
from keras_core.src.losses.losses import MeanAbsolutePercentageError
|
| 14 |
+
from keras_core.src.losses.losses import MeanSquaredError
|
| 15 |
+
from keras_core.src.losses.losses import MeanSquaredLogarithmicError
|
| 16 |
+
from keras_core.src.losses.losses import Poisson
|
| 17 |
+
from keras_core.src.losses.losses import SparseCategoricalCrossentropy
|
| 18 |
+
from keras_core.src.losses.losses import SquaredHinge
|
| 19 |
+
from keras_core.src.losses.losses import binary_crossentropy
|
| 20 |
+
from keras_core.src.losses.losses import categorical_crossentropy
|
| 21 |
+
from keras_core.src.losses.losses import categorical_hinge
|
| 22 |
+
from keras_core.src.losses.losses import cosine_similarity
|
| 23 |
+
from keras_core.src.losses.losses import hinge
|
| 24 |
+
from keras_core.src.losses.losses import huber
|
| 25 |
+
from keras_core.src.losses.losses import kl_divergence
|
| 26 |
+
from keras_core.src.losses.losses import log_cosh
|
| 27 |
+
from keras_core.src.losses.losses import mean_absolute_error
|
| 28 |
+
from keras_core.src.losses.losses import mean_absolute_percentage_error
|
| 29 |
+
from keras_core.src.losses.losses import mean_squared_error
|
| 30 |
+
from keras_core.src.losses.losses import mean_squared_logarithmic_error
|
| 31 |
+
from keras_core.src.losses.losses import poisson
|
| 32 |
+
from keras_core.src.losses.losses import sparse_categorical_crossentropy
|
| 33 |
+
from keras_core.src.losses.losses import squared_hinge
|
| 34 |
+
from keras_core.src.saving import serialization_lib
|
| 35 |
+
|
| 36 |
+
ALL_OBJECTS = {
|
| 37 |
+
# Base
|
| 38 |
+
Loss,
|
| 39 |
+
LossFunctionWrapper,
|
| 40 |
+
# Probabilistic
|
| 41 |
+
KLDivergence,
|
| 42 |
+
Poisson,
|
| 43 |
+
BinaryCrossentropy,
|
| 44 |
+
CategoricalCrossentropy,
|
| 45 |
+
SparseCategoricalCrossentropy,
|
| 46 |
+
# Regression
|
| 47 |
+
MeanSquaredError,
|
| 48 |
+
MeanAbsoluteError,
|
| 49 |
+
MeanAbsolutePercentageError,
|
| 50 |
+
MeanSquaredLogarithmicError,
|
| 51 |
+
CosineSimilarity,
|
| 52 |
+
LogCosh,
|
| 53 |
+
Huber,
|
| 54 |
+
# Hinge
|
| 55 |
+
Hinge,
|
| 56 |
+
SquaredHinge,
|
| 57 |
+
CategoricalHinge,
|
| 58 |
+
# Probabilistic
|
| 59 |
+
kl_divergence,
|
| 60 |
+
poisson,
|
| 61 |
+
binary_crossentropy,
|
| 62 |
+
categorical_crossentropy,
|
| 63 |
+
sparse_categorical_crossentropy,
|
| 64 |
+
# Regression
|
| 65 |
+
mean_squared_error,
|
| 66 |
+
mean_absolute_error,
|
| 67 |
+
mean_absolute_percentage_error,
|
| 68 |
+
mean_squared_logarithmic_error,
|
| 69 |
+
cosine_similarity,
|
| 70 |
+
log_cosh,
|
| 71 |
+
huber,
|
| 72 |
+
# Hinge
|
| 73 |
+
hinge,
|
| 74 |
+
squared_hinge,
|
| 75 |
+
categorical_hinge,
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS}
|
| 79 |
+
ALL_OBJECTS_DICT.update(
|
| 80 |
+
{
|
| 81 |
+
"bce": binary_crossentropy,
|
| 82 |
+
"BCE": binary_crossentropy,
|
| 83 |
+
"kld": kl_divergence,
|
| 84 |
+
"KLD": kl_divergence,
|
| 85 |
+
"mae": mean_absolute_error,
|
| 86 |
+
"MAE": mean_absolute_error,
|
| 87 |
+
"mse": mean_squared_error,
|
| 88 |
+
"MSE": mean_squared_error,
|
| 89 |
+
"mape": mean_absolute_percentage_error,
|
| 90 |
+
"MAPE": mean_absolute_percentage_error,
|
| 91 |
+
"msle": mean_squared_logarithmic_error,
|
| 92 |
+
"MSLE": mean_squared_logarithmic_error,
|
| 93 |
+
}
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@keras_core_export("keras_core.losses.serialize")
|
| 98 |
+
def serialize(loss):
|
| 99 |
+
"""Serializes loss function or `Loss` instance.
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
loss: A Keras `Loss` instance or a loss function.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
Loss configuration dictionary.
|
| 106 |
+
"""
|
| 107 |
+
return serialization_lib.serialize_keras_object(loss)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@keras_core_export("keras_core.losses.deserialize")
|
| 111 |
+
def deserialize(name, custom_objects=None):
|
| 112 |
+
"""Deserializes a serialized loss class/function instance.
|
| 113 |
+
|
| 114 |
+
Args:
|
| 115 |
+
name: Loss configuration.
|
| 116 |
+
custom_objects: Optional dictionary mapping names (strings) to custom
|
| 117 |
+
objects (classes and functions) to be considered during
|
| 118 |
+
deserialization.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
A Keras `Loss` instance or a loss function.
|
| 122 |
+
"""
|
| 123 |
+
return serialization_lib.deserialize_keras_object(
|
| 124 |
+
name,
|
| 125 |
+
module_objects=ALL_OBJECTS_DICT,
|
| 126 |
+
custom_objects=custom_objects,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@keras_core_export("keras_core.losses.get")
|
| 131 |
+
def get(identifier):
|
| 132 |
+
"""Retrieves a Keras loss as a `function`/`Loss` class instance.
|
| 133 |
+
|
| 134 |
+
The `identifier` may be the string name of a loss function or `Loss` class.
|
| 135 |
+
|
| 136 |
+
>>> loss = losses.get("categorical_crossentropy")
|
| 137 |
+
>>> type(loss)
|
| 138 |
+
<class 'function'>
|
| 139 |
+
>>> loss = losses.get("CategoricalCrossentropy")
|
| 140 |
+
>>> type(loss)
|
| 141 |
+
<class '...CategoricalCrossentropy'>
|
| 142 |
+
|
| 143 |
+
You can also specify `config` of the loss to this function by passing dict
|
| 144 |
+
containing `class_name` and `config` as an identifier. Also note that the
|
| 145 |
+
`class_name` must map to a `Loss` class
|
| 146 |
+
|
| 147 |
+
>>> identifier = {"class_name": "CategoricalCrossentropy",
|
| 148 |
+
... "config": {"from_logits": True}}
|
| 149 |
+
>>> loss = losses.get(identifier)
|
| 150 |
+
>>> type(loss)
|
| 151 |
+
<class '...CategoricalCrossentropy'>
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
identifier: A loss identifier. One of None or string name of a loss
|
| 155 |
+
function/class or loss configuration dictionary or a loss function
|
| 156 |
+
or a loss class instance.
|
| 157 |
+
|
| 158 |
+
Returns:
|
| 159 |
+
A Keras loss as a `function`/ `Loss` class instance.
|
| 160 |
+
"""
|
| 161 |
+
if identifier is None:
|
| 162 |
+
return None
|
| 163 |
+
if isinstance(identifier, dict):
|
| 164 |
+
obj = deserialize(identifier)
|
| 165 |
+
elif isinstance(identifier, str):
|
| 166 |
+
obj = deserialize(identifier)
|
| 167 |
+
else:
|
| 168 |
+
obj = identifier
|
| 169 |
+
|
| 170 |
+
if callable(obj):
|
| 171 |
+
return obj
|
| 172 |
+
else:
|
| 173 |
+
raise ValueError(f"Could not interpret loss identifier: {identifier}")
|
| 174 |
+
|
lib/python3.10/site-packages/keras_core/src/losses/loss.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tree
|
| 2 |
+
|
| 3 |
+
from keras_core.src import backend
|
| 4 |
+
from keras_core.src import ops
|
| 5 |
+
from keras_core.src.api_export import keras_core_export
|
| 6 |
+
from keras_core.src.utils.naming import auto_name
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
@keras_core_export(["keras_core.Loss", "keras_core.losses.Loss"])
|
| 10 |
+
class Loss:
|
| 11 |
+
"""Loss base class.
|
| 12 |
+
|
| 13 |
+
To be implemented by subclasses:
|
| 14 |
+
|
| 15 |
+
* `call()`: Contains the logic for loss calculation using `y_true`,
|
| 16 |
+
`y_pred`.
|
| 17 |
+
|
| 18 |
+
Example subclass implementation:
|
| 19 |
+
|
| 20 |
+
```python
|
| 21 |
+
class MeanSquaredError(Loss):
|
| 22 |
+
def call(self, y_true, y_pred):
|
| 23 |
+
return ops.mean(ops.square(y_pred - y_true), axis=-1)
|
| 24 |
+
```
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self, name=None, reduction="sum_over_batch_size", dtype=None):
|
| 28 |
+
self.name = name or auto_name(self.__class__.__name__)
|
| 29 |
+
self.reduction = standardize_reduction(reduction)
|
| 30 |
+
self.dtype = dtype or backend.floatx()
|
| 31 |
+
|
| 32 |
+
def __call__(self, y_true, y_pred, sample_weight=None):
|
| 33 |
+
in_mask = getattr(y_pred, "_keras_mask", None)
|
| 34 |
+
|
| 35 |
+
with ops.name_scope(self.name):
|
| 36 |
+
y_pred = tree.map_structure(
|
| 37 |
+
lambda x: ops.convert_to_tensor(x, dtype=self.dtype), y_pred
|
| 38 |
+
)
|
| 39 |
+
y_true = tree.map_structure(
|
| 40 |
+
lambda x: ops.convert_to_tensor(x, dtype=self.dtype), y_true
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
losses = self.call(y_true, y_pred)
|
| 44 |
+
out_mask = getattr(losses, "_keras_mask", None)
|
| 45 |
+
|
| 46 |
+
if in_mask is not None and out_mask is not None:
|
| 47 |
+
mask = in_mask & out_mask
|
| 48 |
+
elif in_mask is not None:
|
| 49 |
+
mask = in_mask
|
| 50 |
+
elif out_mask is not None:
|
| 51 |
+
mask = out_mask
|
| 52 |
+
else:
|
| 53 |
+
mask = None
|
| 54 |
+
|
| 55 |
+
return reduce_weighted_values(
|
| 56 |
+
losses,
|
| 57 |
+
sample_weight=sample_weight,
|
| 58 |
+
mask=mask,
|
| 59 |
+
reduction=self.reduction,
|
| 60 |
+
dtype=self.dtype,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
def call(self, y_true, y_pred):
|
| 64 |
+
raise NotImplementedError
|
| 65 |
+
|
| 66 |
+
def get_config(self):
|
| 67 |
+
return {"name": self.name, "reduction": self.reduction}
|
| 68 |
+
|
| 69 |
+
@classmethod
|
| 70 |
+
def from_config(cls, config):
|
| 71 |
+
return cls(**config)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def standardize_reduction(reduction):
|
| 75 |
+
allowed = {"sum_over_batch_size", "sum", None, "none"}
|
| 76 |
+
if reduction not in allowed:
|
| 77 |
+
raise ValueError(
|
| 78 |
+
"Invalid value for argument `reduction`. "
|
| 79 |
+
f"Expected on of {allowed}. Received: "
|
| 80 |
+
f"reduction={reduction}"
|
| 81 |
+
)
|
| 82 |
+
return reduction
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def squeeze_to_same_rank(x1, x2):
|
| 86 |
+
"""Squeeze last dim if ranks differ from expected by exactly 1."""
|
| 87 |
+
x1_rank = len(x1.shape)
|
| 88 |
+
x2_rank = len(x2.shape)
|
| 89 |
+
if x1_rank == x2_rank:
|
| 90 |
+
return x1, x2
|
| 91 |
+
if x1_rank == x2_rank + 1:
|
| 92 |
+
if x1.shape[-1] == 1:
|
| 93 |
+
x1 = ops.squeeze(x1, axis=-1)
|
| 94 |
+
if x2_rank == x1_rank + 1:
|
| 95 |
+
if x2.shape[-1] == 1:
|
| 96 |
+
x2 = ops.squeeze(x2, axis=-1)
|
| 97 |
+
return x1, x2
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def reduce_values(values, reduction="sum_over_batch_size"):
|
| 101 |
+
if (
|
| 102 |
+
reduction is None
|
| 103 |
+
or reduction == "none"
|
| 104 |
+
or tuple(values.shape) == ()
|
| 105 |
+
or tuple(values.shape) == (0,)
|
| 106 |
+
):
|
| 107 |
+
return values
|
| 108 |
+
loss = ops.sum(values)
|
| 109 |
+
if reduction == "sum_over_batch_size":
|
| 110 |
+
loss /= ops.cast(
|
| 111 |
+
ops.prod(ops.convert_to_tensor(ops.shape(values), dtype="int32")),
|
| 112 |
+
loss.dtype,
|
| 113 |
+
)
|
| 114 |
+
return loss
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def reduce_weighted_values(
|
| 118 |
+
values,
|
| 119 |
+
sample_weight=None,
|
| 120 |
+
mask=None,
|
| 121 |
+
reduction="sum_over_batch_size",
|
| 122 |
+
dtype=None,
|
| 123 |
+
):
|
| 124 |
+
reduction = standardize_reduction(reduction)
|
| 125 |
+
|
| 126 |
+
values = ops.convert_to_tensor(values, dtype=dtype)
|
| 127 |
+
if sample_weight is not None:
|
| 128 |
+
sample_weight = ops.convert_to_tensor(sample_weight, dtype=dtype)
|
| 129 |
+
if mask is not None:
|
| 130 |
+
mask = ops.convert_to_tensor(mask, dtype=dtype)
|
| 131 |
+
|
| 132 |
+
# Merge mask and sample weight into sample weight.
|
| 133 |
+
sample_weight = apply_mask(
|
| 134 |
+
sample_weight, mask, dtype=values.dtype, reduction=reduction
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
if sample_weight is not None:
|
| 138 |
+
sample_weight = ops.cast(sample_weight, values.dtype)
|
| 139 |
+
# Update dimensions of `sample_weight` to match `losses`.
|
| 140 |
+
values, sample_weight = squeeze_to_same_rank(values, sample_weight)
|
| 141 |
+
values = values * sample_weight
|
| 142 |
+
|
| 143 |
+
# Apply reduction function to the individual weighted losses.
|
| 144 |
+
loss = reduce_values(values, reduction)
|
| 145 |
+
return loss
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def apply_mask(sample_weight, mask, dtype, reduction):
|
| 149 |
+
"""Applies any mask on predictions to sample weights."""
|
| 150 |
+
if mask is not None:
|
| 151 |
+
mask = ops.cast(mask, dtype=dtype)
|
| 152 |
+
if reduction == "sum_over_batch_size":
|
| 153 |
+
# Valid entries have weight `total/valid`, while invalid ones
|
| 154 |
+
# have 0. When summed over batch, they will be reduced to:
|
| 155 |
+
#
|
| 156 |
+
# mean(loss * sample_weight * total / valid)
|
| 157 |
+
# = sum(loss * sample_weight * total / valid) / total
|
| 158 |
+
# = sum(loss * sample_weight) / total * total / valid
|
| 159 |
+
# = sum(loss * sample_weight) / valid
|
| 160 |
+
total = ops.cast(
|
| 161 |
+
ops.prod(ops.convert_to_tensor(ops.shape(mask), dtype="int32")),
|
| 162 |
+
dtype,
|
| 163 |
+
)
|
| 164 |
+
valid = ops.sum(mask) # May be 0!
|
| 165 |
+
mask *= total / (valid + backend.epsilon())
|
| 166 |
+
|
| 167 |
+
if sample_weight is not None:
|
| 168 |
+
sample_weight = ops.cast(sample_weight, dtype=dtype)
|
| 169 |
+
mask, sample_weight = squeeze_to_same_rank(mask, sample_weight)
|
| 170 |
+
sample_weight *= mask
|
| 171 |
+
else:
|
| 172 |
+
sample_weight = mask
|
| 173 |
+
return sample_weight
|
| 174 |
+
|
lib/python3.10/site-packages/keras_core/src/losses/losses.py
ADDED
|
@@ -0,0 +1,1861 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
|
| 3 |
+
from keras_core.src import backend
|
| 4 |
+
from keras_core.src import ops
|
| 5 |
+
from keras_core.src.api_export import keras_core_export
|
| 6 |
+
from keras_core.src.losses.loss import Loss
|
| 7 |
+
from keras_core.src.losses.loss import squeeze_to_same_rank
|
| 8 |
+
from keras_core.src.saving import serialization_lib
|
| 9 |
+
from keras_core.src.utils.numerical_utils import normalize
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class LossFunctionWrapper(Loss):
|
| 13 |
+
def __init__(
|
| 14 |
+
self, fn, reduction="sum_over_batch_size", name=None, **kwargs
|
| 15 |
+
):
|
| 16 |
+
super().__init__(reduction=reduction, name=name)
|
| 17 |
+
self.fn = fn
|
| 18 |
+
self._fn_kwargs = kwargs
|
| 19 |
+
|
| 20 |
+
def call(self, y_true, y_pred):
|
| 21 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 22 |
+
return self.fn(y_true, y_pred, **self._fn_kwargs)
|
| 23 |
+
|
| 24 |
+
def get_config(self):
|
| 25 |
+
base_config = super().get_config()
|
| 26 |
+
config = {"fn": serialization_lib.serialize_keras_object(self.fn)}
|
| 27 |
+
config.update(serialization_lib.serialize_keras_object(self._fn_kwargs))
|
| 28 |
+
return {**base_config, **config}
|
| 29 |
+
|
| 30 |
+
@classmethod
|
| 31 |
+
def from_config(cls, config):
|
| 32 |
+
if "fn" in config:
|
| 33 |
+
config = serialization_lib.deserialize_keras_object(config)
|
| 34 |
+
return cls(**config)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@keras_core_export("keras_core.losses.MeanSquaredError")
|
| 38 |
+
class MeanSquaredError(LossFunctionWrapper):
|
| 39 |
+
"""Computes the mean of squares of errors between labels and predictions.
|
| 40 |
+
|
| 41 |
+
Formula:
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
loss = mean(square(y_true - y_pred))
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 49 |
+
this should be `"sum_over_batch_size"`.
|
| 50 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 51 |
+
name: Optional name for the loss instance.
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
def __init__(
|
| 55 |
+
self, reduction="sum_over_batch_size", name="mean_squared_error"
|
| 56 |
+
):
|
| 57 |
+
super().__init__(mean_squared_error, reduction=reduction, name=name)
|
| 58 |
+
|
| 59 |
+
def get_config(self):
|
| 60 |
+
return Loss.get_config(self)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@keras_core_export("keras_core.losses.MeanAbsoluteError")
|
| 64 |
+
class MeanAbsoluteError(LossFunctionWrapper):
|
| 65 |
+
"""Computes the mean of absolute difference between labels and predictions.
|
| 66 |
+
|
| 67 |
+
Formula:
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
loss = mean(abs(y_true - y_pred))
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 75 |
+
this should be `"sum_over_batch_size"`.
|
| 76 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 77 |
+
name: Optional name for the loss instance.
|
| 78 |
+
"""
|
| 79 |
+
|
| 80 |
+
def __init__(
|
| 81 |
+
self, reduction="sum_over_batch_size", name="mean_absolute_error"
|
| 82 |
+
):
|
| 83 |
+
super().__init__(mean_absolute_error, reduction=reduction, name=name)
|
| 84 |
+
|
| 85 |
+
def get_config(self):
|
| 86 |
+
return Loss.get_config(self)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
@keras_core_export("keras_core.losses.MeanAbsolutePercentageError")
|
| 90 |
+
class MeanAbsolutePercentageError(LossFunctionWrapper):
|
| 91 |
+
"""Computes the mean absolute percentage error between `y_true` & `y_pred`.
|
| 92 |
+
|
| 93 |
+
Formula:
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
loss = 100 * mean(abs((y_true - y_pred) / y_true))
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 101 |
+
this should be `"sum_over_batch_size"`.
|
| 102 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 103 |
+
name: Optional name for the loss instance.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
def __init__(
|
| 107 |
+
self,
|
| 108 |
+
reduction="sum_over_batch_size",
|
| 109 |
+
name="mean_absolute_percentage_error",
|
| 110 |
+
):
|
| 111 |
+
super().__init__(
|
| 112 |
+
mean_absolute_percentage_error, reduction=reduction, name=name
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def get_config(self):
|
| 116 |
+
return Loss.get_config(self)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
@keras_core_export("keras_core.losses.MeanSquaredLogarithmicError")
|
| 120 |
+
class MeanSquaredLogarithmicError(LossFunctionWrapper):
|
| 121 |
+
"""Computes the mean squared logarithmic error between `y_true` & `y_pred`.
|
| 122 |
+
|
| 123 |
+
Formula:
|
| 124 |
+
|
| 125 |
+
```python
|
| 126 |
+
loss = mean(square(log(y_true + 1) - log(y_pred + 1)))
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 131 |
+
this should be `"sum_over_batch_size"`.
|
| 132 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 133 |
+
name: Optional name for the loss instance.
|
| 134 |
+
"""
|
| 135 |
+
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
reduction="sum_over_batch_size",
|
| 139 |
+
name="mean_squared_logarithmic_error",
|
| 140 |
+
):
|
| 141 |
+
super().__init__(
|
| 142 |
+
mean_squared_logarithmic_error, reduction=reduction, name=name
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
def get_config(self):
|
| 146 |
+
return Loss.get_config(self)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
@keras_core_export("keras_core.losses.CosineSimilarity")
|
| 150 |
+
class CosineSimilarity(LossFunctionWrapper):
|
| 151 |
+
"""Computes the cosine similarity between `y_true` & `y_pred`.
|
| 152 |
+
|
| 153 |
+
Note that it is a number between -1 and 1. When it is a negative number
|
| 154 |
+
between -1 and 0, 0 indicates orthogonality and values closer to -1
|
| 155 |
+
indicate greater similarity. This makes it usable as a loss function in a
|
| 156 |
+
setting where you try to maximize the proximity between predictions and
|
| 157 |
+
targets. If either `y_true` or `y_pred` is a zero vector, cosine similarity
|
| 158 |
+
will be 0 regardless of the proximity between predictions and targets.
|
| 159 |
+
|
| 160 |
+
Formula:
|
| 161 |
+
|
| 162 |
+
```python
|
| 163 |
+
loss = -sum(l2_norm(y_true) * l2_norm(y_pred))
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
axis: The axis along which the cosine similarity is computed
|
| 168 |
+
(the features axis). Defaults to `-1`.
|
| 169 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 170 |
+
this should be `"sum_over_batch_size"`.
|
| 171 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 172 |
+
name: Optional name for the loss instance.
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
+
def __init__(
|
| 176 |
+
self,
|
| 177 |
+
axis=-1,
|
| 178 |
+
reduction="sum_over_batch_size",
|
| 179 |
+
name="cosine_similarity",
|
| 180 |
+
):
|
| 181 |
+
super().__init__(
|
| 182 |
+
cosine_similarity, reduction=reduction, name=name, axis=axis
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
@keras_core_export("keras_core.losses.Huber")
|
| 187 |
+
class Huber(LossFunctionWrapper):
|
| 188 |
+
"""Computes the Huber loss between `y_true` & `y_pred`.
|
| 189 |
+
|
| 190 |
+
Formula:
|
| 191 |
+
|
| 192 |
+
```python
|
| 193 |
+
for x in error:
|
| 194 |
+
if abs(x) <= delta:
|
| 195 |
+
loss.append(0.5 * x^2)
|
| 196 |
+
elif abs(x) > delta:
|
| 197 |
+
loss.append(delta * abs(x) - 0.5 * delta^2)
|
| 198 |
+
|
| 199 |
+
loss = mean(loss, axis=-1)
|
| 200 |
+
```
|
| 201 |
+
See: [Huber loss](https://en.wikipedia.org/wiki/Huber_loss).
|
| 202 |
+
|
| 203 |
+
Args:
|
| 204 |
+
delta: A float, the point where the Huber loss function changes from a
|
| 205 |
+
quadratic to linear.
|
| 206 |
+
reduction: Type of reduction to apply to loss. Options are `"sum"`,
|
| 207 |
+
`"sum_over_batch_size"` or `None`. Defaults to
|
| 208 |
+
`"sum_over_batch_size"`.
|
| 209 |
+
name: Optional name for the instance.
|
| 210 |
+
"""
|
| 211 |
+
|
| 212 |
+
def __init__(
|
| 213 |
+
self,
|
| 214 |
+
delta=1.0,
|
| 215 |
+
reduction="sum_over_batch_size",
|
| 216 |
+
name="huber_loss",
|
| 217 |
+
):
|
| 218 |
+
super().__init__(huber, name=name, reduction=reduction, delta=delta)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
@keras_core_export("keras_core.losses.LogCosh")
|
| 222 |
+
class LogCosh(LossFunctionWrapper):
|
| 223 |
+
"""Computes the logarithm of the hyperbolic cosine of the prediction error.
|
| 224 |
+
|
| 225 |
+
Formula:
|
| 226 |
+
|
| 227 |
+
```python
|
| 228 |
+
error = y_pred - y_true
|
| 229 |
+
logcosh = mean(log((exp(error) + exp(-error))/2), axis=-1)`
|
| 230 |
+
```
|
| 231 |
+
where x is the error `y_pred - y_true`.
|
| 232 |
+
|
| 233 |
+
Args:
|
| 234 |
+
reduction: Type of reduction to apply to loss. Options are `"sum"`,
|
| 235 |
+
`"sum_over_batch_size"` or `None`. Defaults to
|
| 236 |
+
`"sum_over_batch_size"`.
|
| 237 |
+
name: Optional name for the instance.
|
| 238 |
+
"""
|
| 239 |
+
|
| 240 |
+
def __init__(self, reduction="sum_over_batch_size", name="log_cosh"):
|
| 241 |
+
super().__init__(log_cosh, name=name, reduction=reduction)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@keras_core_export("keras_core.losses.Hinge")
|
| 245 |
+
class Hinge(LossFunctionWrapper):
|
| 246 |
+
"""Computes the hinge loss between `y_true` & `y_pred`.
|
| 247 |
+
|
| 248 |
+
Formula:
|
| 249 |
+
|
| 250 |
+
```python
|
| 251 |
+
loss = maximum(1 - y_true * y_pred, 0)
|
| 252 |
+
```
|
| 253 |
+
|
| 254 |
+
`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are
|
| 255 |
+
provided we will convert them to -1 or 1.
|
| 256 |
+
|
| 257 |
+
Args:
|
| 258 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 259 |
+
this should be `"sum_over_batch_size"`.
|
| 260 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 261 |
+
name: Optional name for the loss instance.
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
def __init__(self, reduction="sum_over_batch_size", name="hinge"):
|
| 265 |
+
super().__init__(hinge, reduction=reduction, name=name)
|
| 266 |
+
|
| 267 |
+
def get_config(self):
|
| 268 |
+
return Loss.get_config(self)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
@keras_core_export("keras_core.losses.SquaredHinge")
|
| 272 |
+
class SquaredHinge(LossFunctionWrapper):
|
| 273 |
+
"""Computes the squared hinge loss between `y_true` & `y_pred`.
|
| 274 |
+
|
| 275 |
+
Formula:
|
| 276 |
+
|
| 277 |
+
```python
|
| 278 |
+
loss = square(maximum(1 - y_true * y_pred, 0))
|
| 279 |
+
```
|
| 280 |
+
|
| 281 |
+
`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are
|
| 282 |
+
provided we will convert them to -1 or 1.
|
| 283 |
+
|
| 284 |
+
Args:
|
| 285 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 286 |
+
this should be `"sum_over_batch_size"`.
|
| 287 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 288 |
+
name: Optional name for the loss instance.
|
| 289 |
+
"""
|
| 290 |
+
|
| 291 |
+
def __init__(self, reduction="sum_over_batch_size", name="squared_hinge"):
|
| 292 |
+
super().__init__(squared_hinge, reduction=reduction, name=name)
|
| 293 |
+
|
| 294 |
+
def get_config(self):
|
| 295 |
+
return Loss.get_config(self)
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
@keras_core_export("keras_core.losses.CategoricalHinge")
|
| 299 |
+
class CategoricalHinge(LossFunctionWrapper):
|
| 300 |
+
"""Computes the categorical hinge loss between `y_true` & `y_pred`.
|
| 301 |
+
|
| 302 |
+
Formula:
|
| 303 |
+
|
| 304 |
+
```python
|
| 305 |
+
loss = maximum(neg - pos + 1, 0)
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
where `neg=maximum((1-y_true)*y_pred)` and `pos=sum(y_true*y_pred)`
|
| 309 |
+
|
| 310 |
+
Args:
|
| 311 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 312 |
+
this should be `"sum_over_batch_size"`.
|
| 313 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 314 |
+
name: Optional name for the loss instance.
|
| 315 |
+
"""
|
| 316 |
+
|
| 317 |
+
def __init__(
|
| 318 |
+
self, reduction="sum_over_batch_size", name="categorical_hinge"
|
| 319 |
+
):
|
| 320 |
+
super().__init__(categorical_hinge, reduction=reduction, name=name)
|
| 321 |
+
|
| 322 |
+
def get_config(self):
|
| 323 |
+
return Loss.get_config(self)
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
@keras_core_export("keras_core.losses.KLDivergence")
|
| 327 |
+
class KLDivergence(LossFunctionWrapper):
|
| 328 |
+
"""Computes Kullback-Leibler divergence loss between `y_true` & `y_pred`.
|
| 329 |
+
|
| 330 |
+
Formula:
|
| 331 |
+
|
| 332 |
+
```python
|
| 333 |
+
loss = y_true * log(y_true / y_pred)
|
| 334 |
+
```
|
| 335 |
+
|
| 336 |
+
Args:
|
| 337 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 338 |
+
this should be `"sum_over_batch_size"`.
|
| 339 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 340 |
+
name: Optional name for the loss instance.
|
| 341 |
+
"""
|
| 342 |
+
|
| 343 |
+
def __init__(self, reduction="sum_over_batch_size", name="kl_divergence"):
|
| 344 |
+
super().__init__(kl_divergence, reduction=reduction, name=name)
|
| 345 |
+
|
| 346 |
+
def get_config(self):
|
| 347 |
+
return Loss.get_config(self)
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
@keras_core_export("keras_core.losses.Poisson")
|
| 351 |
+
class Poisson(LossFunctionWrapper):
|
| 352 |
+
"""Computes the Poisson loss between `y_true` & `y_pred`.
|
| 353 |
+
|
| 354 |
+
Formula:
|
| 355 |
+
|
| 356 |
+
```python
|
| 357 |
+
loss = y_pred - y_true * log(y_pred)
|
| 358 |
+
```
|
| 359 |
+
|
| 360 |
+
Args:
|
| 361 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 362 |
+
this should be `"sum_over_batch_size"`.
|
| 363 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 364 |
+
name: Optional name for the loss instance.
|
| 365 |
+
"""
|
| 366 |
+
|
| 367 |
+
def __init__(self, reduction="sum_over_batch_size", name="poisson"):
|
| 368 |
+
super().__init__(poisson, reduction=reduction, name=name)
|
| 369 |
+
|
| 370 |
+
def get_config(self):
|
| 371 |
+
return Loss.get_config(self)
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
@keras_core_export("keras_core.losses.BinaryCrossentropy")
|
| 375 |
+
class BinaryCrossentropy(LossFunctionWrapper):
|
| 376 |
+
"""Computes the cross-entropy loss between true labels and predicted labels.
|
| 377 |
+
|
| 378 |
+
Use this cross-entropy loss for binary (0 or 1) classification applications.
|
| 379 |
+
The loss function requires the following inputs:
|
| 380 |
+
|
| 381 |
+
- `y_true` (true label): This is either 0 or 1.
|
| 382 |
+
- `y_pred` (predicted value): This is the model's prediction, i.e, a single
|
| 383 |
+
floating-point value which either represents a
|
| 384 |
+
[logit](https://en.wikipedia.org/wiki/Logit), (i.e, value in [-inf, inf]
|
| 385 |
+
when `from_logits=True`) or a probability (i.e, value in [0., 1.] when
|
| 386 |
+
`from_logits=False`).
|
| 387 |
+
|
| 388 |
+
Args:
|
| 389 |
+
from_logits: Whether to interpret `y_pred` as a tensor of
|
| 390 |
+
[logit](https://en.wikipedia.org/wiki/Logit) values. By default, we
|
| 391 |
+
assume that `y_pred` is probabilities (i.e., values in [0, 1]).
|
| 392 |
+
label_smoothing: Float in range [0, 1]. When 0, no smoothing occurs.
|
| 393 |
+
When > 0, we compute the loss between the predicted labels
|
| 394 |
+
and a smoothed version of the true labels, where the smoothing
|
| 395 |
+
squeezes the labels towards 0.5. Larger values of
|
| 396 |
+
`label_smoothing` correspond to heavier smoothing.
|
| 397 |
+
axis: The axis along which to compute crossentropy (the features axis).
|
| 398 |
+
Defaults to `-1`.
|
| 399 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 400 |
+
this should be `"sum_over_batch_size"`.
|
| 401 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 402 |
+
name: Optional name for the loss instance.
|
| 403 |
+
|
| 404 |
+
Examples:
|
| 405 |
+
|
| 406 |
+
**Recommended Usage:** (set `from_logits=True`)
|
| 407 |
+
|
| 408 |
+
With `compile()` API:
|
| 409 |
+
|
| 410 |
+
```python
|
| 411 |
+
model.compile(
|
| 412 |
+
loss=keras_core.losses.BinaryCrossentropy(from_logits=True),
|
| 413 |
+
...
|
| 414 |
+
)
|
| 415 |
+
```
|
| 416 |
+
|
| 417 |
+
As a standalone function:
|
| 418 |
+
|
| 419 |
+
>>> # Example 1: (batch_size = 1, number of samples = 4)
|
| 420 |
+
>>> y_true = [0, 1, 0, 0]
|
| 421 |
+
>>> y_pred = [-18.6, 0.51, 2.94, -12.8]
|
| 422 |
+
>>> bce = keras_core.losses.BinaryCrossentropy(from_logits=True)
|
| 423 |
+
>>> bce(y_true, y_pred)
|
| 424 |
+
0.865
|
| 425 |
+
|
| 426 |
+
>>> # Example 2: (batch_size = 2, number of samples = 4)
|
| 427 |
+
>>> y_true = [[0, 1], [0, 0]]
|
| 428 |
+
>>> y_pred = [[-18.6, 0.51], [2.94, -12.8]]
|
| 429 |
+
>>> # Using default 'auto'/'sum_over_batch_size' reduction type.
|
| 430 |
+
>>> bce = keras_core.losses.BinaryCrossentropy(from_logits=True)
|
| 431 |
+
>>> bce(y_true, y_pred)
|
| 432 |
+
0.865
|
| 433 |
+
>>> # Using 'sample_weight' attribute
|
| 434 |
+
>>> bce(y_true, y_pred, sample_weight=[0.8, 0.2])
|
| 435 |
+
0.243
|
| 436 |
+
>>> # Using 'sum' reduction` type.
|
| 437 |
+
>>> bce = keras_core.losses.BinaryCrossentropy(from_logits=True,
|
| 438 |
+
... reduction="sum")
|
| 439 |
+
>>> bce(y_true, y_pred)
|
| 440 |
+
1.730
|
| 441 |
+
>>> # Using 'none' reduction type.
|
| 442 |
+
>>> bce = keras_core.losses.BinaryCrossentropy(from_logits=True,
|
| 443 |
+
... reduction=None)
|
| 444 |
+
>>> bce(y_true, y_pred)
|
| 445 |
+
array([0.235, 1.496], dtype=float32)
|
| 446 |
+
|
| 447 |
+
**Default Usage:** (set `from_logits=False`)
|
| 448 |
+
|
| 449 |
+
>>> # Make the following updates to the above "Recommended Usage" section
|
| 450 |
+
>>> # 1. Set `from_logits=False`
|
| 451 |
+
>>> keras_core.losses.BinaryCrossentropy() # OR ...('from_logits=False')
|
| 452 |
+
>>> # 2. Update `y_pred` to use probabilities instead of logits
|
| 453 |
+
>>> y_pred = [0.6, 0.3, 0.2, 0.8] # OR [[0.6, 0.3], [0.2, 0.8]]
|
| 454 |
+
"""
|
| 455 |
+
|
| 456 |
+
def __init__(
|
| 457 |
+
self,
|
| 458 |
+
from_logits=False,
|
| 459 |
+
label_smoothing=0.0,
|
| 460 |
+
axis=-1,
|
| 461 |
+
reduction="sum_over_batch_size",
|
| 462 |
+
name="binary_crossentropy",
|
| 463 |
+
):
|
| 464 |
+
super().__init__(
|
| 465 |
+
binary_crossentropy,
|
| 466 |
+
name=name,
|
| 467 |
+
reduction=reduction,
|
| 468 |
+
from_logits=from_logits,
|
| 469 |
+
label_smoothing=label_smoothing,
|
| 470 |
+
axis=axis,
|
| 471 |
+
)
|
| 472 |
+
self.from_logits = from_logits
|
| 473 |
+
self.label_smoothing = label_smoothing
|
| 474 |
+
self.axis = axis
|
| 475 |
+
|
| 476 |
+
def get_config(self):
|
| 477 |
+
return {
|
| 478 |
+
"name": self.name,
|
| 479 |
+
"reduction": self.reduction,
|
| 480 |
+
"from_logits": self.from_logits,
|
| 481 |
+
"label_smoothing": self.label_smoothing,
|
| 482 |
+
"axis": self.axis,
|
| 483 |
+
}
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
@keras_core_export("keras_core.losses.BinaryFocalCrossentropy")
|
| 487 |
+
class BinaryFocalCrossentropy(LossFunctionWrapper):
|
| 488 |
+
"""Computes focal cross-entropy loss between true labels and predictions.
|
| 489 |
+
|
| 490 |
+
Binary cross-entropy loss is often used for binary (0 or 1) classification
|
| 491 |
+
tasks. The loss function requires the following inputs:
|
| 492 |
+
|
| 493 |
+
- `y_true` (true label): This is either 0 or 1.
|
| 494 |
+
- `y_pred` (predicted value): This is the model's prediction, i.e, a single
|
| 495 |
+
floating-point value which either represents a
|
| 496 |
+
[logit](https://en.wikipedia.org/wiki/Logit), (i.e, value in [-inf, inf]
|
| 497 |
+
when `from_logits=True`) or a probability (i.e, value in `[0., 1.]` when
|
| 498 |
+
`from_logits=False`).
|
| 499 |
+
|
| 500 |
+
According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it
|
| 501 |
+
helps to apply a "focal factor" to down-weight easy examples and focus more
|
| 502 |
+
on hard examples. By default, the focal tensor is computed as follows:
|
| 503 |
+
|
| 504 |
+
`focal_factor = (1 - output) ** gamma` for class 1
|
| 505 |
+
`focal_factor = output ** gamma` for class 0
|
| 506 |
+
where `gamma` is a focusing parameter. When `gamma=0`, this function is
|
| 507 |
+
equivalent to the binary crossentropy loss.
|
| 508 |
+
|
| 509 |
+
Args:
|
| 510 |
+
apply_class_balancing: A bool, whether to apply weight balancing on the
|
| 511 |
+
binary classes 0 and 1.
|
| 512 |
+
alpha: A weight balancing factor for class 1, default is `0.25` as
|
| 513 |
+
mentioned in reference [Lin et al., 2018](
|
| 514 |
+
https://arxiv.org/pdf/1708.02002.pdf). The weight for class 0 is
|
| 515 |
+
`1.0 - alpha`.
|
| 516 |
+
gamma: A focusing parameter used to compute the focal factor, default is
|
| 517 |
+
`2.0` as mentioned in the reference
|
| 518 |
+
[Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf).
|
| 519 |
+
from_logits: Whether to interpret `y_pred` as a tensor of
|
| 520 |
+
[logit](https://en.wikipedia.org/wiki/Logit) values. By default, we
|
| 521 |
+
assume that `y_pred` are probabilities (i.e., values in `[0, 1]`).
|
| 522 |
+
label_smoothing: Float in `[0, 1]`. When `0`, no smoothing occurs.
|
| 523 |
+
When > `0`, we compute the loss between the predicted labels
|
| 524 |
+
and a smoothed version of the true labels, where the smoothing
|
| 525 |
+
squeezes the labels towards `0.5`.
|
| 526 |
+
Larger values of `label_smoothing` correspond to heavier smoothing.
|
| 527 |
+
axis: The axis along which to compute crossentropy (the features axis).
|
| 528 |
+
Defaults to `-1`.
|
| 529 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 530 |
+
this should be `"sum_over_batch_size"`.
|
| 531 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 532 |
+
name: Optional name for the loss instance.
|
| 533 |
+
|
| 534 |
+
Examples:
|
| 535 |
+
|
| 536 |
+
With the `compile()` API:
|
| 537 |
+
|
| 538 |
+
```python
|
| 539 |
+
model.compile(
|
| 540 |
+
loss=keras_core.losses.BinaryFocalCrossentropy(
|
| 541 |
+
gamma=2.0, from_logits=True),
|
| 542 |
+
...
|
| 543 |
+
)
|
| 544 |
+
```
|
| 545 |
+
|
| 546 |
+
As a standalone function:
|
| 547 |
+
|
| 548 |
+
>>> # Example 1: (batch_size = 1, number of samples = 4)
|
| 549 |
+
>>> y_true = [0, 1, 0, 0]
|
| 550 |
+
>>> y_pred = [-18.6, 0.51, 2.94, -12.8]
|
| 551 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 552 |
+
... gamma=2, from_logits=True)
|
| 553 |
+
>>> loss(y_true, y_pred)
|
| 554 |
+
0.691
|
| 555 |
+
|
| 556 |
+
>>> # Apply class weight
|
| 557 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 558 |
+
... apply_class_balancing=True, gamma=2, from_logits=True)
|
| 559 |
+
>>> loss(y_true, y_pred)
|
| 560 |
+
0.51
|
| 561 |
+
|
| 562 |
+
>>> # Example 2: (batch_size = 2, number of samples = 4)
|
| 563 |
+
>>> y_true = [[0, 1], [0, 0]]
|
| 564 |
+
>>> y_pred = [[-18.6, 0.51], [2.94, -12.8]]
|
| 565 |
+
>>> # Using default 'auto'/'sum_over_batch_size' reduction type.
|
| 566 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 567 |
+
... gamma=3, from_logits=True)
|
| 568 |
+
>>> loss(y_true, y_pred)
|
| 569 |
+
0.647
|
| 570 |
+
|
| 571 |
+
>>> # Apply class weight
|
| 572 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 573 |
+
... apply_class_balancing=True, gamma=3, from_logits=True)
|
| 574 |
+
>>> loss(y_true, y_pred)
|
| 575 |
+
0.482
|
| 576 |
+
|
| 577 |
+
>>> # Using 'sample_weight' attribute with focal effect
|
| 578 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 579 |
+
... gamma=3, from_logits=True)
|
| 580 |
+
>>> loss(y_true, y_pred, sample_weight=[0.8, 0.2])
|
| 581 |
+
0.133
|
| 582 |
+
|
| 583 |
+
>>> # Apply class weight
|
| 584 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 585 |
+
... apply_class_balancing=True, gamma=3, from_logits=True)
|
| 586 |
+
>>> loss(y_true, y_pred, sample_weight=[0.8, 0.2])
|
| 587 |
+
0.097
|
| 588 |
+
|
| 589 |
+
>>> # Using 'sum' reduction` type.
|
| 590 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 591 |
+
... gamma=4, from_logits=True,
|
| 592 |
+
... reduction="sum")
|
| 593 |
+
>>> loss(y_true, y_pred)
|
| 594 |
+
1.222
|
| 595 |
+
|
| 596 |
+
>>> # Apply class weight
|
| 597 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 598 |
+
... apply_class_balancing=True, gamma=4, from_logits=True,
|
| 599 |
+
... reduction="sum")
|
| 600 |
+
>>> loss(y_true, y_pred)
|
| 601 |
+
0.914
|
| 602 |
+
|
| 603 |
+
>>> # Using 'none' reduction type.
|
| 604 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 605 |
+
... gamma=5, from_logits=True,
|
| 606 |
+
... reduction=None)
|
| 607 |
+
>>> loss(y_true, y_pred)
|
| 608 |
+
array([0.0017 1.1561], dtype=float32)
|
| 609 |
+
|
| 610 |
+
>>> # Apply class weight
|
| 611 |
+
>>> loss = keras_core.losses.BinaryFocalCrossentropy(
|
| 612 |
+
... apply_class_balancing=True, gamma=5, from_logits=True,
|
| 613 |
+
... reduction=None)
|
| 614 |
+
>>> loss(y_true, y_pred)
|
| 615 |
+
array([0.0004 0.8670], dtype=float32)
|
| 616 |
+
"""
|
| 617 |
+
|
| 618 |
+
def __init__(
|
| 619 |
+
self,
|
| 620 |
+
apply_class_balancing=False,
|
| 621 |
+
alpha=0.25,
|
| 622 |
+
gamma=2.0,
|
| 623 |
+
from_logits=False,
|
| 624 |
+
label_smoothing=0.0,
|
| 625 |
+
axis=-1,
|
| 626 |
+
reduction="sum_over_batch_size",
|
| 627 |
+
name="binary_focal_crossentropy",
|
| 628 |
+
):
|
| 629 |
+
super().__init__(
|
| 630 |
+
binary_focal_crossentropy,
|
| 631 |
+
apply_class_balancing=apply_class_balancing,
|
| 632 |
+
alpha=alpha,
|
| 633 |
+
gamma=gamma,
|
| 634 |
+
name=name,
|
| 635 |
+
reduction=reduction,
|
| 636 |
+
from_logits=from_logits,
|
| 637 |
+
label_smoothing=label_smoothing,
|
| 638 |
+
axis=axis,
|
| 639 |
+
)
|
| 640 |
+
self.from_logits = from_logits
|
| 641 |
+
self.label_smoothing = label_smoothing
|
| 642 |
+
self.axis = axis
|
| 643 |
+
self.apply_class_balancing = apply_class_balancing
|
| 644 |
+
self.alpha = alpha
|
| 645 |
+
self.gamma = gamma
|
| 646 |
+
|
| 647 |
+
def get_config(self):
|
| 648 |
+
return {
|
| 649 |
+
"name": self.name,
|
| 650 |
+
"reduction": self.reduction,
|
| 651 |
+
"from_logits": self.from_logits,
|
| 652 |
+
"label_smoothing": self.label_smoothing,
|
| 653 |
+
"axis": self.axis,
|
| 654 |
+
"apply_class_balancing": self.apply_class_balancing,
|
| 655 |
+
"alpha": self.alpha,
|
| 656 |
+
"gamma": self.gamma,
|
| 657 |
+
}
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
@keras_core_export("keras_core.losses.CategoricalCrossentropy")
|
| 661 |
+
class CategoricalCrossentropy(LossFunctionWrapper):
|
| 662 |
+
"""Computes the crossentropy loss between the labels and predictions.
|
| 663 |
+
|
| 664 |
+
Use this crossentropy loss function when there are two or more label
|
| 665 |
+
classes. We expect labels to be provided in a `one_hot` representation. If
|
| 666 |
+
you want to provide labels as integers, please use
|
| 667 |
+
`SparseCategoricalCrossentropy` loss. There should be `num_classes` floating
|
| 668 |
+
point values per feature, i.e., the shape of both `y_pred` and `y_true` are
|
| 669 |
+
`[batch_size, num_classes]`.
|
| 670 |
+
|
| 671 |
+
Args:
|
| 672 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 673 |
+
default, we assume that `y_pred` encodes a probability distribution.
|
| 674 |
+
label_smoothing: Float in [0, 1]. When > 0, label values are smoothed,
|
| 675 |
+
meaning the confidence on label values are relaxed. For example, if
|
| 676 |
+
`0.1`, use `0.1 / num_classes` for non-target labels and
|
| 677 |
+
`0.9 + 0.1 / num_classes` for target labels.
|
| 678 |
+
axis: The axis along which to compute crossentropy (the features
|
| 679 |
+
axis). Defaults to `-1`.
|
| 680 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 681 |
+
this should be `"sum_over_batch_size"`.
|
| 682 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 683 |
+
name: Optional name for the loss instance.
|
| 684 |
+
|
| 685 |
+
Examples:
|
| 686 |
+
|
| 687 |
+
Standalone usage:
|
| 688 |
+
|
| 689 |
+
>>> y_true = [[0, 1, 0], [0, 0, 1]]
|
| 690 |
+
>>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
|
| 691 |
+
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
| 692 |
+
>>> cce = keras_core.losses.CategoricalCrossentropy()
|
| 693 |
+
>>> cce(y_true, y_pred)
|
| 694 |
+
1.177
|
| 695 |
+
|
| 696 |
+
>>> # Calling with 'sample_weight'.
|
| 697 |
+
>>> cce(y_true, y_pred, sample_weight=np.array([0.3, 0.7]))
|
| 698 |
+
0.814
|
| 699 |
+
|
| 700 |
+
>>> # Using 'sum' reduction type.
|
| 701 |
+
>>> cce = keras_core.losses.CategoricalCrossentropy(
|
| 702 |
+
... reduction="sum")
|
| 703 |
+
>>> cce(y_true, y_pred)
|
| 704 |
+
2.354
|
| 705 |
+
|
| 706 |
+
>>> # Using 'none' reduction type.
|
| 707 |
+
>>> cce = keras_core.losses.CategoricalCrossentropy(
|
| 708 |
+
... reduction=None)
|
| 709 |
+
>>> cce(y_true, y_pred)
|
| 710 |
+
array([0.0513, 2.303], dtype=float32)
|
| 711 |
+
|
| 712 |
+
Usage with the `compile()` API:
|
| 713 |
+
|
| 714 |
+
```python
|
| 715 |
+
model.compile(optimizer='sgd',
|
| 716 |
+
loss=keras_core.losses.CategoricalCrossentropy())
|
| 717 |
+
```
|
| 718 |
+
"""
|
| 719 |
+
|
| 720 |
+
def __init__(
|
| 721 |
+
self,
|
| 722 |
+
from_logits=False,
|
| 723 |
+
label_smoothing=0.0,
|
| 724 |
+
axis=-1,
|
| 725 |
+
reduction="sum_over_batch_size",
|
| 726 |
+
name="categorical_crossentropy",
|
| 727 |
+
):
|
| 728 |
+
super().__init__(
|
| 729 |
+
categorical_crossentropy,
|
| 730 |
+
name=name,
|
| 731 |
+
reduction=reduction,
|
| 732 |
+
from_logits=from_logits,
|
| 733 |
+
label_smoothing=label_smoothing,
|
| 734 |
+
axis=axis,
|
| 735 |
+
)
|
| 736 |
+
self.from_logits = from_logits
|
| 737 |
+
self.label_smoothing = label_smoothing
|
| 738 |
+
self.axis = axis
|
| 739 |
+
|
| 740 |
+
def get_config(self):
|
| 741 |
+
return {
|
| 742 |
+
"name": self.name,
|
| 743 |
+
"reduction": self.reduction,
|
| 744 |
+
"from_logits": self.from_logits,
|
| 745 |
+
"label_smoothing": self.label_smoothing,
|
| 746 |
+
"axis": self.axis,
|
| 747 |
+
}
|
| 748 |
+
|
| 749 |
+
|
| 750 |
+
@keras_core_export("keras_core.losses.CategoricalFocalCrossentropy")
|
| 751 |
+
class CategoricalFocalCrossentropy(LossFunctionWrapper):
|
| 752 |
+
"""Computes the alpha balanced focal crossentropy loss.
|
| 753 |
+
|
| 754 |
+
Use this crossentropy loss function when there are two or more label
|
| 755 |
+
classes and if you want to handle class imbalance without using
|
| 756 |
+
`class_weights`. We expect labels to be provided in a `one_hot`
|
| 757 |
+
representation.
|
| 758 |
+
|
| 759 |
+
According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it
|
| 760 |
+
helps to apply a focal factor to down-weight easy examples and focus more on
|
| 761 |
+
hard examples. The general formula for the focal loss (FL)
|
| 762 |
+
is as follows:
|
| 763 |
+
|
| 764 |
+
`FL(p_t) = (1 - p_t) ** gamma * log(p_t)`
|
| 765 |
+
|
| 766 |
+
where `p_t` is defined as follows:
|
| 767 |
+
`p_t = output if y_true == 1, else 1 - output`
|
| 768 |
+
|
| 769 |
+
`(1 - p_t) ** gamma` is the `modulating_factor`, where `gamma` is a focusing
|
| 770 |
+
parameter. When `gamma` = 0, there is no focal effect on the cross entropy.
|
| 771 |
+
`gamma` reduces the importance given to simple examples in a smooth manner.
|
| 772 |
+
|
| 773 |
+
The authors use alpha-balanced variant of focal loss (FL) in the paper:
|
| 774 |
+
`FL(p_t) = -alpha * (1 - p_t) ** gamma * log(p_t)`
|
| 775 |
+
|
| 776 |
+
where `alpha` is the weight factor for the classes. If `alpha` = 1, the
|
| 777 |
+
loss won't be able to handle class imbalance properly as all
|
| 778 |
+
classes will have the same weight. This can be a constant or a list of
|
| 779 |
+
constants. If alpha is a list, it must have the same length as the number
|
| 780 |
+
of classes.
|
| 781 |
+
|
| 782 |
+
The formula above can be generalized to:
|
| 783 |
+
`FL(p_t) = alpha * (1 - p_t) ** gamma * CrossEntropy(y_true, y_pred)`
|
| 784 |
+
|
| 785 |
+
where minus comes from `CrossEntropy(y_true, y_pred)` (CE).
|
| 786 |
+
|
| 787 |
+
Extending this to multi-class case is straightforward:
|
| 788 |
+
`FL(p_t) = alpha * (1 - p_t) ** gamma * CategoricalCE(y_true, y_pred)`
|
| 789 |
+
|
| 790 |
+
In the snippet below, there is `num_classes` floating pointing values per
|
| 791 |
+
example. The shape of both `y_pred` and `y_true` are
|
| 792 |
+
`(batch_size, num_classes)`.
|
| 793 |
+
|
| 794 |
+
Args:
|
| 795 |
+
alpha: A weight balancing factor for all classes, default is `0.25` as
|
| 796 |
+
mentioned in the reference. It can be a list of floats or a scalar.
|
| 797 |
+
In the multi-class case, alpha may be set by inverse class
|
| 798 |
+
frequency by using `compute_class_weight` from `sklearn.utils`.
|
| 799 |
+
gamma: A focusing parameter, default is `2.0` as mentioned in the
|
| 800 |
+
reference. It helps to gradually reduce the importance given to
|
| 801 |
+
simple (easy) examples in a smooth manner.
|
| 802 |
+
from_logits: Whether `output` is expected to be a logits tensor. By
|
| 803 |
+
default, we consider that `output` encodes a probability
|
| 804 |
+
distribution.
|
| 805 |
+
label_smoothing: Float in [0, 1]. When > 0, label values are smoothed,
|
| 806 |
+
meaning the confidence on label values are relaxed. For example, if
|
| 807 |
+
`0.1`, use `0.1 / num_classes` for non-target labels and
|
| 808 |
+
`0.9 + 0.1 / num_classes` for target labels.
|
| 809 |
+
axis: The axis along which to compute crossentropy (the features
|
| 810 |
+
axis). Defaults to `-1`.
|
| 811 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 812 |
+
this should be `"sum_over_batch_size"`.
|
| 813 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 814 |
+
name: Optional name for the loss instance.
|
| 815 |
+
|
| 816 |
+
Examples:
|
| 817 |
+
|
| 818 |
+
Standalone usage:
|
| 819 |
+
|
| 820 |
+
>>> y_true = [[0., 1., 0.], [0., 0., 1.]]
|
| 821 |
+
>>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
|
| 822 |
+
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
| 823 |
+
>>> cce = keras_core.losses.CategoricalFocalCrossentropy()
|
| 824 |
+
>>> cce(y_true, y_pred)
|
| 825 |
+
0.23315276
|
| 826 |
+
|
| 827 |
+
>>> # Calling with 'sample_weight'.
|
| 828 |
+
>>> cce(y_true, y_pred, sample_weight=np.array([0.3, 0.7]))
|
| 829 |
+
0.1632
|
| 830 |
+
|
| 831 |
+
>>> # Using 'sum' reduction type.
|
| 832 |
+
>>> cce = keras_core.losses.CategoricalFocalCrossentropy(
|
| 833 |
+
... reduction="sum")
|
| 834 |
+
>>> cce(y_true, y_pred)
|
| 835 |
+
0.46631
|
| 836 |
+
|
| 837 |
+
>>> # Using 'none' reduction type.
|
| 838 |
+
>>> cce = keras_core.losses.CategoricalFocalCrossentropy(
|
| 839 |
+
... reduction=None)
|
| 840 |
+
>>> cce(y_true, y_pred)
|
| 841 |
+
array([3.2058331e-05, 4.6627346e-01], dtype=float32)
|
| 842 |
+
|
| 843 |
+
Usage with the `compile()` API:
|
| 844 |
+
|
| 845 |
+
```python
|
| 846 |
+
model.compile(optimizer='adam',
|
| 847 |
+
loss=keras_core.losses.CategoricalFocalCrossentropy())
|
| 848 |
+
```
|
| 849 |
+
"""
|
| 850 |
+
|
| 851 |
+
def __init__(
|
| 852 |
+
self,
|
| 853 |
+
alpha=0.25,
|
| 854 |
+
gamma=2.0,
|
| 855 |
+
from_logits=False,
|
| 856 |
+
label_smoothing=0.0,
|
| 857 |
+
axis=-1,
|
| 858 |
+
reduction="sum_over_batch_size",
|
| 859 |
+
name="categorical_focal_crossentropy",
|
| 860 |
+
):
|
| 861 |
+
"""Initializes `CategoricalFocalCrossentropy` instance."""
|
| 862 |
+
super().__init__(
|
| 863 |
+
categorical_focal_crossentropy,
|
| 864 |
+
alpha=alpha,
|
| 865 |
+
gamma=gamma,
|
| 866 |
+
name=name,
|
| 867 |
+
reduction=reduction,
|
| 868 |
+
from_logits=from_logits,
|
| 869 |
+
label_smoothing=label_smoothing,
|
| 870 |
+
axis=axis,
|
| 871 |
+
)
|
| 872 |
+
self.from_logits = from_logits
|
| 873 |
+
self.label_smoothing = label_smoothing
|
| 874 |
+
self.axis = axis
|
| 875 |
+
self.alpha = alpha
|
| 876 |
+
self.gamma = gamma
|
| 877 |
+
|
| 878 |
+
def get_config(self):
|
| 879 |
+
return {
|
| 880 |
+
"name": self.name,
|
| 881 |
+
"reduction": self.reduction,
|
| 882 |
+
"from_logits": self.from_logits,
|
| 883 |
+
"label_smoothing": self.label_smoothing,
|
| 884 |
+
"axis": self.axis,
|
| 885 |
+
"alpha": self.alpha,
|
| 886 |
+
"gamma": self.gamma,
|
| 887 |
+
}
|
| 888 |
+
|
| 889 |
+
|
| 890 |
+
@keras_core_export("keras_core.losses.SparseCategoricalCrossentropy")
|
| 891 |
+
class SparseCategoricalCrossentropy(LossFunctionWrapper):
|
| 892 |
+
"""Computes the crossentropy loss between the labels and predictions.
|
| 893 |
+
|
| 894 |
+
Use this crossentropy loss function when there are two or more label
|
| 895 |
+
classes. We expect labels to be provided as integers. If you want to
|
| 896 |
+
provide labels using `one-hot` representation, please use
|
| 897 |
+
`CategoricalCrossentropy` loss. There should be `# classes` floating point
|
| 898 |
+
values per feature for `y_pred` and a single floating point value per
|
| 899 |
+
feature for `y_true`.
|
| 900 |
+
|
| 901 |
+
In the snippet below, there is a single floating point value per example for
|
| 902 |
+
`y_true` and `num_classes` floating pointing values per example for
|
| 903 |
+
`y_pred`. The shape of `y_true` is `[batch_size]` and the shape of `y_pred`
|
| 904 |
+
is `[batch_size, num_classes]`.
|
| 905 |
+
|
| 906 |
+
Args:
|
| 907 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 908 |
+
default, we assume that `y_pred` encodes a probability distribution.
|
| 909 |
+
reduction: Type of reduction to apply to the loss. In almost all cases
|
| 910 |
+
this should be `"sum_over_batch_size"`.
|
| 911 |
+
Supported options are `"sum"`, `"sum_over_batch_size"` or `None`.
|
| 912 |
+
name: Optional name for the loss instance.
|
| 913 |
+
|
| 914 |
+
Examples:
|
| 915 |
+
|
| 916 |
+
>>> y_true = [1, 2]
|
| 917 |
+
>>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
|
| 918 |
+
>>> # Using 'auto'/'sum_over_batch_size' reduction type.
|
| 919 |
+
>>> scce = keras_core.losses.SparseCategoricalCrossentropy()
|
| 920 |
+
>>> scce(y_true, y_pred)
|
| 921 |
+
1.177
|
| 922 |
+
|
| 923 |
+
>>> # Calling with 'sample_weight'.
|
| 924 |
+
>>> scce(y_true, y_pred, sample_weight=np.array([0.3, 0.7]))
|
| 925 |
+
0.814
|
| 926 |
+
|
| 927 |
+
>>> # Using 'sum' reduction type.
|
| 928 |
+
>>> scce = keras_core.losses.SparseCategoricalCrossentropy(
|
| 929 |
+
... reduction="sum")
|
| 930 |
+
>>> scce(y_true, y_pred)
|
| 931 |
+
2.354
|
| 932 |
+
|
| 933 |
+
>>> # Using 'none' reduction type.
|
| 934 |
+
>>> scce = keras_core.losses.SparseCategoricalCrossentropy(
|
| 935 |
+
... reduction=None)
|
| 936 |
+
>>> scce(y_true, y_pred)
|
| 937 |
+
array([0.0513, 2.303], dtype=float32)
|
| 938 |
+
|
| 939 |
+
Usage with the `compile()` API:
|
| 940 |
+
|
| 941 |
+
```python
|
| 942 |
+
model.compile(optimizer='sgd',
|
| 943 |
+
loss=keras_core.losses.SparseCategoricalCrossentropy())
|
| 944 |
+
```
|
| 945 |
+
"""
|
| 946 |
+
|
| 947 |
+
def __init__(
|
| 948 |
+
self,
|
| 949 |
+
from_logits=False,
|
| 950 |
+
ignore_class=None,
|
| 951 |
+
reduction="sum_over_batch_size",
|
| 952 |
+
name="sparse_categorical_crossentropy",
|
| 953 |
+
):
|
| 954 |
+
super().__init__(
|
| 955 |
+
sparse_categorical_crossentropy,
|
| 956 |
+
name=name,
|
| 957 |
+
reduction=reduction,
|
| 958 |
+
from_logits=from_logits,
|
| 959 |
+
ignore_class=ignore_class,
|
| 960 |
+
)
|
| 961 |
+
self.from_logits = from_logits
|
| 962 |
+
self.ignore_class = ignore_class
|
| 963 |
+
|
| 964 |
+
def get_config(self):
|
| 965 |
+
return {
|
| 966 |
+
"name": self.name,
|
| 967 |
+
"reduction": self.reduction,
|
| 968 |
+
"from_logits": self.from_logits,
|
| 969 |
+
"ignore_class": self.ignore_class,
|
| 970 |
+
}
|
| 971 |
+
|
| 972 |
+
|
| 973 |
+
def convert_binary_labels_to_hinge(y_true):
|
| 974 |
+
"""Converts binary labels into -1/1 for hinge loss/metric calculation."""
|
| 975 |
+
are_zeros = ops.equal(y_true, 0)
|
| 976 |
+
are_ones = ops.equal(y_true, 1)
|
| 977 |
+
is_binary = ops.all((ops.logical_or(are_zeros, are_ones)))
|
| 978 |
+
|
| 979 |
+
def _convert_binary_labels():
|
| 980 |
+
# Convert the binary labels to -1 or 1.
|
| 981 |
+
return 2.0 * y_true - 1.0
|
| 982 |
+
|
| 983 |
+
def _return_labels_unconverted():
|
| 984 |
+
# Returns the labels unchanged if they are non-binary
|
| 985 |
+
return y_true
|
| 986 |
+
|
| 987 |
+
updated_y_true = ops.cond(
|
| 988 |
+
is_binary, _convert_binary_labels, _return_labels_unconverted
|
| 989 |
+
)
|
| 990 |
+
return updated_y_true
|
| 991 |
+
|
| 992 |
+
|
| 993 |
+
@keras_core_export(
|
| 994 |
+
[
|
| 995 |
+
"keras_core.metrics.hinge",
|
| 996 |
+
"keras_core.losses.hinge",
|
| 997 |
+
]
|
| 998 |
+
)
|
| 999 |
+
def hinge(y_true, y_pred):
|
| 1000 |
+
"""Computes the hinge loss between `y_true` & `y_pred`.
|
| 1001 |
+
|
| 1002 |
+
Formula:
|
| 1003 |
+
|
| 1004 |
+
```python
|
| 1005 |
+
loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)
|
| 1006 |
+
```
|
| 1007 |
+
|
| 1008 |
+
Args:
|
| 1009 |
+
y_true: The ground truth values. `y_true` values are expected to be -1
|
| 1010 |
+
or 1. If binary (0 or 1) labels are provided they will be converted
|
| 1011 |
+
to -1 or 1 with shape = `[batch_size, d0, .. dN]`.
|
| 1012 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1013 |
+
|
| 1014 |
+
Returns:
|
| 1015 |
+
Hinge loss values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1016 |
+
|
| 1017 |
+
Example:
|
| 1018 |
+
|
| 1019 |
+
>>> y_true = np.random.choice([-1, 1], size=(2, 3))
|
| 1020 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1021 |
+
>>> loss = keras_core.losses.hinge(y_true, y_pred)
|
| 1022 |
+
"""
|
| 1023 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1024 |
+
y_true = ops.cast(y_true, dtype=y_pred.dtype)
|
| 1025 |
+
y_true = ops.convert_to_tensor(y_true)
|
| 1026 |
+
y_true = convert_binary_labels_to_hinge(y_true)
|
| 1027 |
+
return ops.mean(ops.maximum(1.0 - y_true * y_pred, 0.0), axis=-1)
|
| 1028 |
+
|
| 1029 |
+
|
| 1030 |
+
@keras_core_export(
|
| 1031 |
+
[
|
| 1032 |
+
"keras_core.metrics.squared_hinge",
|
| 1033 |
+
"keras_core.losses.squared_hinge",
|
| 1034 |
+
]
|
| 1035 |
+
)
|
| 1036 |
+
def squared_hinge(y_true, y_pred):
|
| 1037 |
+
"""Computes the squared hinge loss between `y_true` & `y_pred`.
|
| 1038 |
+
|
| 1039 |
+
Formula:
|
| 1040 |
+
|
| 1041 |
+
```python
|
| 1042 |
+
loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1)
|
| 1043 |
+
```
|
| 1044 |
+
|
| 1045 |
+
Args:
|
| 1046 |
+
y_true: The ground truth values. `y_true` values are expected to be -1
|
| 1047 |
+
or 1. If binary (0 or 1) labels are provided we will convert them
|
| 1048 |
+
to -1 or 1 with shape = `[batch_size, d0, .. dN]`.
|
| 1049 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1050 |
+
|
| 1051 |
+
Returns:
|
| 1052 |
+
Squared hinge loss values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1053 |
+
|
| 1054 |
+
Example:
|
| 1055 |
+
|
| 1056 |
+
>>> y_true = np.random.choice([-1, 1], size=(2, 3))
|
| 1057 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1058 |
+
>>> loss = keras_core.losses.squared_hinge(y_true, y_pred)
|
| 1059 |
+
"""
|
| 1060 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1061 |
+
y_true = ops.cast(y_true, y_pred.dtype)
|
| 1062 |
+
y_true = convert_binary_labels_to_hinge(y_true)
|
| 1063 |
+
return ops.mean(
|
| 1064 |
+
ops.square(ops.maximum(1.0 - y_true * y_pred, 0.0)), axis=-1
|
| 1065 |
+
)
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
@keras_core_export(
|
| 1069 |
+
[
|
| 1070 |
+
"keras_core.metrics.categorical_hinge",
|
| 1071 |
+
"keras_core.losses.categorical_hinge",
|
| 1072 |
+
]
|
| 1073 |
+
)
|
| 1074 |
+
def categorical_hinge(y_true, y_pred):
|
| 1075 |
+
"""Computes the categorical hinge loss between `y_true` & `y_pred`.
|
| 1076 |
+
|
| 1077 |
+
Formula:
|
| 1078 |
+
|
| 1079 |
+
```python
|
| 1080 |
+
loss = maximum(neg - pos + 1, 0)
|
| 1081 |
+
```
|
| 1082 |
+
|
| 1083 |
+
where `neg=maximum((1-y_true)*y_pred)` and `pos=sum(y_true*y_pred)`
|
| 1084 |
+
|
| 1085 |
+
Args:
|
| 1086 |
+
y_true: The ground truth values. `y_true` values are expected to be
|
| 1087 |
+
either `{-1, +1}` or `{0, 1}` (i.e. a one-hot-encoded tensor) with
|
| 1088 |
+
shape = `[batch_size, d0, .. dN]`.
|
| 1089 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1090 |
+
|
| 1091 |
+
Returns:
|
| 1092 |
+
Categorical hinge loss values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1093 |
+
|
| 1094 |
+
Example:
|
| 1095 |
+
|
| 1096 |
+
>>> y_true = np.random.randint(0, 3, size=(2,))
|
| 1097 |
+
>>> y_true = np.eye(np.max(y_true) + 1)[y_true]
|
| 1098 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1099 |
+
>>> loss = keras_core.losses.categorical_hinge(y_true, y_pred)
|
| 1100 |
+
"""
|
| 1101 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1102 |
+
y_true = ops.cast(y_true, y_pred.dtype)
|
| 1103 |
+
pos = ops.sum(y_true * y_pred, axis=-1)
|
| 1104 |
+
neg = ops.max((1.0 - y_true) * y_pred, axis=-1)
|
| 1105 |
+
zero = ops.cast(0.0, y_pred.dtype)
|
| 1106 |
+
return ops.maximum(neg - pos + 1.0, zero)
|
| 1107 |
+
|
| 1108 |
+
|
| 1109 |
+
@keras_core_export(
|
| 1110 |
+
[
|
| 1111 |
+
"keras_core.metrics.mean_squared_error",
|
| 1112 |
+
"keras_core.losses.mean_squared_error",
|
| 1113 |
+
# Legacy aliases
|
| 1114 |
+
"keras_core._legacy.losses.mse",
|
| 1115 |
+
"keras_core._legacy.losses.MSE",
|
| 1116 |
+
"keras_core._legacy.metrics.mse",
|
| 1117 |
+
"keras_core._legacy.metrics.MSE",
|
| 1118 |
+
]
|
| 1119 |
+
)
|
| 1120 |
+
def mean_squared_error(y_true, y_pred):
|
| 1121 |
+
"""Computes the mean squared error between labels and predictions.
|
| 1122 |
+
|
| 1123 |
+
Formula:
|
| 1124 |
+
|
| 1125 |
+
```python
|
| 1126 |
+
loss = mean(square(y_true - y_pred), axis=-1)
|
| 1127 |
+
```
|
| 1128 |
+
|
| 1129 |
+
Example:
|
| 1130 |
+
|
| 1131 |
+
>>> y_true = np.random.randint(0, 2, size=(2, 3))
|
| 1132 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1133 |
+
>>> loss = keras_core.losses.mean_squared_error(y_true, y_pred)
|
| 1134 |
+
|
| 1135 |
+
Args:
|
| 1136 |
+
y_true: Ground truth values with shape = `[batch_size, d0, .. dN]`.
|
| 1137 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1138 |
+
|
| 1139 |
+
Returns:
|
| 1140 |
+
Mean squared error values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1141 |
+
"""
|
| 1142 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1143 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1144 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1145 |
+
return ops.mean(ops.square(y_true - y_pred), axis=-1)
|
| 1146 |
+
|
| 1147 |
+
|
| 1148 |
+
@keras_core_export(
|
| 1149 |
+
[
|
| 1150 |
+
"keras_core.metrics.mean_absolute_error",
|
| 1151 |
+
"keras_core.losses.mean_absolute_error",
|
| 1152 |
+
# Legacy aliases
|
| 1153 |
+
"keras_core._legacy.losses.MAE",
|
| 1154 |
+
"keras_core._legacy.losses.mae",
|
| 1155 |
+
"keras_core._legacy.metrics.MAE",
|
| 1156 |
+
"keras_core._legacy.metrics.mae",
|
| 1157 |
+
]
|
| 1158 |
+
)
|
| 1159 |
+
def mean_absolute_error(y_true, y_pred):
|
| 1160 |
+
"""Computes the mean absolute error between labels and predictions.
|
| 1161 |
+
|
| 1162 |
+
```python
|
| 1163 |
+
loss = mean(abs(y_true - y_pred), axis=-1)
|
| 1164 |
+
```
|
| 1165 |
+
|
| 1166 |
+
Args:
|
| 1167 |
+
y_true: Ground truth values with shape = `[batch_size, d0, .. dN]`.
|
| 1168 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1169 |
+
|
| 1170 |
+
Returns:
|
| 1171 |
+
Mean absolute error values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1172 |
+
|
| 1173 |
+
Example:
|
| 1174 |
+
|
| 1175 |
+
>>> y_true = np.random.randint(0, 2, size=(2, 3))
|
| 1176 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1177 |
+
>>> loss = keras_core.losses.mean_absolute_error(y_true, y_pred)
|
| 1178 |
+
"""
|
| 1179 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1180 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1181 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1182 |
+
return ops.mean(ops.abs(y_true - y_pred), axis=-1)
|
| 1183 |
+
|
| 1184 |
+
|
| 1185 |
+
@keras_core_export(
|
| 1186 |
+
[
|
| 1187 |
+
"keras_core.metrics.mean_absolute_percentage_error",
|
| 1188 |
+
"keras_core.losses.mean_absolute_percentage_error",
|
| 1189 |
+
# Legacy aliases
|
| 1190 |
+
"keras_core._legacy.losses.mape",
|
| 1191 |
+
"keras_core._legacy.losses.MAPE",
|
| 1192 |
+
"keras_core._legacy.metrics.mape",
|
| 1193 |
+
"keras_core._legacy.metrics.MAPE",
|
| 1194 |
+
]
|
| 1195 |
+
)
|
| 1196 |
+
def mean_absolute_percentage_error(y_true, y_pred):
|
| 1197 |
+
"""Computes the mean absolute percentage error between `y_true` & `y_pred`.
|
| 1198 |
+
|
| 1199 |
+
Formula:
|
| 1200 |
+
|
| 1201 |
+
```python
|
| 1202 |
+
loss = 100 * mean(abs((y_true - y_pred) / y_true), axis=-1)
|
| 1203 |
+
```
|
| 1204 |
+
|
| 1205 |
+
Division by zero is prevented by dividing by `maximum(y_true, epsilon)`
|
| 1206 |
+
where `epsilon = keras_core.backend.epsilon()`
|
| 1207 |
+
(default to `1e-7`).
|
| 1208 |
+
|
| 1209 |
+
Args:
|
| 1210 |
+
y_true: Ground truth values with shape = `[batch_size, d0, .. dN]`.
|
| 1211 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1212 |
+
|
| 1213 |
+
Returns:
|
| 1214 |
+
Mean absolute percentage error values with shape = `[batch_size, d0, ..
|
| 1215 |
+
dN-1]`.
|
| 1216 |
+
|
| 1217 |
+
Example:
|
| 1218 |
+
|
| 1219 |
+
>>> y_true = np.random.random(size=(2, 3))
|
| 1220 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1221 |
+
>>> loss = keras_core.losses.mean_absolute_percentage_error(y_true, y_pred)
|
| 1222 |
+
"""
|
| 1223 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1224 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1225 |
+
epsilon = ops.convert_to_tensor(backend.epsilon())
|
| 1226 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1227 |
+
diff = ops.abs((y_true - y_pred) / ops.maximum(ops.abs(y_true), epsilon))
|
| 1228 |
+
return 100.0 * ops.mean(diff, axis=-1)
|
| 1229 |
+
|
| 1230 |
+
|
| 1231 |
+
@keras_core_export(
|
| 1232 |
+
[
|
| 1233 |
+
"keras_core.metrics.mean_squared_logarithmic_error",
|
| 1234 |
+
"keras_core.losses.mean_squared_logarithmic_error",
|
| 1235 |
+
# Legacy aliases
|
| 1236 |
+
"keras_core._legacy.losses.msle",
|
| 1237 |
+
"keras_core._legacy.losses.MSLE",
|
| 1238 |
+
"keras_core._legacy.metrics.msle",
|
| 1239 |
+
"keras_core._legacy.metrics.MSLE",
|
| 1240 |
+
]
|
| 1241 |
+
)
|
| 1242 |
+
def mean_squared_logarithmic_error(y_true, y_pred):
|
| 1243 |
+
"""Computes the mean squared logarithmic error between `y_true` & `y_pred`.
|
| 1244 |
+
|
| 1245 |
+
Formula:
|
| 1246 |
+
|
| 1247 |
+
```python
|
| 1248 |
+
loss = mean(square(log(y_true + 1) - log(y_pred + 1)), axis=-1)
|
| 1249 |
+
```
|
| 1250 |
+
|
| 1251 |
+
Note that `y_pred` and `y_true` cannot be less or equal to 0. Negative
|
| 1252 |
+
values and 0 values will be replaced with `keras_core.backend.epsilon()`
|
| 1253 |
+
(default to `1e-7`).
|
| 1254 |
+
|
| 1255 |
+
Args:
|
| 1256 |
+
y_true: Ground truth values with shape = `[batch_size, d0, .. dN]`.
|
| 1257 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1258 |
+
|
| 1259 |
+
Returns:
|
| 1260 |
+
Mean squared logarithmic error values with shape = `[batch_size, d0, ..
|
| 1261 |
+
dN-1]`.
|
| 1262 |
+
|
| 1263 |
+
Example:
|
| 1264 |
+
|
| 1265 |
+
>>> y_true = np.random.randint(0, 2, size=(2, 3))
|
| 1266 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1267 |
+
>>> loss = keras_core.losses.mean_squared_logarithmic_error(y_true, y_pred)
|
| 1268 |
+
"""
|
| 1269 |
+
epsilon = ops.convert_to_tensor(backend.epsilon())
|
| 1270 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1271 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1272 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1273 |
+
first_log = ops.log(ops.maximum(y_pred, epsilon) + 1.0)
|
| 1274 |
+
second_log = ops.log(ops.maximum(y_true, epsilon) + 1.0)
|
| 1275 |
+
return ops.mean(ops.square(first_log - second_log), axis=-1)
|
| 1276 |
+
|
| 1277 |
+
|
| 1278 |
+
@keras_core_export("keras_core.losses.cosine_similarity")
|
| 1279 |
+
def cosine_similarity(y_true, y_pred, axis=-1):
|
| 1280 |
+
"""Computes the cosine similarity between labels and predictions.
|
| 1281 |
+
|
| 1282 |
+
Formula:
|
| 1283 |
+
```python
|
| 1284 |
+
loss = -sum(l2_norm(y_true) * l2_norm(y_pred))
|
| 1285 |
+
```
|
| 1286 |
+
|
| 1287 |
+
Note that it is a number between -1 and 1. When it is a negative number
|
| 1288 |
+
between -1 and 0, 0 indicates orthogonality and values closer to -1
|
| 1289 |
+
indicate greater similarity. This makes it usable as a loss function in a
|
| 1290 |
+
setting where you try to maximize the proximity between predictions and
|
| 1291 |
+
targets. If either `y_true` or `y_pred` is a zero vector, cosine
|
| 1292 |
+
similarity will be 0 regardless of the proximity between predictions
|
| 1293 |
+
and targets.
|
| 1294 |
+
|
| 1295 |
+
Args:
|
| 1296 |
+
y_true: Tensor of true targets.
|
| 1297 |
+
y_pred: Tensor of predicted targets.
|
| 1298 |
+
axis: Axis along which to determine similarity. Defaults to `-1`.
|
| 1299 |
+
|
| 1300 |
+
Returns:
|
| 1301 |
+
Cosine similarity tensor.
|
| 1302 |
+
|
| 1303 |
+
Example:
|
| 1304 |
+
|
| 1305 |
+
>>> y_true = [[0., 1.], [1., 1.], [1., 1.]]
|
| 1306 |
+
>>> y_pred = [[1., 0.], [1., 1.], [-1., -1.]]
|
| 1307 |
+
>>> loss = keras_core.losses.cosine_similarity(y_true, y_pred, axis=-1)
|
| 1308 |
+
[-0., -0.99999994, 0.99999994]
|
| 1309 |
+
"""
|
| 1310 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1311 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1312 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1313 |
+
y_pred = normalize(y_pred, axis=axis)
|
| 1314 |
+
y_true = normalize(y_true, axis=axis)
|
| 1315 |
+
return -ops.sum(y_true * y_pred, axis=axis)
|
| 1316 |
+
|
| 1317 |
+
|
| 1318 |
+
@keras_core_export(["keras_core.losses.huber", "keras_core.metrics.huber"])
|
| 1319 |
+
def huber(y_true, y_pred, delta=1.0):
|
| 1320 |
+
"""Computes Huber loss value.
|
| 1321 |
+
|
| 1322 |
+
Formula:
|
| 1323 |
+
```python
|
| 1324 |
+
for x in error:
|
| 1325 |
+
if abs(x) <= delta:
|
| 1326 |
+
loss.append(0.5 * x^2)
|
| 1327 |
+
elif abs(x) > delta:
|
| 1328 |
+
loss.append(delta * abs(x) - 0.5 * delta^2)
|
| 1329 |
+
|
| 1330 |
+
loss = mean(loss, axis=-1)
|
| 1331 |
+
```
|
| 1332 |
+
See: [Huber loss](https://en.wikipedia.org/wiki/Huber_loss).
|
| 1333 |
+
|
| 1334 |
+
Example:
|
| 1335 |
+
|
| 1336 |
+
>>> y_true = [[0, 1], [0, 0]]
|
| 1337 |
+
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]]
|
| 1338 |
+
>>> loss = keras_core.losses.huber(y_true, y_pred)
|
| 1339 |
+
0.155
|
| 1340 |
+
|
| 1341 |
+
|
| 1342 |
+
Args:
|
| 1343 |
+
y_true: tensor of true targets.
|
| 1344 |
+
y_pred: tensor of predicted targets.
|
| 1345 |
+
delta: A float, the point where the Huber loss function changes from a
|
| 1346 |
+
quadratic to linear. Defaults to `1.0`.
|
| 1347 |
+
|
| 1348 |
+
Returns:
|
| 1349 |
+
Tensor with one scalar loss entry per sample.
|
| 1350 |
+
"""
|
| 1351 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1352 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1353 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1354 |
+
delta = ops.convert_to_tensor(delta)
|
| 1355 |
+
error = ops.subtract(y_pred, y_true)
|
| 1356 |
+
abs_error = ops.abs(error)
|
| 1357 |
+
half = ops.convert_to_tensor(0.5, dtype=abs_error.dtype)
|
| 1358 |
+
return ops.mean(
|
| 1359 |
+
ops.where(
|
| 1360 |
+
abs_error <= delta,
|
| 1361 |
+
half * ops.square(error),
|
| 1362 |
+
delta * abs_error - half * ops.square(delta),
|
| 1363 |
+
),
|
| 1364 |
+
axis=-1,
|
| 1365 |
+
)
|
| 1366 |
+
|
| 1367 |
+
|
| 1368 |
+
@keras_core_export(
|
| 1369 |
+
[
|
| 1370 |
+
"keras_core.losses.log_cosh",
|
| 1371 |
+
"keras_core.metrics.log_cosh",
|
| 1372 |
+
# Legacy aliases
|
| 1373 |
+
"keras_core._legacy.losses.logcosh",
|
| 1374 |
+
"keras_core._legacy.metrics.logcosh",
|
| 1375 |
+
]
|
| 1376 |
+
)
|
| 1377 |
+
def log_cosh(y_true, y_pred):
|
| 1378 |
+
"""Logarithm of the hyperbolic cosine of the prediction error.
|
| 1379 |
+
|
| 1380 |
+
Formula:
|
| 1381 |
+
```python
|
| 1382 |
+
loss = mean(log(cosh(y_pred - y_true)), axis=-1)
|
| 1383 |
+
```
|
| 1384 |
+
|
| 1385 |
+
Note that `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small
|
| 1386 |
+
`x` and to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works
|
| 1387 |
+
mostly like the mean squared error, but will not be so strongly affected by
|
| 1388 |
+
the occasional wildly incorrect prediction.
|
| 1389 |
+
|
| 1390 |
+
Example:
|
| 1391 |
+
|
| 1392 |
+
>>> y_true = [[0., 1.], [0., 0.]]
|
| 1393 |
+
>>> y_pred = [[1., 1.], [0., 0.]]
|
| 1394 |
+
>>> loss = keras_core.losses.log_cosh(y_true, y_pred)
|
| 1395 |
+
0.108
|
| 1396 |
+
|
| 1397 |
+
Args:
|
| 1398 |
+
y_true: Ground truth values with shape = `[batch_size, d0, .. dN]`.
|
| 1399 |
+
y_pred: The predicted values with shape = `[batch_size, d0, .. dN]`.
|
| 1400 |
+
|
| 1401 |
+
Returns:
|
| 1402 |
+
Logcosh error values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1403 |
+
"""
|
| 1404 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1405 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1406 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 1407 |
+
log2 = ops.convert_to_tensor(ops.log(2.0), dtype=y_pred.dtype)
|
| 1408 |
+
|
| 1409 |
+
def _logcosh(x):
|
| 1410 |
+
return x + ops.softplus(x * -2.0) - log2
|
| 1411 |
+
|
| 1412 |
+
return ops.mean(_logcosh(y_pred - y_true), axis=-1)
|
| 1413 |
+
|
| 1414 |
+
|
| 1415 |
+
@keras_core_export(
|
| 1416 |
+
[
|
| 1417 |
+
"keras_core.metrics.kl_divergence",
|
| 1418 |
+
"keras_core.losses.kl_divergence",
|
| 1419 |
+
# Legacy aliases
|
| 1420 |
+
"keras_core._legacy.losses.KLD",
|
| 1421 |
+
"keras_core._legacy.losses.kld",
|
| 1422 |
+
"keras_core._legacy.losses.kullback_leibler_divergence",
|
| 1423 |
+
"keras_core._legacy.metrics.KLD",
|
| 1424 |
+
"keras_core._legacy.metrics.kld",
|
| 1425 |
+
"keras_core._legacy.metrics.kullback_leibler_divergence",
|
| 1426 |
+
]
|
| 1427 |
+
)
|
| 1428 |
+
def kl_divergence(y_true, y_pred):
|
| 1429 |
+
"""Computes Kullback-Leibler divergence loss between `y_true` & `y_pred`.
|
| 1430 |
+
|
| 1431 |
+
Formula:
|
| 1432 |
+
|
| 1433 |
+
```python
|
| 1434 |
+
loss = y_true * log(y_true / y_pred)
|
| 1435 |
+
```
|
| 1436 |
+
|
| 1437 |
+
Args:
|
| 1438 |
+
y_true: Tensor of true targets.
|
| 1439 |
+
y_pred: Tensor of predicted targets.
|
| 1440 |
+
|
| 1441 |
+
Returns:
|
| 1442 |
+
KL Divergence loss values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1443 |
+
|
| 1444 |
+
Example:
|
| 1445 |
+
|
| 1446 |
+
>>> y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float32)
|
| 1447 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1448 |
+
>>> loss = keras_core.losses.kl_divergence(y_true, y_pred)
|
| 1449 |
+
>>> assert loss.shape == (2,)
|
| 1450 |
+
>>> y_true = ops.clip(y_true, 1e-7, 1)
|
| 1451 |
+
>>> y_pred = ops.clip(y_pred, 1e-7, 1)
|
| 1452 |
+
>>> assert np.array_equal(
|
| 1453 |
+
... loss, np.sum(y_true * np.log(y_true / y_pred), axis=-1))
|
| 1454 |
+
"""
|
| 1455 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1456 |
+
y_true = ops.convert_to_tensor(y_true, y_pred.dtype)
|
| 1457 |
+
y_true = ops.clip(y_true, backend.epsilon(), 1)
|
| 1458 |
+
y_pred = ops.clip(y_pred, backend.epsilon(), 1)
|
| 1459 |
+
return ops.sum(y_true * ops.log(y_true / y_pred), axis=-1)
|
| 1460 |
+
|
| 1461 |
+
|
| 1462 |
+
@keras_core_export(
|
| 1463 |
+
[
|
| 1464 |
+
"keras_core.metrics.poisson",
|
| 1465 |
+
"keras_core.losses.poisson",
|
| 1466 |
+
]
|
| 1467 |
+
)
|
| 1468 |
+
def poisson(y_true, y_pred):
|
| 1469 |
+
"""Computes the Poisson loss between y_true and y_pred.
|
| 1470 |
+
|
| 1471 |
+
Formula:
|
| 1472 |
+
|
| 1473 |
+
```python
|
| 1474 |
+
loss = y_pred - y_true * log(y_pred)
|
| 1475 |
+
```
|
| 1476 |
+
|
| 1477 |
+
Args:
|
| 1478 |
+
y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`.
|
| 1479 |
+
y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`.
|
| 1480 |
+
|
| 1481 |
+
Returns:
|
| 1482 |
+
Poisson loss values with shape = `[batch_size, d0, .. dN-1]`.
|
| 1483 |
+
|
| 1484 |
+
Example:
|
| 1485 |
+
|
| 1486 |
+
>>> y_true = np.random.randint(0, 2, size=(2, 3))
|
| 1487 |
+
>>> y_pred = np.random.random(size=(2, 3))
|
| 1488 |
+
>>> loss = keras_core.losses.poisson(y_true, y_pred)
|
| 1489 |
+
>>> assert loss.shape == (2,)
|
| 1490 |
+
>>> y_pred = y_pred + 1e-7
|
| 1491 |
+
>>> assert np.allclose(
|
| 1492 |
+
... loss, np.mean(y_pred - y_true * np.log(y_pred), axis=-1),
|
| 1493 |
+
... atol=1e-5)
|
| 1494 |
+
"""
|
| 1495 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1496 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 1497 |
+
epsilon = ops.convert_to_tensor(backend.epsilon())
|
| 1498 |
+
return ops.mean(y_pred - y_true * ops.log(y_pred + epsilon), axis=-1)
|
| 1499 |
+
|
| 1500 |
+
|
| 1501 |
+
@keras_core_export(
|
| 1502 |
+
[
|
| 1503 |
+
"keras_core.metrics.categorical_crossentropy",
|
| 1504 |
+
"keras_core.losses.categorical_crossentropy",
|
| 1505 |
+
]
|
| 1506 |
+
)
|
| 1507 |
+
def categorical_crossentropy(
|
| 1508 |
+
y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1
|
| 1509 |
+
):
|
| 1510 |
+
"""Computes the categorical crossentropy loss.
|
| 1511 |
+
|
| 1512 |
+
Args:
|
| 1513 |
+
y_true: Tensor of one-hot true targets.
|
| 1514 |
+
y_pred: Tensor of predicted targets.
|
| 1515 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 1516 |
+
default, we assume that `y_pred` encodes a probability distribution.
|
| 1517 |
+
label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For
|
| 1518 |
+
example, if `0.1`, use `0.1 / num_classes` for non-target labels
|
| 1519 |
+
and `0.9 + 0.1 / num_classes` for target labels.
|
| 1520 |
+
axis: Defaults to `-1`. The dimension along which the entropy is
|
| 1521 |
+
computed.
|
| 1522 |
+
|
| 1523 |
+
Returns:
|
| 1524 |
+
Categorical crossentropy loss value.
|
| 1525 |
+
|
| 1526 |
+
Example:
|
| 1527 |
+
|
| 1528 |
+
>>> y_true = [[0, 1, 0], [0, 0, 1]]
|
| 1529 |
+
>>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
|
| 1530 |
+
>>> loss = keras_core.losses.categorical_crossentropy(y_true, y_pred)
|
| 1531 |
+
>>> assert loss.shape == (2,)
|
| 1532 |
+
>>> loss
|
| 1533 |
+
array([0.0513, 2.303], dtype=float32)
|
| 1534 |
+
"""
|
| 1535 |
+
if isinstance(axis, bool):
|
| 1536 |
+
raise ValueError(
|
| 1537 |
+
"`axis` must be of type `int`. "
|
| 1538 |
+
f"Received: axis={axis} of type {type(axis)}"
|
| 1539 |
+
)
|
| 1540 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1541 |
+
y_true = ops.cast(y_true, y_pred.dtype)
|
| 1542 |
+
|
| 1543 |
+
if y_pred.shape[-1] == 1:
|
| 1544 |
+
warnings.warn(
|
| 1545 |
+
"In loss categorical_crossentropy, expected "
|
| 1546 |
+
"y_pred.shape to be (batch_size, num_classes) "
|
| 1547 |
+
f"with num_classes > 1. Received: y_pred.shape={y_pred.shape}. "
|
| 1548 |
+
"Consider using 'binary_crossentropy' if you only have 2 classes.",
|
| 1549 |
+
SyntaxWarning,
|
| 1550 |
+
stacklevel=2,
|
| 1551 |
+
)
|
| 1552 |
+
|
| 1553 |
+
if label_smoothing:
|
| 1554 |
+
num_classes = ops.cast(ops.shape(y_true)[-1], y_pred.dtype)
|
| 1555 |
+
y_true = y_true * (1.0 - label_smoothing) + (
|
| 1556 |
+
label_smoothing / num_classes
|
| 1557 |
+
)
|
| 1558 |
+
|
| 1559 |
+
return ops.categorical_crossentropy(
|
| 1560 |
+
y_true, y_pred, from_logits=from_logits, axis=axis
|
| 1561 |
+
)
|
| 1562 |
+
|
| 1563 |
+
|
| 1564 |
+
@keras_core_export(
|
| 1565 |
+
[
|
| 1566 |
+
"keras_core.metrics.categorical_focal_crossentropy",
|
| 1567 |
+
"keras_core.losses.categorical_focal_crossentropy",
|
| 1568 |
+
]
|
| 1569 |
+
)
|
| 1570 |
+
def categorical_focal_crossentropy(
|
| 1571 |
+
y_true,
|
| 1572 |
+
y_pred,
|
| 1573 |
+
alpha=0.25,
|
| 1574 |
+
gamma=2.0,
|
| 1575 |
+
from_logits=False,
|
| 1576 |
+
label_smoothing=0.0,
|
| 1577 |
+
axis=-1,
|
| 1578 |
+
):
|
| 1579 |
+
"""Computes the categorical focal crossentropy loss.
|
| 1580 |
+
|
| 1581 |
+
Args:
|
| 1582 |
+
y_true: Tensor of one-hot true targets.
|
| 1583 |
+
y_pred: Tensor of predicted targets.
|
| 1584 |
+
alpha: A weight balancing factor for all classes, default is `0.25` as
|
| 1585 |
+
mentioned in the reference. It can be a list of floats or a scalar.
|
| 1586 |
+
In the multi-class case, alpha may be set by inverse class
|
| 1587 |
+
frequency by using `compute_class_weight` from `sklearn.utils`.
|
| 1588 |
+
gamma: A focusing parameter, default is `2.0` as mentioned in the
|
| 1589 |
+
reference. It helps to gradually reduce the importance given to
|
| 1590 |
+
simple examples in a smooth manner. When `gamma` = 0, there is
|
| 1591 |
+
no focal effect on the categorical crossentropy.
|
| 1592 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 1593 |
+
default, we assume that `y_pred` encodes a probability
|
| 1594 |
+
distribution.
|
| 1595 |
+
label_smoothing: Float in [0, 1]. If > `0` then smooth the labels. For
|
| 1596 |
+
example, if `0.1`, use `0.1 / num_classes` for non-target labels
|
| 1597 |
+
and `0.9 + 0.1 / num_classes` for target labels.
|
| 1598 |
+
axis: Defaults to `-1`. The dimension along which the entropy is
|
| 1599 |
+
computed.
|
| 1600 |
+
|
| 1601 |
+
Returns:
|
| 1602 |
+
Categorical focal crossentropy loss value.
|
| 1603 |
+
|
| 1604 |
+
Example:
|
| 1605 |
+
|
| 1606 |
+
>>> y_true = [[0, 1, 0], [0, 0, 1]]
|
| 1607 |
+
>>> y_pred = [[0.05, 0.9, 0.05], [0.1, 0.85, 0.05]]
|
| 1608 |
+
>>> loss = keras_core.losses.categorical_focal_crossentropy(y_true, y_pred)
|
| 1609 |
+
>>> assert loss.shape == (2,)
|
| 1610 |
+
>>> loss
|
| 1611 |
+
array([2.63401289e-04, 6.75912094e-01], dtype=float32)
|
| 1612 |
+
"""
|
| 1613 |
+
if isinstance(axis, bool):
|
| 1614 |
+
raise ValueError(
|
| 1615 |
+
"`axis` must be of type `int`. "
|
| 1616 |
+
f"Received: axis={axis} of type {type(axis)}"
|
| 1617 |
+
)
|
| 1618 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1619 |
+
y_true = ops.cast(y_true, y_pred.dtype)
|
| 1620 |
+
|
| 1621 |
+
if y_pred.shape[-1] == 1:
|
| 1622 |
+
warnings.warn(
|
| 1623 |
+
"In loss categorical_focal_crossentropy, expected "
|
| 1624 |
+
"y_pred.shape to be (batch_size, num_classes) "
|
| 1625 |
+
f"with num_classes > 1. Received: y_pred.shape={y_pred.shape}. "
|
| 1626 |
+
"Consider using 'binary_crossentropy' if you only have 2 classes.",
|
| 1627 |
+
SyntaxWarning,
|
| 1628 |
+
stacklevel=2,
|
| 1629 |
+
)
|
| 1630 |
+
|
| 1631 |
+
if label_smoothing:
|
| 1632 |
+
num_classes = ops.cast(ops.shape(y_true)[-1], y_pred.dtype)
|
| 1633 |
+
y_true = y_true * (1.0 - label_smoothing) + (
|
| 1634 |
+
label_smoothing / num_classes
|
| 1635 |
+
)
|
| 1636 |
+
|
| 1637 |
+
if from_logits:
|
| 1638 |
+
y_pred = ops.softmax(y_pred, axis=axis)
|
| 1639 |
+
|
| 1640 |
+
# Adjust the predictions so that the probability of
|
| 1641 |
+
# each class for every sample adds up to 1
|
| 1642 |
+
# This is needed to ensure that the cross entropy is
|
| 1643 |
+
# computed correctly.
|
| 1644 |
+
output = y_pred / ops.sum(y_pred, axis=axis, keepdims=True)
|
| 1645 |
+
output = ops.clip(output, backend.epsilon(), 1.0 - backend.epsilon())
|
| 1646 |
+
|
| 1647 |
+
# Calculate cross entropy
|
| 1648 |
+
cce = -y_true * ops.log(output)
|
| 1649 |
+
|
| 1650 |
+
# Calculate factors
|
| 1651 |
+
modulating_factor = ops.power(1.0 - output, gamma)
|
| 1652 |
+
weighting_factor = ops.multiply(modulating_factor, alpha)
|
| 1653 |
+
|
| 1654 |
+
# Apply weighting factor
|
| 1655 |
+
focal_cce = ops.multiply(weighting_factor, cce)
|
| 1656 |
+
focal_cce = ops.sum(focal_cce, axis=axis)
|
| 1657 |
+
return focal_cce
|
| 1658 |
+
|
| 1659 |
+
|
| 1660 |
+
@keras_core_export(
|
| 1661 |
+
[
|
| 1662 |
+
"keras_core.metrics.sparse_categorical_crossentropy",
|
| 1663 |
+
"keras_core.losses.sparse_categorical_crossentropy",
|
| 1664 |
+
]
|
| 1665 |
+
)
|
| 1666 |
+
def sparse_categorical_crossentropy(
|
| 1667 |
+
y_true, y_pred, from_logits=False, ignore_class=None, axis=-1
|
| 1668 |
+
):
|
| 1669 |
+
"""Computes the sparse categorical crossentropy loss.
|
| 1670 |
+
|
| 1671 |
+
Args:
|
| 1672 |
+
y_true: Ground truth values.
|
| 1673 |
+
y_pred: The predicted values.
|
| 1674 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 1675 |
+
default, we assume that `y_pred` encodes a probability distribution.
|
| 1676 |
+
ignore_class: Optional integer. The ID of a class to be ignored during
|
| 1677 |
+
loss computation. This is useful, for example, in segmentation
|
| 1678 |
+
problems featuring a "void" class (commonly -1 or 255) in
|
| 1679 |
+
segmentation maps. By default (`ignore_class=None`), all classes are
|
| 1680 |
+
considered.
|
| 1681 |
+
axis: Defaults to `-1`. The dimension along which the entropy is
|
| 1682 |
+
computed.
|
| 1683 |
+
|
| 1684 |
+
Returns:
|
| 1685 |
+
Sparse categorical crossentropy loss value.
|
| 1686 |
+
|
| 1687 |
+
Examples:
|
| 1688 |
+
|
| 1689 |
+
>>> y_true = [1, 2]
|
| 1690 |
+
>>> y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]
|
| 1691 |
+
>>> loss = keras_core.losses.sparse_categorical_crossentropy(y_true, y_pred)
|
| 1692 |
+
>>> assert loss.shape == (2,)
|
| 1693 |
+
>>> loss
|
| 1694 |
+
array([0.0513, 2.303], dtype=float32)
|
| 1695 |
+
"""
|
| 1696 |
+
|
| 1697 |
+
if ignore_class is not None:
|
| 1698 |
+
res_shape = ops.shape(y_pred)[:-1]
|
| 1699 |
+
valid_mask = ops.not_equal(y_true, ops.cast(ignore_class, y_pred.dtype))
|
| 1700 |
+
y_true = y_true * ops.cast(valid_mask, y_true.dtype)
|
| 1701 |
+
y_pred = y_pred * ops.cast(
|
| 1702 |
+
ops.expand_dims(valid_mask, -1), y_pred.dtype
|
| 1703 |
+
)
|
| 1704 |
+
|
| 1705 |
+
res = ops.sparse_categorical_crossentropy(
|
| 1706 |
+
y_true,
|
| 1707 |
+
y_pred,
|
| 1708 |
+
from_logits=from_logits,
|
| 1709 |
+
axis=axis,
|
| 1710 |
+
)
|
| 1711 |
+
|
| 1712 |
+
if ignore_class is not None:
|
| 1713 |
+
valid_mask = ops.reshape(valid_mask, res_shape)
|
| 1714 |
+
res = ops.where(valid_mask, res, 0.0)
|
| 1715 |
+
|
| 1716 |
+
try:
|
| 1717 |
+
res._keras_mask = valid_mask
|
| 1718 |
+
except AttributeError:
|
| 1719 |
+
pass
|
| 1720 |
+
|
| 1721 |
+
return res
|
| 1722 |
+
|
| 1723 |
+
|
| 1724 |
+
@keras_core_export(
|
| 1725 |
+
[
|
| 1726 |
+
"keras_core.metrics.binary_crossentropy",
|
| 1727 |
+
"keras_core.losses.binary_crossentropy",
|
| 1728 |
+
]
|
| 1729 |
+
)
|
| 1730 |
+
def binary_crossentropy(
|
| 1731 |
+
y_true, y_pred, from_logits=False, label_smoothing=0.0, axis=-1
|
| 1732 |
+
):
|
| 1733 |
+
"""Computes the binary crossentropy loss.
|
| 1734 |
+
|
| 1735 |
+
Args:
|
| 1736 |
+
y_true: Ground truth values. shape = `[batch_size, d0, .. dN]`.
|
| 1737 |
+
y_pred: The predicted values. shape = `[batch_size, d0, .. dN]`.
|
| 1738 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 1739 |
+
default, we assume that `y_pred` encodes a probability distribution.
|
| 1740 |
+
label_smoothing: Float in `[0, 1]`. If > `0` then smooth the labels by
|
| 1741 |
+
squeezing them towards 0.5, that is,
|
| 1742 |
+
using `1. - 0.5 * label_smoothing` for the target class
|
| 1743 |
+
and `0.5 * label_smoothing` for the non-target class.
|
| 1744 |
+
axis: The axis along which the mean is computed. Defaults to `-1`.
|
| 1745 |
+
|
| 1746 |
+
Returns:
|
| 1747 |
+
Binary crossentropy loss value. shape = `[batch_size, d0, .. dN-1]`.
|
| 1748 |
+
|
| 1749 |
+
Example:
|
| 1750 |
+
|
| 1751 |
+
>>> y_true = [[0, 1], [0, 0]]
|
| 1752 |
+
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]]
|
| 1753 |
+
>>> loss = keras_core.losses.binary_crossentropy(y_true, y_pred)
|
| 1754 |
+
>>> assert loss.shape == (2,)
|
| 1755 |
+
>>> loss
|
| 1756 |
+
array([0.916 , 0.714], dtype=float32)
|
| 1757 |
+
"""
|
| 1758 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1759 |
+
y_true = ops.cast(y_true, y_pred.dtype)
|
| 1760 |
+
|
| 1761 |
+
if label_smoothing:
|
| 1762 |
+
y_true = y_true * (1.0 - label_smoothing) + 0.5 * label_smoothing
|
| 1763 |
+
|
| 1764 |
+
return ops.mean(
|
| 1765 |
+
ops.binary_crossentropy(y_true, y_pred, from_logits=from_logits),
|
| 1766 |
+
axis=axis,
|
| 1767 |
+
)
|
| 1768 |
+
|
| 1769 |
+
|
| 1770 |
+
@keras_core_export(
|
| 1771 |
+
[
|
| 1772 |
+
"keras_core.metrics.binary_focal_crossentropy",
|
| 1773 |
+
"keras_core.losses.binary_focal_crossentropy",
|
| 1774 |
+
]
|
| 1775 |
+
)
|
| 1776 |
+
def binary_focal_crossentropy(
|
| 1777 |
+
y_true,
|
| 1778 |
+
y_pred,
|
| 1779 |
+
apply_class_balancing=False,
|
| 1780 |
+
alpha=0.25,
|
| 1781 |
+
gamma=2.0,
|
| 1782 |
+
from_logits=False,
|
| 1783 |
+
label_smoothing=0.0,
|
| 1784 |
+
axis=-1,
|
| 1785 |
+
):
|
| 1786 |
+
"""Computes the binary focal crossentropy loss.
|
| 1787 |
+
|
| 1788 |
+
According to [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf), it
|
| 1789 |
+
helps to apply a focal factor to down-weight easy examples and focus more on
|
| 1790 |
+
hard examples. By default, the focal tensor is computed as follows:
|
| 1791 |
+
|
| 1792 |
+
`focal_factor = (1 - output) ** gamma` for class 1
|
| 1793 |
+
`focal_factor = output ** gamma` for class 0
|
| 1794 |
+
where `gamma` is a focusing parameter. When `gamma` = 0, there is no focal
|
| 1795 |
+
effect on the binary crossentropy loss.
|
| 1796 |
+
|
| 1797 |
+
If `apply_class_balancing == True`, this function also takes into account a
|
| 1798 |
+
weight balancing factor for the binary classes 0 and 1 as follows:
|
| 1799 |
+
|
| 1800 |
+
`weight = alpha` for class 1 (`target == 1`)
|
| 1801 |
+
`weight = 1 - alpha` for class 0
|
| 1802 |
+
where `alpha` is a float in the range of `[0, 1]`.
|
| 1803 |
+
|
| 1804 |
+
Args:
|
| 1805 |
+
y_true: Ground truth values, of shape `(batch_size, d0, .. dN)`.
|
| 1806 |
+
y_pred: The predicted values, of shape `(batch_size, d0, .. dN)`.
|
| 1807 |
+
apply_class_balancing: A bool, whether to apply weight balancing on the
|
| 1808 |
+
binary classes 0 and 1.
|
| 1809 |
+
alpha: A weight balancing factor for class 1, default is `0.25` as
|
| 1810 |
+
mentioned in the reference. The weight for class 0 is `1.0 - alpha`.
|
| 1811 |
+
gamma: A focusing parameter, default is `2.0` as mentioned in the
|
| 1812 |
+
reference.
|
| 1813 |
+
from_logits: Whether `y_pred` is expected to be a logits tensor. By
|
| 1814 |
+
default, we assume that `y_pred` encodes a probability distribution.
|
| 1815 |
+
label_smoothing: Float in `[0, 1]`. If > `0` then smooth the labels by
|
| 1816 |
+
squeezing them towards 0.5, that is,
|
| 1817 |
+
using `1. - 0.5 * label_smoothing` for the target class
|
| 1818 |
+
and `0.5 * label_smoothing` for the non-target class.
|
| 1819 |
+
axis: The axis along which the mean is computed. Defaults to `-1`.
|
| 1820 |
+
|
| 1821 |
+
Returns:
|
| 1822 |
+
Binary focal crossentropy loss value
|
| 1823 |
+
with shape = `[batch_size, d0, .. dN-1]`.
|
| 1824 |
+
|
| 1825 |
+
Example:
|
| 1826 |
+
|
| 1827 |
+
>>> y_true = [[0, 1], [0, 0]]
|
| 1828 |
+
>>> y_pred = [[0.6, 0.4], [0.4, 0.6]]
|
| 1829 |
+
>>> loss = keras_core.losses.binary_focal_crossentropy(
|
| 1830 |
+
... y_true, y_pred, gamma=2)
|
| 1831 |
+
>>> assert loss.shape == (2,)
|
| 1832 |
+
>>> loss
|
| 1833 |
+
array([0.330, 0.206], dtype=float32)
|
| 1834 |
+
"""
|
| 1835 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 1836 |
+
y_true = ops.cast(y_true, y_pred.dtype)
|
| 1837 |
+
|
| 1838 |
+
if label_smoothing:
|
| 1839 |
+
y_true = y_true * (1.0 - label_smoothing) + 0.5 * label_smoothing
|
| 1840 |
+
|
| 1841 |
+
if from_logits:
|
| 1842 |
+
y_pred = ops.sigmoid(y_pred)
|
| 1843 |
+
|
| 1844 |
+
bce = ops.binary_crossentropy(
|
| 1845 |
+
target=y_true,
|
| 1846 |
+
output=y_pred,
|
| 1847 |
+
from_logits=False,
|
| 1848 |
+
)
|
| 1849 |
+
|
| 1850 |
+
# Calculate focal factor
|
| 1851 |
+
p_t = y_true * y_pred + (1 - y_true) * (1 - y_pred)
|
| 1852 |
+
focal_factor = ops.power(1.0 - p_t, gamma)
|
| 1853 |
+
|
| 1854 |
+
focal_bce = focal_factor * bce
|
| 1855 |
+
|
| 1856 |
+
if apply_class_balancing:
|
| 1857 |
+
weight = y_true * alpha + (1 - y_true) * (1 - alpha)
|
| 1858 |
+
focal_bce = weight * focal_bce
|
| 1859 |
+
|
| 1860 |
+
return ops.mean(focal_bce, axis=axis)
|
| 1861 |
+
|
lib/python3.10/site-packages/keras_core/src/metrics/__init__.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src.api_export import keras_core_export
|
| 2 |
+
from keras_core.src.metrics.accuracy_metrics import Accuracy
|
| 3 |
+
from keras_core.src.metrics.accuracy_metrics import BinaryAccuracy
|
| 4 |
+
from keras_core.src.metrics.accuracy_metrics import CategoricalAccuracy
|
| 5 |
+
from keras_core.src.metrics.accuracy_metrics import SparseCategoricalAccuracy
|
| 6 |
+
from keras_core.src.metrics.accuracy_metrics import SparseTopKCategoricalAccuracy
|
| 7 |
+
from keras_core.src.metrics.accuracy_metrics import TopKCategoricalAccuracy
|
| 8 |
+
from keras_core.src.metrics.confusion_metrics import AUC
|
| 9 |
+
from keras_core.src.metrics.confusion_metrics import FalseNegatives
|
| 10 |
+
from keras_core.src.metrics.confusion_metrics import FalsePositives
|
| 11 |
+
from keras_core.src.metrics.confusion_metrics import Precision
|
| 12 |
+
from keras_core.src.metrics.confusion_metrics import PrecisionAtRecall
|
| 13 |
+
from keras_core.src.metrics.confusion_metrics import Recall
|
| 14 |
+
from keras_core.src.metrics.confusion_metrics import RecallAtPrecision
|
| 15 |
+
from keras_core.src.metrics.confusion_metrics import SensitivityAtSpecificity
|
| 16 |
+
from keras_core.src.metrics.confusion_metrics import SpecificityAtSensitivity
|
| 17 |
+
from keras_core.src.metrics.confusion_metrics import TrueNegatives
|
| 18 |
+
from keras_core.src.metrics.confusion_metrics import TruePositives
|
| 19 |
+
from keras_core.src.metrics.f_score_metrics import F1Score
|
| 20 |
+
from keras_core.src.metrics.f_score_metrics import FBetaScore
|
| 21 |
+
from keras_core.src.metrics.hinge_metrics import CategoricalHinge
|
| 22 |
+
from keras_core.src.metrics.hinge_metrics import Hinge
|
| 23 |
+
from keras_core.src.metrics.hinge_metrics import SquaredHinge
|
| 24 |
+
from keras_core.src.metrics.iou_metrics import BinaryIoU
|
| 25 |
+
from keras_core.src.metrics.iou_metrics import IoU
|
| 26 |
+
from keras_core.src.metrics.iou_metrics import MeanIoU
|
| 27 |
+
from keras_core.src.metrics.iou_metrics import OneHotIoU
|
| 28 |
+
from keras_core.src.metrics.iou_metrics import OneHotMeanIoU
|
| 29 |
+
from keras_core.src.metrics.metric import Metric
|
| 30 |
+
from keras_core.src.metrics.probabilistic_metrics import BinaryCrossentropy
|
| 31 |
+
from keras_core.src.metrics.probabilistic_metrics import CategoricalCrossentropy
|
| 32 |
+
from keras_core.src.metrics.probabilistic_metrics import KLDivergence
|
| 33 |
+
from keras_core.src.metrics.probabilistic_metrics import Poisson
|
| 34 |
+
from keras_core.src.metrics.probabilistic_metrics import (
|
| 35 |
+
SparseCategoricalCrossentropy,
|
| 36 |
+
)
|
| 37 |
+
from keras_core.src.metrics.reduction_metrics import Mean
|
| 38 |
+
from keras_core.src.metrics.reduction_metrics import MeanMetricWrapper
|
| 39 |
+
from keras_core.src.metrics.reduction_metrics import Sum
|
| 40 |
+
from keras_core.src.metrics.regression_metrics import CosineSimilarity
|
| 41 |
+
from keras_core.src.metrics.regression_metrics import LogCoshError
|
| 42 |
+
from keras_core.src.metrics.regression_metrics import MeanAbsoluteError
|
| 43 |
+
from keras_core.src.metrics.regression_metrics import MeanAbsolutePercentageError
|
| 44 |
+
from keras_core.src.metrics.regression_metrics import MeanSquaredError
|
| 45 |
+
from keras_core.src.metrics.regression_metrics import MeanSquaredLogarithmicError
|
| 46 |
+
from keras_core.src.metrics.regression_metrics import R2Score
|
| 47 |
+
from keras_core.src.metrics.regression_metrics import RootMeanSquaredError
|
| 48 |
+
from keras_core.src.saving import serialization_lib
|
| 49 |
+
from keras_core.src.utils.naming import to_snake_case
|
| 50 |
+
|
| 51 |
+
ALL_OBJECTS = {
|
| 52 |
+
# Base
|
| 53 |
+
Metric,
|
| 54 |
+
Mean,
|
| 55 |
+
Sum,
|
| 56 |
+
MeanMetricWrapper,
|
| 57 |
+
# Regression
|
| 58 |
+
MeanSquaredError,
|
| 59 |
+
RootMeanSquaredError,
|
| 60 |
+
MeanAbsoluteError,
|
| 61 |
+
MeanAbsolutePercentageError,
|
| 62 |
+
MeanSquaredLogarithmicError,
|
| 63 |
+
CosineSimilarity,
|
| 64 |
+
LogCoshError,
|
| 65 |
+
R2Score,
|
| 66 |
+
# Classification
|
| 67 |
+
AUC,
|
| 68 |
+
FalseNegatives,
|
| 69 |
+
FalsePositives,
|
| 70 |
+
Precision,
|
| 71 |
+
PrecisionAtRecall,
|
| 72 |
+
Recall,
|
| 73 |
+
RecallAtPrecision,
|
| 74 |
+
SensitivityAtSpecificity,
|
| 75 |
+
SpecificityAtSensitivity,
|
| 76 |
+
TrueNegatives,
|
| 77 |
+
TruePositives,
|
| 78 |
+
# Hinge
|
| 79 |
+
Hinge,
|
| 80 |
+
SquaredHinge,
|
| 81 |
+
CategoricalHinge,
|
| 82 |
+
# Probabilistic
|
| 83 |
+
KLDivergence,
|
| 84 |
+
Poisson,
|
| 85 |
+
BinaryCrossentropy,
|
| 86 |
+
CategoricalCrossentropy,
|
| 87 |
+
SparseCategoricalCrossentropy,
|
| 88 |
+
# Accuracy
|
| 89 |
+
Accuracy,
|
| 90 |
+
BinaryAccuracy,
|
| 91 |
+
CategoricalAccuracy,
|
| 92 |
+
SparseCategoricalAccuracy,
|
| 93 |
+
TopKCategoricalAccuracy,
|
| 94 |
+
SparseTopKCategoricalAccuracy,
|
| 95 |
+
# F-Score
|
| 96 |
+
F1Score,
|
| 97 |
+
FBetaScore,
|
| 98 |
+
# IoU
|
| 99 |
+
IoU,
|
| 100 |
+
BinaryIoU,
|
| 101 |
+
MeanIoU,
|
| 102 |
+
OneHotIoU,
|
| 103 |
+
OneHotMeanIoU,
|
| 104 |
+
}
|
| 105 |
+
ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS}
|
| 106 |
+
ALL_OBJECTS_DICT.update(
|
| 107 |
+
{to_snake_case(cls.__name__): cls for cls in ALL_OBJECTS}
|
| 108 |
+
)
|
| 109 |
+
# TODO: Align with `tf.keras` and set the name attribute of metrics
|
| 110 |
+
# with the key name. Currently it uses default name of class definitions.
|
| 111 |
+
ALL_OBJECTS_DICT.update(
|
| 112 |
+
{
|
| 113 |
+
"bce": BinaryCrossentropy,
|
| 114 |
+
"BCE": BinaryCrossentropy,
|
| 115 |
+
"mse": MeanSquaredError,
|
| 116 |
+
"MSE": MeanSquaredError,
|
| 117 |
+
"mae": MeanAbsoluteError,
|
| 118 |
+
"MAE": MeanAbsoluteError,
|
| 119 |
+
"mape": MeanAbsolutePercentageError,
|
| 120 |
+
"MAPE": MeanAbsolutePercentageError,
|
| 121 |
+
"msle": MeanSquaredLogarithmicError,
|
| 122 |
+
"MSLE": MeanSquaredLogarithmicError,
|
| 123 |
+
}
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
@keras_core_export("keras_core.metrics.serialize")
|
| 128 |
+
def serialize(metric):
|
| 129 |
+
"""Serializes metric function or `Metric` instance.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
metric: A Keras `Metric` instance or a metric function.
|
| 133 |
+
|
| 134 |
+
Returns:
|
| 135 |
+
Metric configuration dictionary.
|
| 136 |
+
"""
|
| 137 |
+
return serialization_lib.serialize_keras_object(metric)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
@keras_core_export("keras_core.metrics.deserialize")
|
| 141 |
+
def deserialize(config, custom_objects=None):
|
| 142 |
+
"""Deserializes a serialized metric class/function instance.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
config: Metric configuration.
|
| 146 |
+
custom_objects: Optional dictionary mapping names (strings)
|
| 147 |
+
to custom objects (classes and functions) to be
|
| 148 |
+
considered during deserialization.
|
| 149 |
+
|
| 150 |
+
Returns:
|
| 151 |
+
A Keras `Metric` instance or a metric function.
|
| 152 |
+
"""
|
| 153 |
+
return serialization_lib.deserialize_keras_object(
|
| 154 |
+
config,
|
| 155 |
+
module_objects=ALL_OBJECTS_DICT,
|
| 156 |
+
custom_objects=custom_objects,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@keras_core_export("keras_core.metrics.get")
|
| 161 |
+
def get(identifier):
|
| 162 |
+
"""Retrieves a Keras metric as a `function`/`Metric` class instance.
|
| 163 |
+
|
| 164 |
+
The `identifier` may be the string name of a metric function or class.
|
| 165 |
+
|
| 166 |
+
>>> metric = metrics.get("categorical_crossentropy")
|
| 167 |
+
>>> type(metric)
|
| 168 |
+
<class 'function'>
|
| 169 |
+
>>> metric = metrics.get("CategoricalCrossentropy")
|
| 170 |
+
>>> type(metric)
|
| 171 |
+
<class '...metrics.CategoricalCrossentropy'>
|
| 172 |
+
|
| 173 |
+
You can also specify `config` of the metric to this function by passing dict
|
| 174 |
+
containing `class_name` and `config` as an identifier. Also note that the
|
| 175 |
+
`class_name` must map to a `Metric` class
|
| 176 |
+
|
| 177 |
+
>>> identifier = {"class_name": "CategoricalCrossentropy",
|
| 178 |
+
... "config": {"from_logits": True}}
|
| 179 |
+
>>> metric = metrics.get(identifier)
|
| 180 |
+
>>> type(metric)
|
| 181 |
+
<class '...metrics.CategoricalCrossentropy'>
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
identifier: A metric identifier. One of None or string name of a metric
|
| 185 |
+
function/class or metric configuration dictionary or a metric
|
| 186 |
+
function or a metric class instance
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
A Keras metric as a `function`/ `Metric` class instance.
|
| 190 |
+
"""
|
| 191 |
+
if identifier is None:
|
| 192 |
+
return None
|
| 193 |
+
if isinstance(identifier, dict):
|
| 194 |
+
obj = deserialize(identifier)
|
| 195 |
+
elif isinstance(identifier, str):
|
| 196 |
+
obj = deserialize(identifier)
|
| 197 |
+
else:
|
| 198 |
+
obj = identifier
|
| 199 |
+
if callable(obj):
|
| 200 |
+
return obj
|
| 201 |
+
else:
|
| 202 |
+
raise ValueError(f"Could not interpret metric identifier: {identifier}")
|
| 203 |
+
|
lib/python3.10/site-packages/keras_core/src/metrics/accuracy_metrics.py
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src import backend
|
| 2 |
+
from keras_core.src import ops
|
| 3 |
+
from keras_core.src.api_export import keras_core_export
|
| 4 |
+
from keras_core.src.losses.loss import squeeze_to_same_rank
|
| 5 |
+
from keras_core.src.metrics import reduction_metrics
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def accuracy(y_true, y_pred):
|
| 9 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 10 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype)
|
| 11 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 12 |
+
return ops.mean(
|
| 13 |
+
ops.cast(ops.equal(y_true, y_pred), dtype=backend.floatx()),
|
| 14 |
+
axis=-1,
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@keras_core_export("keras_core.metrics.Accuracy")
|
| 19 |
+
class Accuracy(reduction_metrics.MeanMetricWrapper):
|
| 20 |
+
"""Calculates how often predictions equal labels.
|
| 21 |
+
|
| 22 |
+
This metric creates two local variables, `total` and `count` that are used
|
| 23 |
+
to compute the frequency with which `y_pred` matches `y_true`. This
|
| 24 |
+
frequency is ultimately returned as `binary accuracy`: an idempotent
|
| 25 |
+
operation that simply divides `total` by `count`.
|
| 26 |
+
|
| 27 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 28 |
+
Use `sample_weight` of 0 to mask values.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
name: (Optional) string name of the metric instance.
|
| 32 |
+
dtype: (Optional) data type of the metric result.
|
| 33 |
+
|
| 34 |
+
Standalone usage:
|
| 35 |
+
|
| 36 |
+
>>> m = keras_core.metrics.Accuracy()
|
| 37 |
+
>>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]])
|
| 38 |
+
>>> m.result()
|
| 39 |
+
0.75
|
| 40 |
+
|
| 41 |
+
>>> m.reset_state()
|
| 42 |
+
>>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]],
|
| 43 |
+
... sample_weight=[1, 1, 0, 0])
|
| 44 |
+
>>> m.result()
|
| 45 |
+
0.5
|
| 46 |
+
|
| 47 |
+
Usage with `compile()` API:
|
| 48 |
+
|
| 49 |
+
```python
|
| 50 |
+
model.compile(optimizer='sgd',
|
| 51 |
+
loss='binary_crossentropy',
|
| 52 |
+
metrics=[keras_core.metrics.Accuracy()])
|
| 53 |
+
```
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
def __init__(self, name="accuracy", dtype=None):
|
| 57 |
+
super().__init__(fn=accuracy, name=name, dtype=dtype)
|
| 58 |
+
|
| 59 |
+
def get_config(self):
|
| 60 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
@keras_core_export("keras_core.metrics.binary_accuracy")
|
| 64 |
+
def binary_accuracy(y_true, y_pred, threshold=0.5):
|
| 65 |
+
y_true = ops.convert_to_tensor(y_true)
|
| 66 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 67 |
+
y_true, y_pred = squeeze_to_same_rank(y_true, y_pred)
|
| 68 |
+
threshold = ops.cast(threshold, y_pred.dtype)
|
| 69 |
+
y_pred = ops.cast(y_pred > threshold, y_true.dtype)
|
| 70 |
+
return ops.mean(
|
| 71 |
+
ops.cast(ops.equal(y_true, y_pred), dtype=backend.floatx()),
|
| 72 |
+
axis=-1,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
@keras_core_export("keras_core.metrics.BinaryAccuracy")
|
| 77 |
+
class BinaryAccuracy(reduction_metrics.MeanMetricWrapper):
|
| 78 |
+
"""Calculates how often predictions match binary labels.
|
| 79 |
+
|
| 80 |
+
This metric creates two local variables, `total` and `count` that are used
|
| 81 |
+
to compute the frequency with which `y_pred` matches `y_true`. This
|
| 82 |
+
frequency is ultimately returned as `binary accuracy`: an idempotent
|
| 83 |
+
operation that simply divides `total` by `count`.
|
| 84 |
+
|
| 85 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 86 |
+
Use `sample_weight` of 0 to mask values.
|
| 87 |
+
|
| 88 |
+
Args:
|
| 89 |
+
name: (Optional) string name of the metric instance.
|
| 90 |
+
dtype: (Optional) data type of the metric result.
|
| 91 |
+
threshold: (Optional) Float representing the threshold for deciding
|
| 92 |
+
whether prediction values are 1 or 0.
|
| 93 |
+
|
| 94 |
+
Standalone usage:
|
| 95 |
+
|
| 96 |
+
>>> m = keras_core.metrics.BinaryAccuracy()
|
| 97 |
+
>>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]])
|
| 98 |
+
>>> m.result()
|
| 99 |
+
0.75
|
| 100 |
+
|
| 101 |
+
>>> m.reset_state()
|
| 102 |
+
>>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]],
|
| 103 |
+
... sample_weight=[1, 0, 0, 1])
|
| 104 |
+
>>> m.result()
|
| 105 |
+
0.5
|
| 106 |
+
|
| 107 |
+
Usage with `compile()` API:
|
| 108 |
+
|
| 109 |
+
```python
|
| 110 |
+
model.compile(optimizer='sgd',
|
| 111 |
+
loss='binary_crossentropy',
|
| 112 |
+
metrics=[keras_core.metrics.BinaryAccuracy()])
|
| 113 |
+
```
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
def __init__(self, name="binary_accuracy", dtype=None):
|
| 117 |
+
super().__init__(fn=binary_accuracy, name=name, dtype=dtype)
|
| 118 |
+
|
| 119 |
+
def get_config(self):
|
| 120 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
@keras_core_export("keras_core.metrics.categorical_accuracy")
|
| 124 |
+
def categorical_accuracy(y_true, y_pred):
|
| 125 |
+
y_true = ops.argmax(y_true, axis=-1)
|
| 126 |
+
|
| 127 |
+
reshape_matches = False
|
| 128 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 129 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype)
|
| 130 |
+
|
| 131 |
+
y_true_org_shape = ops.shape(y_true)
|
| 132 |
+
y_pred_rank = len(y_pred.shape)
|
| 133 |
+
y_true_rank = len(y_true.shape)
|
| 134 |
+
|
| 135 |
+
# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
|
| 136 |
+
if (
|
| 137 |
+
(y_true_rank is not None)
|
| 138 |
+
and (y_pred_rank is not None)
|
| 139 |
+
and (len(y_true.shape) == len(y_pred.shape))
|
| 140 |
+
):
|
| 141 |
+
y_true = ops.squeeze(y_true, -1)
|
| 142 |
+
reshape_matches = True
|
| 143 |
+
y_pred = ops.argmax(y_pred, axis=-1)
|
| 144 |
+
|
| 145 |
+
# If the predicted output and actual output types don't match, force cast
|
| 146 |
+
# them to match.
|
| 147 |
+
if y_pred.dtype != y_true.dtype:
|
| 148 |
+
y_pred = ops.cast(y_pred, dtype=y_true.dtype)
|
| 149 |
+
matches = ops.cast(ops.equal(y_true, y_pred), backend.floatx())
|
| 150 |
+
if reshape_matches:
|
| 151 |
+
matches = ops.reshape(matches, new_shape=y_true_org_shape)
|
| 152 |
+
return matches
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
@keras_core_export("keras_core.metrics.CategoricalAccuracy")
|
| 156 |
+
class CategoricalAccuracy(reduction_metrics.MeanMetricWrapper):
|
| 157 |
+
"""Calculates how often predictions match one-hot labels.
|
| 158 |
+
|
| 159 |
+
You can provide logits of classes as `y_pred`, since argmax of
|
| 160 |
+
logits and probabilities are same.
|
| 161 |
+
|
| 162 |
+
This metric creates two local variables, `total` and `count` that are used
|
| 163 |
+
to compute the frequency with which `y_pred` matches `y_true`. This
|
| 164 |
+
frequency is ultimately returned as `categorical accuracy`: an idempotent
|
| 165 |
+
operation that simply divides `total` by `count`.
|
| 166 |
+
|
| 167 |
+
`y_pred` and `y_true` should be passed in as vectors of probabilities,
|
| 168 |
+
rather than as labels. If necessary, use `ops.one_hot` to expand `y_true` as
|
| 169 |
+
a vector.
|
| 170 |
+
|
| 171 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 172 |
+
Use `sample_weight` of 0 to mask values.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
name: (Optional) string name of the metric instance.
|
| 176 |
+
dtype: (Optional) data type of the metric result.
|
| 177 |
+
|
| 178 |
+
Standalone usage:
|
| 179 |
+
|
| 180 |
+
>>> m = keras_core.metrics.CategoricalAccuracy()
|
| 181 |
+
>>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8],
|
| 182 |
+
... [0.05, 0.95, 0]])
|
| 183 |
+
>>> m.result()
|
| 184 |
+
0.5
|
| 185 |
+
|
| 186 |
+
>>> m.reset_state()
|
| 187 |
+
>>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8],
|
| 188 |
+
... [0.05, 0.95, 0]],
|
| 189 |
+
... sample_weight=[0.7, 0.3])
|
| 190 |
+
>>> m.result()
|
| 191 |
+
0.3
|
| 192 |
+
|
| 193 |
+
Usage with `compile()` API:
|
| 194 |
+
|
| 195 |
+
```python
|
| 196 |
+
model.compile(optimizer='sgd',
|
| 197 |
+
loss='categorical_crossentropy',
|
| 198 |
+
metrics=[keras_core.metrics.CategoricalAccuracy()])
|
| 199 |
+
```
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
def __init__(self, name="categorical_accuracy", dtype=None):
|
| 203 |
+
super().__init__(fn=categorical_accuracy, name=name, dtype=dtype)
|
| 204 |
+
|
| 205 |
+
def get_config(self):
|
| 206 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
@keras_core_export("keras_core.metrics.sparse_categorical_accuracy")
|
| 210 |
+
def sparse_categorical_accuracy(y_true, y_pred):
|
| 211 |
+
reshape_matches = False
|
| 212 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 213 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype)
|
| 214 |
+
y_true_org_shape = ops.shape(y_true)
|
| 215 |
+
y_pred_rank = len(y_pred.shape)
|
| 216 |
+
y_true_rank = len(y_true.shape)
|
| 217 |
+
|
| 218 |
+
# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
|
| 219 |
+
if (
|
| 220 |
+
(y_true_rank is not None)
|
| 221 |
+
and (y_pred_rank is not None)
|
| 222 |
+
and (len(y_true.shape) == len(y_pred.shape))
|
| 223 |
+
):
|
| 224 |
+
y_true = ops.squeeze(y_true, -1)
|
| 225 |
+
reshape_matches = True
|
| 226 |
+
y_pred = ops.argmax(y_pred, axis=-1)
|
| 227 |
+
|
| 228 |
+
# If the predicted output and actual output types don't match, force cast
|
| 229 |
+
# them to match.
|
| 230 |
+
if y_pred.dtype != y_true.dtype:
|
| 231 |
+
y_pred = ops.cast(y_pred, y_true.dtype)
|
| 232 |
+
matches = ops.cast(ops.equal(y_true, y_pred), backend.floatx())
|
| 233 |
+
if reshape_matches:
|
| 234 |
+
matches = ops.reshape(matches, new_shape=y_true_org_shape)
|
| 235 |
+
# if shape is (num_samples, 1) squeeze
|
| 236 |
+
if len(matches.shape) > 1 and matches.shape[-1] == 1:
|
| 237 |
+
matches = ops.squeeze(matches, -1)
|
| 238 |
+
return matches
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
@keras_core_export("keras_core.metrics.SparseCategoricalAccuracy")
|
| 242 |
+
class SparseCategoricalAccuracy(reduction_metrics.MeanMetricWrapper):
|
| 243 |
+
"""Calculates how often predictions match integer labels.
|
| 244 |
+
|
| 245 |
+
```python
|
| 246 |
+
acc = np.dot(sample_weight, np.equal(y_true, np.argmax(y_pred, axis=1))
|
| 247 |
+
```
|
| 248 |
+
|
| 249 |
+
You can provide logits of classes as `y_pred`, since argmax of
|
| 250 |
+
logits and probabilities are same.
|
| 251 |
+
|
| 252 |
+
This metric creates two local variables, `total` and `count` that are used
|
| 253 |
+
to compute the frequency with which `y_pred` matches `y_true`. This
|
| 254 |
+
frequency is ultimately returned as `sparse categorical accuracy`: an
|
| 255 |
+
idempotent operation that simply divides `total` by `count`.
|
| 256 |
+
|
| 257 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 258 |
+
Use `sample_weight` of 0 to mask values.
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
name: (Optional) string name of the metric instance.
|
| 262 |
+
dtype: (Optional) data type of the metric result.
|
| 263 |
+
|
| 264 |
+
Standalone usage:
|
| 265 |
+
|
| 266 |
+
>>> m = keras_core.metrics.SparseCategoricalAccuracy()
|
| 267 |
+
>>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]])
|
| 268 |
+
>>> m.result()
|
| 269 |
+
0.5
|
| 270 |
+
|
| 271 |
+
>>> m.reset_state()
|
| 272 |
+
>>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]],
|
| 273 |
+
... sample_weight=[0.7, 0.3])
|
| 274 |
+
>>> m.result()
|
| 275 |
+
0.3
|
| 276 |
+
|
| 277 |
+
Usage with `compile()` API:
|
| 278 |
+
|
| 279 |
+
```python
|
| 280 |
+
model.compile(optimizer='sgd',
|
| 281 |
+
loss='sparse_categorical_crossentropy',
|
| 282 |
+
metrics=[keras_core.metrics.SparseCategoricalAccuracy()])
|
| 283 |
+
```
|
| 284 |
+
"""
|
| 285 |
+
|
| 286 |
+
def __init__(self, name="sparse_categorical_accuracy", dtype=None):
|
| 287 |
+
super().__init__(fn=sparse_categorical_accuracy, name=name, dtype=dtype)
|
| 288 |
+
|
| 289 |
+
def get_config(self):
|
| 290 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
@keras_core_export("keras_core.metrics.top_k_categorical_accuracy")
|
| 294 |
+
def top_k_categorical_accuracy(y_true, y_pred, k=5):
|
| 295 |
+
reshape_matches = False
|
| 296 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 297 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype)
|
| 298 |
+
y_true = ops.argmax(y_true, axis=-1)
|
| 299 |
+
y_true_rank = len(y_true.shape)
|
| 300 |
+
y_pred_rank = len(y_pred.shape)
|
| 301 |
+
y_true_org_shape = ops.shape(y_true)
|
| 302 |
+
|
| 303 |
+
# Flatten y_pred to (batch_size, num_samples) and y_true to (num_samples,)
|
| 304 |
+
if (y_true_rank is not None) and (y_pred_rank is not None):
|
| 305 |
+
if y_pred_rank > 2:
|
| 306 |
+
y_pred = ops.reshape(y_pred, [-1, y_pred.shape[-1]])
|
| 307 |
+
if y_true_rank > 1:
|
| 308 |
+
reshape_matches = True
|
| 309 |
+
y_true = ops.reshape(y_true, [-1])
|
| 310 |
+
|
| 311 |
+
matches = ops.cast(
|
| 312 |
+
ops.in_top_k(ops.cast(y_true, "int32"), y_pred, k=k),
|
| 313 |
+
dtype=backend.floatx(),
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
# returned matches is expected to have same shape as y_true input
|
| 317 |
+
if reshape_matches:
|
| 318 |
+
matches = ops.reshape(matches, new_shape=y_true_org_shape)
|
| 319 |
+
|
| 320 |
+
return matches
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
@keras_core_export("keras_core.metrics.TopKCategoricalAccuracy")
|
| 324 |
+
class TopKCategoricalAccuracy(reduction_metrics.MeanMetricWrapper):
|
| 325 |
+
"""Computes how often targets are in the top `K` predictions.
|
| 326 |
+
|
| 327 |
+
Args:
|
| 328 |
+
k: (Optional) Number of top elements to look at for computing accuracy.
|
| 329 |
+
Defaults to `5`.
|
| 330 |
+
name: (Optional) string name of the metric instance.
|
| 331 |
+
dtype: (Optional) data type of the metric result.
|
| 332 |
+
|
| 333 |
+
Standalone usage:
|
| 334 |
+
|
| 335 |
+
>>> m = keras_core.metrics.TopKCategoricalAccuracy(k=1)
|
| 336 |
+
>>> m.update_state([[0, 0, 1], [0, 1, 0]],
|
| 337 |
+
... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]])
|
| 338 |
+
>>> m.result()
|
| 339 |
+
0.5
|
| 340 |
+
|
| 341 |
+
>>> m.reset_state()
|
| 342 |
+
>>> m.update_state([[0, 0, 1], [0, 1, 0]],
|
| 343 |
+
... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]],
|
| 344 |
+
... sample_weight=[0.7, 0.3])
|
| 345 |
+
>>> m.result()
|
| 346 |
+
0.3
|
| 347 |
+
|
| 348 |
+
Usage with `compile()` API:
|
| 349 |
+
|
| 350 |
+
```python
|
| 351 |
+
model.compile(optimizer='sgd',
|
| 352 |
+
loss='categorical_crossentropy',
|
| 353 |
+
metrics=[keras_core.metrics.TopKCategoricalAccuracy()])
|
| 354 |
+
```
|
| 355 |
+
"""
|
| 356 |
+
|
| 357 |
+
def __init__(self, k=5, name="top_k_categorical_accuracy", dtype=None):
|
| 358 |
+
super().__init__(
|
| 359 |
+
fn=top_k_categorical_accuracy,
|
| 360 |
+
name=name,
|
| 361 |
+
dtype=dtype,
|
| 362 |
+
k=k,
|
| 363 |
+
)
|
| 364 |
+
self.k = k
|
| 365 |
+
|
| 366 |
+
def get_config(self):
|
| 367 |
+
return {"name": self.name, "dtype": self.dtype, "k": self.k}
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@keras_core_export("keras_core.metrics.sparse_top_k_categorical_accuracy")
|
| 371 |
+
def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5):
|
| 372 |
+
reshape_matches = False
|
| 373 |
+
y_pred = ops.convert_to_tensor(y_pred)
|
| 374 |
+
y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype)
|
| 375 |
+
y_true_rank = len(y_true.shape)
|
| 376 |
+
y_pred_rank = len(y_pred.shape)
|
| 377 |
+
y_true_org_shape = ops.shape(y_true)
|
| 378 |
+
|
| 379 |
+
# Flatten y_pred to (batch_size, num_samples) and y_true to (num_samples,)
|
| 380 |
+
if (y_true_rank is not None) and (y_pred_rank is not None):
|
| 381 |
+
if y_pred_rank > 2:
|
| 382 |
+
y_pred = ops.reshape(y_pred, [-1, y_pred.shape[-1]])
|
| 383 |
+
if y_true_rank > 1:
|
| 384 |
+
reshape_matches = True
|
| 385 |
+
y_true = ops.reshape(y_true, [-1])
|
| 386 |
+
|
| 387 |
+
matches = ops.cast(
|
| 388 |
+
ops.in_top_k(ops.cast(y_true, "int32"), y_pred, k=k),
|
| 389 |
+
dtype=backend.floatx(),
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# returned matches is expected to have same shape as y_true input
|
| 393 |
+
if reshape_matches:
|
| 394 |
+
matches = ops.reshape(matches, new_shape=y_true_org_shape)
|
| 395 |
+
|
| 396 |
+
return matches
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
@keras_core_export("keras_core.metrics.SparseTopKCategoricalAccuracy")
|
| 400 |
+
class SparseTopKCategoricalAccuracy(reduction_metrics.MeanMetricWrapper):
|
| 401 |
+
"""Computes how often integer targets are in the top `K` predictions.
|
| 402 |
+
|
| 403 |
+
Args:
|
| 404 |
+
k: (Optional) Number of top elements to look at for computing accuracy.
|
| 405 |
+
Defaults to `5`.
|
| 406 |
+
name: (Optional) string name of the metric instance.
|
| 407 |
+
dtype: (Optional) data type of the metric result.
|
| 408 |
+
|
| 409 |
+
Standalone usage:
|
| 410 |
+
|
| 411 |
+
>>> m = keras_core.metrics.SparseTopKCategoricalAccuracy(k=1)
|
| 412 |
+
>>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]])
|
| 413 |
+
>>> m.result()
|
| 414 |
+
0.5
|
| 415 |
+
|
| 416 |
+
>>> m.reset_state()
|
| 417 |
+
>>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]],
|
| 418 |
+
... sample_weight=[0.7, 0.3])
|
| 419 |
+
>>> m.result()
|
| 420 |
+
0.3
|
| 421 |
+
|
| 422 |
+
Usage with `compile()` API:
|
| 423 |
+
|
| 424 |
+
```python
|
| 425 |
+
model.compile(optimizer='sgd',
|
| 426 |
+
loss='sparse_categorical_crossentropy',
|
| 427 |
+
metrics=[keras_core.metrics.SparseTopKCategoricalAccuracy()])
|
| 428 |
+
```
|
| 429 |
+
"""
|
| 430 |
+
|
| 431 |
+
def __init__(
|
| 432 |
+
self, k=5, name="sparse_top_k_categorical_accuracy", dtype=None
|
| 433 |
+
):
|
| 434 |
+
super().__init__(
|
| 435 |
+
fn=sparse_top_k_categorical_accuracy,
|
| 436 |
+
name=name,
|
| 437 |
+
dtype=dtype,
|
| 438 |
+
k=k,
|
| 439 |
+
)
|
| 440 |
+
self.k = k
|
| 441 |
+
|
| 442 |
+
def get_config(self):
|
| 443 |
+
return {"name": self.name, "dtype": self.dtype, "k": self.k}
|
| 444 |
+
|
lib/python3.10/site-packages/keras_core/src/metrics/confusion_metrics.py
ADDED
|
@@ -0,0 +1,1575 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
|
| 3 |
+
from keras_core.src import activations
|
| 4 |
+
from keras_core.src import backend
|
| 5 |
+
from keras_core.src import initializers
|
| 6 |
+
from keras_core.src import ops
|
| 7 |
+
from keras_core.src.api_export import keras_core_export
|
| 8 |
+
from keras_core.src.metrics import metrics_utils
|
| 9 |
+
from keras_core.src.metrics.metric import Metric
|
| 10 |
+
from keras_core.src.utils.python_utils import to_list
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class _ConfusionMatrixConditionCount(Metric):
|
| 14 |
+
"""Calculates the number of the given confusion matrix condition.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
confusion_matrix_cond: One of `metrics_utils.ConfusionMatrix`
|
| 18 |
+
conditions.
|
| 19 |
+
thresholds: (Optional) Defaults to `0.5`. A float value or a python list
|
| 20 |
+
/ tuple of float threshold values in `[0, 1]`. A threshold is
|
| 21 |
+
compared with prediction values to determine the truth value of
|
| 22 |
+
predictions (i.e., above the threshold is `True`, below is `False`).
|
| 23 |
+
One metric value is generated for each threshold value.
|
| 24 |
+
name: (Optional) string name of the metric instance.
|
| 25 |
+
dtype: (Optional) data type of the metric result.
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self, confusion_matrix_cond, thresholds=None, name=None, dtype=None
|
| 30 |
+
):
|
| 31 |
+
super().__init__(name=name, dtype=dtype)
|
| 32 |
+
self._confusion_matrix_cond = confusion_matrix_cond
|
| 33 |
+
self.init_thresholds = thresholds
|
| 34 |
+
self.thresholds = metrics_utils.parse_init_thresholds(
|
| 35 |
+
thresholds, default_threshold=0.5
|
| 36 |
+
)
|
| 37 |
+
self._thresholds_distributed_evenly = (
|
| 38 |
+
metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
|
| 39 |
+
)
|
| 40 |
+
self.accumulator = self.add_variable(
|
| 41 |
+
shape=(len(self.thresholds),),
|
| 42 |
+
initializer=initializers.Zeros(),
|
| 43 |
+
name="accumulator",
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
| 47 |
+
"""Accumulates the metric statistics.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
y_true: The ground truth values.
|
| 51 |
+
y_pred: The predicted values.
|
| 52 |
+
sample_weight: Optional weighting of each example. Defaults to `1`.
|
| 53 |
+
Can be a tensor whose rank is either 0, or the same rank as
|
| 54 |
+
`y_true`, and must be broadcastable to `y_true`.
|
| 55 |
+
"""
|
| 56 |
+
return metrics_utils.update_confusion_matrix_variables(
|
| 57 |
+
{self._confusion_matrix_cond: self.accumulator},
|
| 58 |
+
y_true,
|
| 59 |
+
y_pred,
|
| 60 |
+
thresholds=self.thresholds,
|
| 61 |
+
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
|
| 62 |
+
sample_weight=sample_weight,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
def result(self):
|
| 66 |
+
if len(self.thresholds) == 1:
|
| 67 |
+
result = self.accumulator[0]
|
| 68 |
+
else:
|
| 69 |
+
result = self.accumulator
|
| 70 |
+
return backend.convert_to_tensor(result)
|
| 71 |
+
|
| 72 |
+
def get_config(self):
|
| 73 |
+
config = {"thresholds": self.init_thresholds}
|
| 74 |
+
base_config = super().get_config()
|
| 75 |
+
return {**base_config, **config}
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@keras_core_export("keras_core.metrics.FalsePositives")
|
| 79 |
+
class FalsePositives(_ConfusionMatrixConditionCount):
|
| 80 |
+
"""Calculates the number of false positives.
|
| 81 |
+
|
| 82 |
+
If `sample_weight` is given, calculates the sum of the weights of
|
| 83 |
+
false positives. This metric creates one local variable, `accumulator`
|
| 84 |
+
that is used to keep track of the number of false positives.
|
| 85 |
+
|
| 86 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 87 |
+
Use `sample_weight` of 0 to mask values.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
thresholds: (Optional) Defaults to `0.5`. A float value, or a Python
|
| 91 |
+
list/tuple of float threshold values in `[0, 1]`. A threshold is
|
| 92 |
+
compared with prediction values to determine the truth value of
|
| 93 |
+
predictions (i.e., above the threshold is `True`, below is `False`).
|
| 94 |
+
If used with a loss function that sets `from_logits=True` (i.e. no
|
| 95 |
+
sigmoid applied to predictions), `thresholds` should be set to 0.
|
| 96 |
+
One metric value is generated for each threshold value.
|
| 97 |
+
name: (Optional) string name of the metric instance.
|
| 98 |
+
dtype: (Optional) data type of the metric result.
|
| 99 |
+
|
| 100 |
+
Standalone usage:
|
| 101 |
+
|
| 102 |
+
>>> m = keras_core.metrics.FalsePositives()
|
| 103 |
+
>>> m.update_state([0, 1, 0, 0], [0, 0, 1, 1])
|
| 104 |
+
>>> m.result()
|
| 105 |
+
2.0
|
| 106 |
+
|
| 107 |
+
>>> m.reset_state()
|
| 108 |
+
>>> m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0])
|
| 109 |
+
>>> m.result()
|
| 110 |
+
1.0
|
| 111 |
+
"""
|
| 112 |
+
|
| 113 |
+
def __init__(self, thresholds=None, name=None, dtype=None):
|
| 114 |
+
super().__init__(
|
| 115 |
+
confusion_matrix_cond=metrics_utils.ConfusionMatrix.FALSE_POSITIVES,
|
| 116 |
+
thresholds=thresholds,
|
| 117 |
+
name=name,
|
| 118 |
+
dtype=dtype,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@keras_core_export("keras_core.metrics.FalseNegatives")
|
| 123 |
+
class FalseNegatives(_ConfusionMatrixConditionCount):
|
| 124 |
+
"""Calculates the number of false negatives.
|
| 125 |
+
|
| 126 |
+
If `sample_weight` is given, calculates the sum of the weights of
|
| 127 |
+
false negatives. This metric creates one local variable, `accumulator`
|
| 128 |
+
that is used to keep track of the number of false negatives.
|
| 129 |
+
|
| 130 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 131 |
+
Use `sample_weight` of 0 to mask values.
|
| 132 |
+
|
| 133 |
+
Args:
|
| 134 |
+
thresholds: (Optional) Defaults to `0.5`. A float value, or a Python
|
| 135 |
+
list/tuple of float threshold values in `[0, 1]`. A threshold is
|
| 136 |
+
compared with prediction values to determine the truth value of
|
| 137 |
+
predictions (i.e., above the threshold is `True`, below is `False`).
|
| 138 |
+
If used with a loss function that sets `from_logits=True` (i.e. no
|
| 139 |
+
sigmoid applied to predictions), `thresholds` should be set to 0.
|
| 140 |
+
One metric value is generated for each threshold value.
|
| 141 |
+
name: (Optional) string name of the metric instance.
|
| 142 |
+
dtype: (Optional) data type of the metric result.
|
| 143 |
+
|
| 144 |
+
Standalone usage:
|
| 145 |
+
|
| 146 |
+
>>> m = keras_core.metrics.FalseNegatives()
|
| 147 |
+
>>> m.update_state([0, 1, 1, 1], [0, 1, 0, 0])
|
| 148 |
+
>>> m.result()
|
| 149 |
+
2.0
|
| 150 |
+
|
| 151 |
+
>>> m.reset_state()
|
| 152 |
+
>>> m.update_state([0, 1, 1, 1], [0, 1, 0, 0], sample_weight=[0, 0, 1, 0])
|
| 153 |
+
>>> m.result()
|
| 154 |
+
1.0
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
def __init__(self, thresholds=None, name=None, dtype=None):
|
| 158 |
+
super().__init__(
|
| 159 |
+
confusion_matrix_cond=metrics_utils.ConfusionMatrix.FALSE_NEGATIVES,
|
| 160 |
+
thresholds=thresholds,
|
| 161 |
+
name=name,
|
| 162 |
+
dtype=dtype,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@keras_core_export("keras_core.metrics.TrueNegatives")
|
| 167 |
+
class TrueNegatives(_ConfusionMatrixConditionCount):
|
| 168 |
+
"""Calculates the number of true negatives.
|
| 169 |
+
|
| 170 |
+
If `sample_weight` is given, calculates the sum of the weights of
|
| 171 |
+
true negatives. This metric creates one local variable, `accumulator`
|
| 172 |
+
that is used to keep track of the number of true negatives.
|
| 173 |
+
|
| 174 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 175 |
+
Use `sample_weight` of 0 to mask values.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
thresholds: (Optional) Defaults to `0.5`. A float value, or a Python
|
| 179 |
+
list/tuple of float threshold values in `[0, 1]`. A threshold is
|
| 180 |
+
compared with prediction values to determine the truth value of
|
| 181 |
+
predictions (i.e., above the threshold is `True`, below is `False`).
|
| 182 |
+
If used with a loss function that sets `from_logits=True` (i.e. no
|
| 183 |
+
sigmoid applied to predictions), `thresholds` should be set to 0.
|
| 184 |
+
One metric value is generated for each threshold value.
|
| 185 |
+
name: (Optional) string name of the metric instance.
|
| 186 |
+
dtype: (Optional) data type of the metric result.
|
| 187 |
+
|
| 188 |
+
Standalone usage:
|
| 189 |
+
|
| 190 |
+
>>> m = keras_core.metrics.TrueNegatives()
|
| 191 |
+
>>> m.update_state([0, 1, 0, 0], [1, 1, 0, 0])
|
| 192 |
+
>>> m.result()
|
| 193 |
+
2.0
|
| 194 |
+
|
| 195 |
+
>>> m.reset_state()
|
| 196 |
+
>>> m.update_state([0, 1, 0, 0], [1, 1, 0, 0], sample_weight=[0, 0, 1, 0])
|
| 197 |
+
>>> m.result()
|
| 198 |
+
1.0
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
def __init__(self, thresholds=None, name=None, dtype=None):
|
| 202 |
+
super().__init__(
|
| 203 |
+
confusion_matrix_cond=metrics_utils.ConfusionMatrix.TRUE_NEGATIVES,
|
| 204 |
+
thresholds=thresholds,
|
| 205 |
+
name=name,
|
| 206 |
+
dtype=dtype,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
@keras_core_export("keras_core.metrics.TruePositives")
|
| 211 |
+
class TruePositives(_ConfusionMatrixConditionCount):
|
| 212 |
+
"""Calculates the number of true positives.
|
| 213 |
+
|
| 214 |
+
If `sample_weight` is given, calculates the sum of the weights of
|
| 215 |
+
true positives. This metric creates one local variable, `true_positives`
|
| 216 |
+
that is used to keep track of the number of true positives.
|
| 217 |
+
|
| 218 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 219 |
+
Use `sample_weight` of 0 to mask values.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
thresholds: (Optional) Defaults to `0.5`. A float value, or a Python
|
| 223 |
+
list/tuple of float threshold values in `[0, 1]`. A threshold is
|
| 224 |
+
compared with prediction values to determine the truth value of
|
| 225 |
+
predictions (i.e., above the threshold is `True`, below is `False`).
|
| 226 |
+
If used with a loss function that sets `from_logits=True` (i.e. no
|
| 227 |
+
sigmoid applied to predictions), `thresholds` should be set to 0.
|
| 228 |
+
One metric value is generated for each threshold value.
|
| 229 |
+
name: (Optional) string name of the metric instance.
|
| 230 |
+
dtype: (Optional) data type of the metric result.
|
| 231 |
+
|
| 232 |
+
Standalone usage:
|
| 233 |
+
|
| 234 |
+
>>> m = keras_core.metrics.TruePositives()
|
| 235 |
+
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
|
| 236 |
+
>>> m.result()
|
| 237 |
+
2.0
|
| 238 |
+
|
| 239 |
+
>>> m.reset_state()
|
| 240 |
+
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
|
| 241 |
+
>>> m.result()
|
| 242 |
+
1.0
|
| 243 |
+
"""
|
| 244 |
+
|
| 245 |
+
def __init__(self, thresholds=None, name=None, dtype=None):
|
| 246 |
+
super().__init__(
|
| 247 |
+
confusion_matrix_cond=metrics_utils.ConfusionMatrix.TRUE_POSITIVES,
|
| 248 |
+
thresholds=thresholds,
|
| 249 |
+
name=name,
|
| 250 |
+
dtype=dtype,
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
@keras_core_export("keras_core.metrics.Precision")
|
| 255 |
+
class Precision(Metric):
|
| 256 |
+
"""Computes the precision of the predictions with respect to the labels.
|
| 257 |
+
|
| 258 |
+
The metric creates two local variables, `true_positives` and
|
| 259 |
+
`false_positives` that are used to compute the precision. This value is
|
| 260 |
+
ultimately returned as `precision`, an idempotent operation that simply
|
| 261 |
+
divides `true_positives` by the sum of `true_positives` and
|
| 262 |
+
`false_positives`.
|
| 263 |
+
|
| 264 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 265 |
+
Use `sample_weight` of 0 to mask values.
|
| 266 |
+
|
| 267 |
+
If `top_k` is set, we'll calculate precision as how often on average a class
|
| 268 |
+
among the top-k classes with the highest predicted values of a batch entry
|
| 269 |
+
is correct and can be found in the label for that entry.
|
| 270 |
+
|
| 271 |
+
If `class_id` is specified, we calculate precision by considering only the
|
| 272 |
+
entries in the batch for which `class_id` is above the threshold and/or in
|
| 273 |
+
the top-k highest predictions, and computing the fraction of them for which
|
| 274 |
+
`class_id` is indeed a correct label.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
thresholds: (Optional) A float value, or a Python list/tuple of float
|
| 278 |
+
threshold values in `[0, 1]`. A threshold is compared with
|
| 279 |
+
prediction values to determine the truth value of predictions (i.e.,
|
| 280 |
+
above the threshold is `True`, below is `False`). If used with a
|
| 281 |
+
loss function that sets `from_logits=True` (i.e. no sigmoid applied
|
| 282 |
+
to predictions), `thresholds` should be set to 0. One metric value
|
| 283 |
+
is generated for each threshold value. If neither `thresholds` nor
|
| 284 |
+
`top_k` are set, the default is to calculate precision with
|
| 285 |
+
`thresholds=0.5`.
|
| 286 |
+
top_k: (Optional) Unset by default. An int value specifying the top-k
|
| 287 |
+
predictions to consider when calculating precision.
|
| 288 |
+
class_id: (Optional) Integer class ID for which we want binary metrics.
|
| 289 |
+
This must be in the half-open interval `[0, num_classes)`, where
|
| 290 |
+
`num_classes` is the last dimension of predictions.
|
| 291 |
+
name: (Optional) string name of the metric instance.
|
| 292 |
+
dtype: (Optional) data type of the metric result.
|
| 293 |
+
|
| 294 |
+
Standalone usage:
|
| 295 |
+
|
| 296 |
+
>>> m = keras_core.metrics.Precision()
|
| 297 |
+
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
|
| 298 |
+
>>> m.result()
|
| 299 |
+
0.6666667
|
| 300 |
+
|
| 301 |
+
>>> m.reset_state()
|
| 302 |
+
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
|
| 303 |
+
>>> m.result()
|
| 304 |
+
1.0
|
| 305 |
+
|
| 306 |
+
>>> # With top_k=2, it will calculate precision over y_true[:2]
|
| 307 |
+
>>> # and y_pred[:2]
|
| 308 |
+
>>> m = keras_core.metrics.Precision(top_k=2)
|
| 309 |
+
>>> m.update_state([0, 0, 1, 1], [1, 1, 1, 1])
|
| 310 |
+
>>> m.result()
|
| 311 |
+
0.0
|
| 312 |
+
|
| 313 |
+
>>> # With top_k=4, it will calculate precision over y_true[:4]
|
| 314 |
+
>>> # and y_pred[:4]
|
| 315 |
+
>>> m = keras_core.metrics.Precision(top_k=4)
|
| 316 |
+
>>> m.update_state([0, 0, 1, 1], [1, 1, 1, 1])
|
| 317 |
+
>>> m.result()
|
| 318 |
+
0.5
|
| 319 |
+
|
| 320 |
+
Usage with `compile()` API:
|
| 321 |
+
|
| 322 |
+
```python
|
| 323 |
+
model.compile(optimizer='sgd',
|
| 324 |
+
loss='mse',
|
| 325 |
+
metrics=[keras_core.metrics.Precision()])
|
| 326 |
+
```
|
| 327 |
+
|
| 328 |
+
Usage with a loss with `from_logits=True`:
|
| 329 |
+
|
| 330 |
+
```python
|
| 331 |
+
model.compile(optimizer='adam',
|
| 332 |
+
loss=keras_core.losses.BinaryCrossentropy(from_logits=True),
|
| 333 |
+
metrics=[keras_core.metrics.Precision(thresholds=0)])
|
| 334 |
+
```
|
| 335 |
+
"""
|
| 336 |
+
|
| 337 |
+
def __init__(
|
| 338 |
+
self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None
|
| 339 |
+
):
|
| 340 |
+
super().__init__(name=name, dtype=dtype)
|
| 341 |
+
self.init_thresholds = thresholds
|
| 342 |
+
self.top_k = top_k
|
| 343 |
+
self.class_id = class_id
|
| 344 |
+
|
| 345 |
+
default_threshold = 0.5 if top_k is None else metrics_utils.NEG_INF
|
| 346 |
+
self.thresholds = metrics_utils.parse_init_thresholds(
|
| 347 |
+
thresholds, default_threshold=default_threshold
|
| 348 |
+
)
|
| 349 |
+
self._thresholds_distributed_evenly = (
|
| 350 |
+
metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
|
| 351 |
+
)
|
| 352 |
+
self.true_positives = self.add_variable(
|
| 353 |
+
shape=(len(self.thresholds),),
|
| 354 |
+
initializer=initializers.Zeros(),
|
| 355 |
+
name="true_positives",
|
| 356 |
+
)
|
| 357 |
+
self.false_positives = self.add_variable(
|
| 358 |
+
shape=(len(self.thresholds),),
|
| 359 |
+
initializer=initializers.Zeros(),
|
| 360 |
+
name="false_positives",
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
| 364 |
+
"""Accumulates true positive and false positive statistics.
|
| 365 |
+
|
| 366 |
+
Args:
|
| 367 |
+
y_true: The ground truth values, with the same dimensions as
|
| 368 |
+
`y_pred`. Will be cast to `bool`.
|
| 369 |
+
y_pred: The predicted values. Each element must be in the range
|
| 370 |
+
`[0, 1]`.
|
| 371 |
+
sample_weight: Optional weighting of each example. Defaults to `1`.
|
| 372 |
+
Can be a tensor whose rank is either 0, or the same rank as
|
| 373 |
+
`y_true`, and must be broadcastable to `y_true`.
|
| 374 |
+
"""
|
| 375 |
+
metrics_utils.update_confusion_matrix_variables(
|
| 376 |
+
{
|
| 377 |
+
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
|
| 378 |
+
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501
|
| 379 |
+
},
|
| 380 |
+
y_true,
|
| 381 |
+
y_pred,
|
| 382 |
+
thresholds=self.thresholds,
|
| 383 |
+
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
|
| 384 |
+
top_k=self.top_k,
|
| 385 |
+
class_id=self.class_id,
|
| 386 |
+
sample_weight=sample_weight,
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
def result(self):
|
| 390 |
+
result = ops.divide(
|
| 391 |
+
self.true_positives,
|
| 392 |
+
self.true_positives + self.false_positives + backend.epsilon(),
|
| 393 |
+
)
|
| 394 |
+
return result[0] if len(self.thresholds) == 1 else result
|
| 395 |
+
|
| 396 |
+
def reset_state(self):
|
| 397 |
+
num_thresholds = len(to_list(self.thresholds))
|
| 398 |
+
self.true_positives.assign(ops.zeros((num_thresholds,)))
|
| 399 |
+
self.false_positives.assign(ops.zeros((num_thresholds,)))
|
| 400 |
+
|
| 401 |
+
def get_config(self):
|
| 402 |
+
config = {
|
| 403 |
+
"thresholds": self.init_thresholds,
|
| 404 |
+
"top_k": self.top_k,
|
| 405 |
+
"class_id": self.class_id,
|
| 406 |
+
}
|
| 407 |
+
base_config = super().get_config()
|
| 408 |
+
return {**base_config, **config}
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
@keras_core_export("keras_core.metrics.Recall")
|
| 412 |
+
class Recall(Metric):
|
| 413 |
+
"""Computes the recall of the predictions with respect to the labels.
|
| 414 |
+
|
| 415 |
+
This metric creates two local variables, `true_positives` and
|
| 416 |
+
`false_negatives`, that are used to compute the recall. This value is
|
| 417 |
+
ultimately returned as `recall`, an idempotent operation that simply divides
|
| 418 |
+
`true_positives` by the sum of `true_positives` and `false_negatives`.
|
| 419 |
+
|
| 420 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 421 |
+
Use `sample_weight` of 0 to mask values.
|
| 422 |
+
|
| 423 |
+
If `top_k` is set, recall will be computed as how often on average a class
|
| 424 |
+
among the labels of a batch entry is in the top-k predictions.
|
| 425 |
+
|
| 426 |
+
If `class_id` is specified, we calculate recall by considering only the
|
| 427 |
+
entries in the batch for which `class_id` is in the label, and computing the
|
| 428 |
+
fraction of them for which `class_id` is above the threshold and/or in the
|
| 429 |
+
top-k predictions.
|
| 430 |
+
|
| 431 |
+
Args:
|
| 432 |
+
thresholds: (Optional) A float value, or a Python list/tuple of float
|
| 433 |
+
threshold values in `[0, 1]`. A threshold is compared with
|
| 434 |
+
prediction values to determine the truth value of predictions (i.e.,
|
| 435 |
+
above the threshold is `True`, below is `False`). If used with a
|
| 436 |
+
loss function that sets `from_logits=True` (i.e. no sigmoid
|
| 437 |
+
applied to predictions), `thresholds` should be set to 0.
|
| 438 |
+
One metric value is generated for each threshold value.
|
| 439 |
+
If neither `thresholds` nor `top_k` are set,
|
| 440 |
+
the default is to calculate recall with `thresholds=0.5`.
|
| 441 |
+
top_k: (Optional) Unset by default. An int value specifying the top-k
|
| 442 |
+
predictions to consider when calculating recall.
|
| 443 |
+
class_id: (Optional) Integer class ID for which we want binary metrics.
|
| 444 |
+
This must be in the half-open interval `[0, num_classes)`, where
|
| 445 |
+
`num_classes` is the last dimension of predictions.
|
| 446 |
+
name: (Optional) string name of the metric instance.
|
| 447 |
+
dtype: (Optional) data type of the metric result.
|
| 448 |
+
|
| 449 |
+
Standalone usage:
|
| 450 |
+
|
| 451 |
+
>>> m = keras_core.metrics.Recall()
|
| 452 |
+
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
|
| 453 |
+
>>> m.result()
|
| 454 |
+
0.6666667
|
| 455 |
+
|
| 456 |
+
>>> m.reset_state()
|
| 457 |
+
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
|
| 458 |
+
>>> m.result()
|
| 459 |
+
1.0
|
| 460 |
+
|
| 461 |
+
Usage with `compile()` API:
|
| 462 |
+
|
| 463 |
+
```python
|
| 464 |
+
model.compile(optimizer='sgd',
|
| 465 |
+
loss='mse',
|
| 466 |
+
metrics=[keras_core.metrics.Recall()])
|
| 467 |
+
```
|
| 468 |
+
|
| 469 |
+
Usage with a loss with `from_logits=True`:
|
| 470 |
+
|
| 471 |
+
```python
|
| 472 |
+
model.compile(optimizer='adam',
|
| 473 |
+
loss=keras_core.losses.BinaryCrossentropy(from_logits=True),
|
| 474 |
+
metrics=[keras_core.metrics.Recall(thresholds=0)])
|
| 475 |
+
```
|
| 476 |
+
"""
|
| 477 |
+
|
| 478 |
+
def __init__(
|
| 479 |
+
self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None
|
| 480 |
+
):
|
| 481 |
+
super().__init__(name=name, dtype=dtype)
|
| 482 |
+
self.init_thresholds = thresholds
|
| 483 |
+
self.top_k = top_k
|
| 484 |
+
self.class_id = class_id
|
| 485 |
+
|
| 486 |
+
default_threshold = 0.5 if top_k is None else metrics_utils.NEG_INF
|
| 487 |
+
self.thresholds = metrics_utils.parse_init_thresholds(
|
| 488 |
+
thresholds, default_threshold=default_threshold
|
| 489 |
+
)
|
| 490 |
+
self._thresholds_distributed_evenly = (
|
| 491 |
+
metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
|
| 492 |
+
)
|
| 493 |
+
self.true_positives = self.add_variable(
|
| 494 |
+
shape=(len(self.thresholds),),
|
| 495 |
+
initializer=initializers.Zeros(),
|
| 496 |
+
name="true_positives",
|
| 497 |
+
)
|
| 498 |
+
self.false_negatives = self.add_variable(
|
| 499 |
+
shape=(len(self.thresholds),),
|
| 500 |
+
initializer=initializers.Zeros(),
|
| 501 |
+
name="false_negatives",
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
| 505 |
+
"""Accumulates true positive and false negative statistics.
|
| 506 |
+
|
| 507 |
+
Args:
|
| 508 |
+
y_true: The ground truth values, with the same dimensions as
|
| 509 |
+
`y_pred`. Will be cast to `bool`.
|
| 510 |
+
y_pred: The predicted values. Each element must be in the range
|
| 511 |
+
`[0, 1]`.
|
| 512 |
+
sample_weight: Optional weighting of each example. Defaults to `1`.
|
| 513 |
+
Can be a tensor whose rank is either 0, or the same rank as
|
| 514 |
+
`y_true`, and must be broadcastable to `y_true`.
|
| 515 |
+
"""
|
| 516 |
+
metrics_utils.update_confusion_matrix_variables(
|
| 517 |
+
{
|
| 518 |
+
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
|
| 519 |
+
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501
|
| 520 |
+
},
|
| 521 |
+
y_true,
|
| 522 |
+
y_pred,
|
| 523 |
+
thresholds=self.thresholds,
|
| 524 |
+
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
|
| 525 |
+
top_k=self.top_k,
|
| 526 |
+
class_id=self.class_id,
|
| 527 |
+
sample_weight=sample_weight,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
def result(self):
|
| 531 |
+
result = ops.divide(
|
| 532 |
+
self.true_positives,
|
| 533 |
+
self.true_positives + self.false_negatives + backend.epsilon(),
|
| 534 |
+
)
|
| 535 |
+
return result[0] if len(self.thresholds) == 1 else result
|
| 536 |
+
|
| 537 |
+
def reset_state(self):
|
| 538 |
+
num_thresholds = len(to_list(self.thresholds))
|
| 539 |
+
self.true_positives.assign(ops.zeros((num_thresholds,)))
|
| 540 |
+
self.false_negatives.assign(ops.zeros((num_thresholds,)))
|
| 541 |
+
|
| 542 |
+
def get_config(self):
|
| 543 |
+
config = {
|
| 544 |
+
"thresholds": self.init_thresholds,
|
| 545 |
+
"top_k": self.top_k,
|
| 546 |
+
"class_id": self.class_id,
|
| 547 |
+
}
|
| 548 |
+
base_config = super().get_config()
|
| 549 |
+
return {**base_config, **config}
|
| 550 |
+
|
| 551 |
+
|
| 552 |
+
class SensitivitySpecificityBase(Metric):
|
| 553 |
+
"""Abstract base class for computing sensitivity and specificity.
|
| 554 |
+
|
| 555 |
+
For additional information about specificity and sensitivity, see
|
| 556 |
+
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
|
| 557 |
+
"""
|
| 558 |
+
|
| 559 |
+
def __init__(
|
| 560 |
+
self, value, num_thresholds=200, class_id=None, name=None, dtype=None
|
| 561 |
+
):
|
| 562 |
+
super().__init__(name=name, dtype=dtype)
|
| 563 |
+
if num_thresholds <= 0:
|
| 564 |
+
raise ValueError(
|
| 565 |
+
"Argument `num_thresholds` must be an integer > 0. "
|
| 566 |
+
f"Received: num_thresholds={num_thresholds}"
|
| 567 |
+
)
|
| 568 |
+
self.value = value
|
| 569 |
+
self.class_id = class_id
|
| 570 |
+
|
| 571 |
+
# Compute `num_thresholds` thresholds in [0, 1]
|
| 572 |
+
if num_thresholds == 1:
|
| 573 |
+
self.thresholds = [0.5]
|
| 574 |
+
self._thresholds_distributed_evenly = False
|
| 575 |
+
else:
|
| 576 |
+
thresholds = [
|
| 577 |
+
(i + 1) * 1.0 / (num_thresholds - 1)
|
| 578 |
+
for i in range(num_thresholds - 2)
|
| 579 |
+
]
|
| 580 |
+
self.thresholds = [0.0] + thresholds + [1.0]
|
| 581 |
+
self._thresholds_distributed_evenly = True
|
| 582 |
+
|
| 583 |
+
self.true_positives = self.add_variable(
|
| 584 |
+
shape=(len(self.thresholds),),
|
| 585 |
+
initializer=initializers.Zeros(),
|
| 586 |
+
name="true_positives",
|
| 587 |
+
)
|
| 588 |
+
self.false_positives = self.add_variable(
|
| 589 |
+
shape=(len(self.thresholds),),
|
| 590 |
+
initializer=initializers.Zeros(),
|
| 591 |
+
name="false_positives",
|
| 592 |
+
)
|
| 593 |
+
self.true_negatives = self.add_variable(
|
| 594 |
+
shape=(len(self.thresholds),),
|
| 595 |
+
initializer=initializers.Zeros(),
|
| 596 |
+
name="true_negatives",
|
| 597 |
+
)
|
| 598 |
+
self.false_negatives = self.add_variable(
|
| 599 |
+
shape=(len(self.thresholds),),
|
| 600 |
+
initializer=initializers.Zeros(),
|
| 601 |
+
name="false_negatives",
|
| 602 |
+
)
|
| 603 |
+
|
| 604 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
| 605 |
+
"""Accumulates confusion matrix statistics.
|
| 606 |
+
|
| 607 |
+
Args:
|
| 608 |
+
y_true: The ground truth values.
|
| 609 |
+
y_pred: The predicted values.
|
| 610 |
+
sample_weight: Optional weighting of each example. Defaults to `1`.
|
| 611 |
+
Can be a tensor whose rank is either 0, or the same rank as
|
| 612 |
+
`y_true`, and must be broadcastable to `y_true`.
|
| 613 |
+
"""
|
| 614 |
+
metrics_utils.update_confusion_matrix_variables(
|
| 615 |
+
{
|
| 616 |
+
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
|
| 617 |
+
metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, # noqa: E501
|
| 618 |
+
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501
|
| 619 |
+
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501
|
| 620 |
+
},
|
| 621 |
+
y_true,
|
| 622 |
+
y_pred,
|
| 623 |
+
thresholds=self.thresholds,
|
| 624 |
+
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
|
| 625 |
+
class_id=self.class_id,
|
| 626 |
+
sample_weight=sample_weight,
|
| 627 |
+
)
|
| 628 |
+
|
| 629 |
+
def reset_state(self):
|
| 630 |
+
num_thresholds = len(self.thresholds)
|
| 631 |
+
self.true_positives.assign(ops.zeros((num_thresholds,)))
|
| 632 |
+
self.false_positives.assign(ops.zeros((num_thresholds,)))
|
| 633 |
+
self.true_negatives.assign(ops.zeros((num_thresholds,)))
|
| 634 |
+
self.false_negatives.assign(ops.zeros((num_thresholds,)))
|
| 635 |
+
|
| 636 |
+
def get_config(self):
|
| 637 |
+
config = {"class_id": self.class_id}
|
| 638 |
+
base_config = super().get_config()
|
| 639 |
+
return {**base_config, **config}
|
| 640 |
+
|
| 641 |
+
def _find_max_under_constraint(self, constrained, dependent, predicate):
|
| 642 |
+
"""Returns the maximum of dependent_statistic that satisfies the
|
| 643 |
+
constraint.
|
| 644 |
+
|
| 645 |
+
Args:
|
| 646 |
+
constrained: Over these values the constraint is specified. A rank-1
|
| 647 |
+
tensor.
|
| 648 |
+
dependent: From these values the maximum that satiesfies the
|
| 649 |
+
constraint is selected. Values in this tensor and in
|
| 650 |
+
`constrained` are linked by having the same threshold at each
|
| 651 |
+
position, hence this tensor must have the same shape.
|
| 652 |
+
predicate: A binary boolean functor to be applied to arguments
|
| 653 |
+
`constrained` and `self.value`, e.g. `ops.greater`.
|
| 654 |
+
|
| 655 |
+
Returns:
|
| 656 |
+
maximal dependent value, if no value satisfies the constraint 0.0.
|
| 657 |
+
"""
|
| 658 |
+
feasible = backend.convert_to_numpy(
|
| 659 |
+
ops.nonzero(predicate(constrained, self.value))
|
| 660 |
+
)
|
| 661 |
+
|
| 662 |
+
print(feasible)
|
| 663 |
+
feasible_exists = ops.greater(ops.size(feasible), 0)
|
| 664 |
+
max_dependent = ops.max(ops.take(dependent, feasible), initial=0)
|
| 665 |
+
|
| 666 |
+
return ops.where(feasible_exists, max_dependent, 0.0)
|
| 667 |
+
|
| 668 |
+
|
| 669 |
+
@keras_core_export("keras_core.metrics.SensitivityAtSpecificity")
|
| 670 |
+
class SensitivityAtSpecificity(SensitivitySpecificityBase):
|
| 671 |
+
"""Computes best sensitivity where specificity is >= specified value.
|
| 672 |
+
|
| 673 |
+
`Sensitivity` measures the proportion of actual positives that are correctly
|
| 674 |
+
identified as such `(tp / (tp + fn))`.
|
| 675 |
+
`Specificity` measures the proportion of actual negatives that are correctly
|
| 676 |
+
identified as such `(tn / (tn + fp))`.
|
| 677 |
+
|
| 678 |
+
This metric creates four local variables, `true_positives`,
|
| 679 |
+
`true_negatives`, `false_positives` and `false_negatives` that are used to
|
| 680 |
+
compute the sensitivity at the given specificity. The threshold for the
|
| 681 |
+
given specificity value is computed and used to evaluate the corresponding
|
| 682 |
+
sensitivity.
|
| 683 |
+
|
| 684 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 685 |
+
Use `sample_weight` of 0 to mask values.
|
| 686 |
+
|
| 687 |
+
If `class_id` is specified, we calculate precision by considering only the
|
| 688 |
+
entries in the batch for which `class_id` is above the threshold
|
| 689 |
+
predictions, and computing the fraction of them for which `class_id` is
|
| 690 |
+
indeed a correct label.
|
| 691 |
+
|
| 692 |
+
For additional information about specificity and sensitivity, see
|
| 693 |
+
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
|
| 694 |
+
|
| 695 |
+
Args:
|
| 696 |
+
specificity: A scalar value in range `[0, 1]`.
|
| 697 |
+
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
|
| 698 |
+
use for matching the given specificity.
|
| 699 |
+
class_id: (Optional) Integer class ID for which we want binary metrics.
|
| 700 |
+
This must be in the half-open interval `[0, num_classes)`, where
|
| 701 |
+
`num_classes` is the last dimension of predictions.
|
| 702 |
+
name: (Optional) string name of the metric instance.
|
| 703 |
+
dtype: (Optional) data type of the metric result.
|
| 704 |
+
|
| 705 |
+
Standalone usage:
|
| 706 |
+
|
| 707 |
+
>>> m = keras_core.metrics.SensitivityAtSpecificity(0.5)
|
| 708 |
+
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
|
| 709 |
+
>>> m.result()
|
| 710 |
+
0.5
|
| 711 |
+
|
| 712 |
+
>>> m.reset_state()
|
| 713 |
+
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
|
| 714 |
+
... sample_weight=[1, 1, 2, 2, 1])
|
| 715 |
+
>>> m.result()
|
| 716 |
+
0.333333
|
| 717 |
+
|
| 718 |
+
Usage with `compile()` API:
|
| 719 |
+
|
| 720 |
+
```python
|
| 721 |
+
model.compile(
|
| 722 |
+
optimizer='sgd',
|
| 723 |
+
loss='mse',
|
| 724 |
+
metrics=[keras_core.metrics.SensitivityAtSpecificity()])
|
| 725 |
+
```
|
| 726 |
+
"""
|
| 727 |
+
|
| 728 |
+
def __init__(
|
| 729 |
+
self,
|
| 730 |
+
specificity,
|
| 731 |
+
num_thresholds=200,
|
| 732 |
+
class_id=None,
|
| 733 |
+
name=None,
|
| 734 |
+
dtype=None,
|
| 735 |
+
):
|
| 736 |
+
if specificity < 0 or specificity > 1:
|
| 737 |
+
raise ValueError(
|
| 738 |
+
"Argument `specificity` must be in the range [0, 1]. "
|
| 739 |
+
f"Received: specificity={specificity}"
|
| 740 |
+
)
|
| 741 |
+
self.specificity = specificity
|
| 742 |
+
self.num_thresholds = num_thresholds
|
| 743 |
+
super().__init__(
|
| 744 |
+
specificity,
|
| 745 |
+
num_thresholds=num_thresholds,
|
| 746 |
+
class_id=class_id,
|
| 747 |
+
name=name,
|
| 748 |
+
dtype=dtype,
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
def result(self):
|
| 752 |
+
sensitivities = ops.divide(
|
| 753 |
+
self.true_positives,
|
| 754 |
+
self.true_positives + self.false_negatives + backend.epsilon(),
|
| 755 |
+
)
|
| 756 |
+
specificities = ops.divide(
|
| 757 |
+
self.true_negatives,
|
| 758 |
+
self.true_negatives + self.false_positives + backend.epsilon(),
|
| 759 |
+
)
|
| 760 |
+
return self._find_max_under_constraint(
|
| 761 |
+
specificities, sensitivities, ops.greater_equal
|
| 762 |
+
)
|
| 763 |
+
|
| 764 |
+
def get_config(self):
|
| 765 |
+
config = {
|
| 766 |
+
"num_thresholds": self.num_thresholds,
|
| 767 |
+
"specificity": self.specificity,
|
| 768 |
+
}
|
| 769 |
+
base_config = super().get_config()
|
| 770 |
+
return {**base_config, **config}
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
@keras_core_export("keras_core.metrics.SpecificityAtSensitivity")
|
| 774 |
+
class SpecificityAtSensitivity(SensitivitySpecificityBase):
|
| 775 |
+
"""Computes best specificity where sensitivity is >= specified value.
|
| 776 |
+
|
| 777 |
+
`Sensitivity` measures the proportion of actual positives that are correctly
|
| 778 |
+
identified as such `(tp / (tp + fn))`.
|
| 779 |
+
`Specificity` measures the proportion of actual negatives that are correctly
|
| 780 |
+
identified as such `(tn / (tn + fp))`.
|
| 781 |
+
|
| 782 |
+
This metric creates four local variables, `true_positives`,
|
| 783 |
+
`true_negatives`, `false_positives` and `false_negatives` that are used to
|
| 784 |
+
compute the specificity at the given sensitivity. The threshold for the
|
| 785 |
+
given sensitivity value is computed and used to evaluate the corresponding
|
| 786 |
+
specificity.
|
| 787 |
+
|
| 788 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 789 |
+
Use `sample_weight` of 0 to mask values.
|
| 790 |
+
|
| 791 |
+
If `class_id` is specified, we calculate precision by considering only the
|
| 792 |
+
entries in the batch for which `class_id` is above the threshold
|
| 793 |
+
predictions, and computing the fraction of them for which `class_id` is
|
| 794 |
+
indeed a correct label.
|
| 795 |
+
|
| 796 |
+
For additional information about specificity and sensitivity, see
|
| 797 |
+
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
|
| 798 |
+
|
| 799 |
+
Args:
|
| 800 |
+
sensitivity: A scalar value in range `[0, 1]`.
|
| 801 |
+
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
|
| 802 |
+
use for matching the given sensitivity.
|
| 803 |
+
class_id: (Optional) Integer class ID for which we want binary metrics.
|
| 804 |
+
This must be in the half-open interval `[0, num_classes)`, where
|
| 805 |
+
`num_classes` is the last dimension of predictions.
|
| 806 |
+
name: (Optional) string name of the metric instance.
|
| 807 |
+
dtype: (Optional) data type of the metric result.
|
| 808 |
+
|
| 809 |
+
Standalone usage:
|
| 810 |
+
|
| 811 |
+
>>> m = keras_core.metrics.SpecificityAtSensitivity(0.5)
|
| 812 |
+
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
|
| 813 |
+
>>> m.result()
|
| 814 |
+
0.66666667
|
| 815 |
+
|
| 816 |
+
>>> m.reset_state()
|
| 817 |
+
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
|
| 818 |
+
... sample_weight=[1, 1, 2, 2, 2])
|
| 819 |
+
>>> m.result()
|
| 820 |
+
0.5
|
| 821 |
+
|
| 822 |
+
Usage with `compile()` API:
|
| 823 |
+
|
| 824 |
+
```python
|
| 825 |
+
model.compile(
|
| 826 |
+
optimizer='sgd',
|
| 827 |
+
loss='mse',
|
| 828 |
+
metrics=[keras_core.metrics.SpecificityAtSensitivity()])
|
| 829 |
+
```
|
| 830 |
+
"""
|
| 831 |
+
|
| 832 |
+
def __init__(
|
| 833 |
+
self,
|
| 834 |
+
sensitivity,
|
| 835 |
+
num_thresholds=200,
|
| 836 |
+
class_id=None,
|
| 837 |
+
name=None,
|
| 838 |
+
dtype=None,
|
| 839 |
+
):
|
| 840 |
+
if sensitivity < 0 or sensitivity > 1:
|
| 841 |
+
raise ValueError(
|
| 842 |
+
"Argument `sensitivity` must be in the range [0, 1]. "
|
| 843 |
+
f"Received: sensitivity={sensitivity}"
|
| 844 |
+
)
|
| 845 |
+
self.sensitivity = sensitivity
|
| 846 |
+
self.num_thresholds = num_thresholds
|
| 847 |
+
super().__init__(
|
| 848 |
+
sensitivity,
|
| 849 |
+
num_thresholds=num_thresholds,
|
| 850 |
+
class_id=class_id,
|
| 851 |
+
name=name,
|
| 852 |
+
dtype=dtype,
|
| 853 |
+
)
|
| 854 |
+
|
| 855 |
+
def result(self):
|
| 856 |
+
sensitivities = ops.divide(
|
| 857 |
+
self.true_positives,
|
| 858 |
+
self.true_positives + self.false_negatives + backend.epsilon(),
|
| 859 |
+
)
|
| 860 |
+
specificities = ops.divide(
|
| 861 |
+
self.true_negatives,
|
| 862 |
+
self.true_negatives + self.false_positives + backend.epsilon(),
|
| 863 |
+
)
|
| 864 |
+
return self._find_max_under_constraint(
|
| 865 |
+
sensitivities, specificities, ops.greater_equal
|
| 866 |
+
)
|
| 867 |
+
|
| 868 |
+
def get_config(self):
|
| 869 |
+
config = {
|
| 870 |
+
"num_thresholds": self.num_thresholds,
|
| 871 |
+
"sensitivity": self.sensitivity,
|
| 872 |
+
}
|
| 873 |
+
base_config = super().get_config()
|
| 874 |
+
return {**base_config, **config}
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
@keras_core_export("keras_core.metrics.PrecisionAtRecall")
|
| 878 |
+
class PrecisionAtRecall(SensitivitySpecificityBase):
|
| 879 |
+
"""Computes best precision where recall is >= specified value.
|
| 880 |
+
|
| 881 |
+
This metric creates four local variables, `true_positives`,
|
| 882 |
+
`true_negatives`, `false_positives` and `false_negatives` that are used to
|
| 883 |
+
compute the precision at the given recall. The threshold for the given
|
| 884 |
+
recall value is computed and used to evaluate the corresponding precision.
|
| 885 |
+
|
| 886 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 887 |
+
Use `sample_weight` of 0 to mask values.
|
| 888 |
+
|
| 889 |
+
If `class_id` is specified, we calculate precision by considering only the
|
| 890 |
+
entries in the batch for which `class_id` is above the threshold
|
| 891 |
+
predictions, and computing the fraction of them for which `class_id` is
|
| 892 |
+
indeed a correct label.
|
| 893 |
+
|
| 894 |
+
Args:
|
| 895 |
+
recall: A scalar value in range `[0, 1]`.
|
| 896 |
+
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
|
| 897 |
+
use for matching the given recall.
|
| 898 |
+
class_id: (Optional) Integer class ID for which we want binary metrics.
|
| 899 |
+
This must be in the half-open interval `[0, num_classes)`, where
|
| 900 |
+
`num_classes` is the last dimension of predictions.
|
| 901 |
+
name: (Optional) string name of the metric instance.
|
| 902 |
+
dtype: (Optional) data type of the metric result.
|
| 903 |
+
|
| 904 |
+
Standalone usage:
|
| 905 |
+
|
| 906 |
+
>>> m = keras_core.metrics.PrecisionAtRecall(0.5)
|
| 907 |
+
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
|
| 908 |
+
>>> m.result()
|
| 909 |
+
0.5
|
| 910 |
+
|
| 911 |
+
>>> m.reset_state()
|
| 912 |
+
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
|
| 913 |
+
... sample_weight=[2, 2, 2, 1, 1])
|
| 914 |
+
>>> m.result()
|
| 915 |
+
0.33333333
|
| 916 |
+
|
| 917 |
+
Usage with `compile()` API:
|
| 918 |
+
|
| 919 |
+
```python
|
| 920 |
+
model.compile(
|
| 921 |
+
optimizer='sgd',
|
| 922 |
+
loss='mse',
|
| 923 |
+
metrics=[keras_core.metrics.PrecisionAtRecall(recall=0.8)])
|
| 924 |
+
```
|
| 925 |
+
"""
|
| 926 |
+
|
| 927 |
+
def __init__(
|
| 928 |
+
self, recall, num_thresholds=200, class_id=None, name=None, dtype=None
|
| 929 |
+
):
|
| 930 |
+
if recall < 0 or recall > 1:
|
| 931 |
+
raise ValueError(
|
| 932 |
+
"Argument `recall` must be in the range [0, 1]. "
|
| 933 |
+
f"Received: recall={recall}"
|
| 934 |
+
)
|
| 935 |
+
self.recall = recall
|
| 936 |
+
self.num_thresholds = num_thresholds
|
| 937 |
+
super().__init__(
|
| 938 |
+
value=recall,
|
| 939 |
+
num_thresholds=num_thresholds,
|
| 940 |
+
class_id=class_id,
|
| 941 |
+
name=name,
|
| 942 |
+
dtype=dtype,
|
| 943 |
+
)
|
| 944 |
+
|
| 945 |
+
def result(self):
|
| 946 |
+
recalls = ops.divide(
|
| 947 |
+
self.true_positives,
|
| 948 |
+
self.true_positives + self.false_negatives + backend.epsilon(),
|
| 949 |
+
)
|
| 950 |
+
precisions = ops.divide(
|
| 951 |
+
self.true_positives,
|
| 952 |
+
self.true_positives + self.false_positives + backend.epsilon(),
|
| 953 |
+
)
|
| 954 |
+
return self._find_max_under_constraint(
|
| 955 |
+
recalls, precisions, ops.greater_equal
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
def get_config(self):
|
| 959 |
+
config = {"num_thresholds": self.num_thresholds, "recall": self.recall}
|
| 960 |
+
base_config = super().get_config()
|
| 961 |
+
return {**base_config, **config}
|
| 962 |
+
|
| 963 |
+
|
| 964 |
+
@keras_core_export("keras_core.metrics.RecallAtPrecision")
|
| 965 |
+
class RecallAtPrecision(SensitivitySpecificityBase):
|
| 966 |
+
"""Computes best recall where precision is >= specified value.
|
| 967 |
+
|
| 968 |
+
For a given score-label-distribution the required precision might not
|
| 969 |
+
be achievable, in this case 0.0 is returned as recall.
|
| 970 |
+
|
| 971 |
+
This metric creates four local variables, `true_positives`,
|
| 972 |
+
`true_negatives`, `false_positives` and `false_negatives` that are used to
|
| 973 |
+
compute the recall at the given precision. The threshold for the given
|
| 974 |
+
precision value is computed and used to evaluate the corresponding recall.
|
| 975 |
+
|
| 976 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 977 |
+
Use `sample_weight` of 0 to mask values.
|
| 978 |
+
|
| 979 |
+
If `class_id` is specified, we calculate precision by considering only the
|
| 980 |
+
entries in the batch for which `class_id` is above the threshold
|
| 981 |
+
predictions, and computing the fraction of them for which `class_id` is
|
| 982 |
+
indeed a correct label.
|
| 983 |
+
|
| 984 |
+
Args:
|
| 985 |
+
precision: A scalar value in range `[0, 1]`.
|
| 986 |
+
num_thresholds: (Optional) Defaults to 200. The number of thresholds
|
| 987 |
+
to use for matching the given precision.
|
| 988 |
+
class_id: (Optional) Integer class ID for which we want binary metrics.
|
| 989 |
+
This must be in the half-open interval `[0, num_classes)`, where
|
| 990 |
+
`num_classes` is the last dimension of predictions.
|
| 991 |
+
name: (Optional) string name of the metric instance.
|
| 992 |
+
dtype: (Optional) data type of the metric result.
|
| 993 |
+
|
| 994 |
+
Standalone usage:
|
| 995 |
+
|
| 996 |
+
>>> m = keras_core.metrics.RecallAtPrecision(0.8)
|
| 997 |
+
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
|
| 998 |
+
>>> m.result()
|
| 999 |
+
0.5
|
| 1000 |
+
|
| 1001 |
+
>>> m.reset_state()
|
| 1002 |
+
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9],
|
| 1003 |
+
... sample_weight=[1, 0, 0, 1])
|
| 1004 |
+
>>> m.result()
|
| 1005 |
+
1.0
|
| 1006 |
+
|
| 1007 |
+
Usage with `compile()` API:
|
| 1008 |
+
|
| 1009 |
+
```python
|
| 1010 |
+
model.compile(
|
| 1011 |
+
optimizer='sgd',
|
| 1012 |
+
loss='mse',
|
| 1013 |
+
metrics=[keras_core.metrics.RecallAtPrecision(precision=0.8)])
|
| 1014 |
+
```
|
| 1015 |
+
"""
|
| 1016 |
+
|
| 1017 |
+
def __init__(
|
| 1018 |
+
self,
|
| 1019 |
+
precision,
|
| 1020 |
+
num_thresholds=200,
|
| 1021 |
+
class_id=None,
|
| 1022 |
+
name=None,
|
| 1023 |
+
dtype=None,
|
| 1024 |
+
):
|
| 1025 |
+
if precision < 0 or precision > 1:
|
| 1026 |
+
raise ValueError(
|
| 1027 |
+
"Argument `precision` must be in the range [0, 1]. "
|
| 1028 |
+
f"Received: precision={precision}"
|
| 1029 |
+
)
|
| 1030 |
+
self.precision = precision
|
| 1031 |
+
self.num_thresholds = num_thresholds
|
| 1032 |
+
super().__init__(
|
| 1033 |
+
value=precision,
|
| 1034 |
+
num_thresholds=num_thresholds,
|
| 1035 |
+
class_id=class_id,
|
| 1036 |
+
name=name,
|
| 1037 |
+
dtype=dtype,
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
def result(self):
|
| 1041 |
+
recalls = ops.divide(
|
| 1042 |
+
self.true_positives,
|
| 1043 |
+
self.true_positives + self.false_negatives + backend.epsilon(),
|
| 1044 |
+
)
|
| 1045 |
+
precisions = ops.divide(
|
| 1046 |
+
self.true_positives,
|
| 1047 |
+
self.true_positives + self.false_positives + backend.epsilon(),
|
| 1048 |
+
)
|
| 1049 |
+
return self._find_max_under_constraint(
|
| 1050 |
+
precisions, recalls, ops.greater_equal
|
| 1051 |
+
)
|
| 1052 |
+
|
| 1053 |
+
def get_config(self):
|
| 1054 |
+
config = {
|
| 1055 |
+
"num_thresholds": self.num_thresholds,
|
| 1056 |
+
"precision": self.precision,
|
| 1057 |
+
}
|
| 1058 |
+
base_config = super().get_config()
|
| 1059 |
+
return {**base_config, **config}
|
| 1060 |
+
|
| 1061 |
+
|
| 1062 |
+
@keras_core_export("keras_core.metrics.AUC")
|
| 1063 |
+
class AUC(Metric):
|
| 1064 |
+
"""Approximates the AUC (Area under the curve) of the ROC or PR curves.
|
| 1065 |
+
|
| 1066 |
+
The AUC (Area under the curve) of the ROC (Receiver operating
|
| 1067 |
+
characteristic; default) or PR (Precision Recall) curves are quality
|
| 1068 |
+
measures of binary classifiers. Unlike the accuracy, and like cross-entropy
|
| 1069 |
+
losses, ROC-AUC and PR-AUC evaluate all the operational points of a model.
|
| 1070 |
+
|
| 1071 |
+
This class approximates AUCs using a Riemann sum. During the metric
|
| 1072 |
+
accumulation phrase, predictions are accumulated within predefined buckets
|
| 1073 |
+
by value. The AUC is then computed by interpolating per-bucket averages.
|
| 1074 |
+
These buckets define the evaluated operational points.
|
| 1075 |
+
|
| 1076 |
+
This metric creates four local variables, `true_positives`,
|
| 1077 |
+
`true_negatives`, `false_positives` and `false_negatives` that are used to
|
| 1078 |
+
compute the AUC. To discretize the AUC curve, a linearly spaced set of
|
| 1079 |
+
thresholds is used to compute pairs of recall and precision values. The area
|
| 1080 |
+
under the ROC-curve is therefore computed using the height of the recall
|
| 1081 |
+
values by the false positive rate, while the area under the PR-curve is the
|
| 1082 |
+
computed using the height of the precision values by the recall.
|
| 1083 |
+
|
| 1084 |
+
This value is ultimately returned as `auc`, an idempotent operation that
|
| 1085 |
+
computes the area under a discretized curve of precision versus recall
|
| 1086 |
+
values (computed using the aforementioned variables). The `num_thresholds`
|
| 1087 |
+
variable controls the degree of discretization with larger numbers of
|
| 1088 |
+
thresholds more closely approximating the true AUC. The quality of the
|
| 1089 |
+
approximation may vary dramatically depending on `num_thresholds`. The
|
| 1090 |
+
`thresholds` parameter can be used to manually specify thresholds which
|
| 1091 |
+
split the predictions more evenly.
|
| 1092 |
+
|
| 1093 |
+
For a best approximation of the real AUC, `predictions` should be
|
| 1094 |
+
distributed approximately uniformly in the range `[0, 1]` (if
|
| 1095 |
+
`from_logits=False`). The quality of the AUC approximation may be poor if
|
| 1096 |
+
this is not the case. Setting `summation_method` to 'minoring' or 'majoring'
|
| 1097 |
+
can help quantify the error in the approximation by providing lower or upper
|
| 1098 |
+
bound estimate of the AUC.
|
| 1099 |
+
|
| 1100 |
+
If `sample_weight` is `None`, weights default to 1.
|
| 1101 |
+
Use `sample_weight` of 0 to mask values.
|
| 1102 |
+
|
| 1103 |
+
Args:
|
| 1104 |
+
num_thresholds: (Optional) The number of thresholds to
|
| 1105 |
+
use when discretizing the roc curve. Values must be > 1.
|
| 1106 |
+
Defaults to `200`.
|
| 1107 |
+
curve: (Optional) Specifies the name of the curve to be computed,
|
| 1108 |
+
`'ROC'` (default) or `'PR'` for the Precision-Recall-curve.
|
| 1109 |
+
summation_method: (Optional) Specifies the [Riemann summation method](
|
| 1110 |
+
https://en.wikipedia.org/wiki/Riemann_sum) used.
|
| 1111 |
+
'interpolation' (default) applies mid-point summation scheme for
|
| 1112 |
+
`ROC`. For PR-AUC, interpolates (true/false) positives but not
|
| 1113 |
+
the ratio that is precision (see Davis & Goadrich 2006 for
|
| 1114 |
+
details); 'minoring' applies left summation for increasing
|
| 1115 |
+
intervals and right summation for decreasing intervals; 'majoring'
|
| 1116 |
+
does the opposite.
|
| 1117 |
+
name: (Optional) string name of the metric instance.
|
| 1118 |
+
dtype: (Optional) data type of the metric result.
|
| 1119 |
+
thresholds: (Optional) A list of floating point values to use as the
|
| 1120 |
+
thresholds for discretizing the curve. If set, the `num_thresholds`
|
| 1121 |
+
parameter is ignored. Values should be in `[0, 1]`. Endpoint
|
| 1122 |
+
thresholds equal to {`-epsilon`, `1+epsilon`} for a small positive
|
| 1123 |
+
epsilon value will be automatically included with these to correctly
|
| 1124 |
+
handle predictions equal to exactly 0 or 1.
|
| 1125 |
+
multi_label: boolean indicating whether multilabel data should be
|
| 1126 |
+
treated as such, wherein AUC is computed separately for each label
|
| 1127 |
+
and then averaged across labels, or (when `False`) if the data
|
| 1128 |
+
should be flattened into a single label before AUC computation. In
|
| 1129 |
+
the latter case, when multilabel data is passed to AUC, each
|
| 1130 |
+
label-prediction pair is treated as an individual data point. Should
|
| 1131 |
+
be set to False for multi-class data.
|
| 1132 |
+
num_labels: (Optional) The number of labels, used when `multi_label` is
|
| 1133 |
+
True. If `num_labels` is not specified, then state variables get
|
| 1134 |
+
created on the first call to `update_state`.
|
| 1135 |
+
label_weights: (Optional) list, array, or tensor of non-negative weights
|
| 1136 |
+
used to compute AUCs for multilabel data. When `multi_label` is
|
| 1137 |
+
True, the weights are applied to the individual label AUCs when they
|
| 1138 |
+
are averaged to produce the multi-label AUC. When it's False, they
|
| 1139 |
+
are used to weight the individual label predictions in computing the
|
| 1140 |
+
confusion matrix on the flattened data. Note that this is unlike
|
| 1141 |
+
`class_weights` in that `class_weights` weights the example
|
| 1142 |
+
depending on the value of its label, whereas `label_weights` depends
|
| 1143 |
+
only on the index of that label before flattening; therefore
|
| 1144 |
+
`label_weights` should not be used for multi-class data.
|
| 1145 |
+
from_logits: boolean indicating whether the predictions (`y_pred` in
|
| 1146 |
+
`update_state`) are probabilities or sigmoid logits. As a rule of thumb,
|
| 1147 |
+
when using a keras loss, the `from_logits` constructor argument of the
|
| 1148 |
+
loss should match the AUC `from_logits` constructor argument.
|
| 1149 |
+
|
| 1150 |
+
Standalone usage:
|
| 1151 |
+
|
| 1152 |
+
>>> m = keras_core.metrics.AUC(num_thresholds=3)
|
| 1153 |
+
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
|
| 1154 |
+
>>> # threshold values are [0 - 1e-7, 0.5, 1 + 1e-7]
|
| 1155 |
+
>>> # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2]
|
| 1156 |
+
>>> # tp_rate = recall = [1, 0.5, 0], fp_rate = [1, 0, 0]
|
| 1157 |
+
>>> # auc = ((((1 + 0.5) / 2) * (1 - 0)) + (((0.5 + 0) / 2) * (0 - 0)))
|
| 1158 |
+
>>> # = 0.75
|
| 1159 |
+
>>> m.result()
|
| 1160 |
+
0.75
|
| 1161 |
+
|
| 1162 |
+
>>> m.reset_state()
|
| 1163 |
+
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9],
|
| 1164 |
+
... sample_weight=[1, 0, 0, 1])
|
| 1165 |
+
>>> m.result()
|
| 1166 |
+
1.0
|
| 1167 |
+
|
| 1168 |
+
Usage with `compile()` API:
|
| 1169 |
+
|
| 1170 |
+
```python
|
| 1171 |
+
# Reports the AUC of a model outputting a probability.
|
| 1172 |
+
model.compile(optimizer='sgd',
|
| 1173 |
+
loss=keras_core.losses.BinaryCrossentropy(),
|
| 1174 |
+
metrics=[keras_core.metrics.AUC()])
|
| 1175 |
+
|
| 1176 |
+
# Reports the AUC of a model outputting a logit.
|
| 1177 |
+
model.compile(optimizer='sgd',
|
| 1178 |
+
loss=keras_core.losses.BinaryCrossentropy(from_logits=True),
|
| 1179 |
+
metrics=[keras_core.metrics.AUC(from_logits=True)])
|
| 1180 |
+
```
|
| 1181 |
+
"""
|
| 1182 |
+
|
| 1183 |
+
def __init__(
|
| 1184 |
+
self,
|
| 1185 |
+
num_thresholds=200,
|
| 1186 |
+
curve="ROC",
|
| 1187 |
+
summation_method="interpolation",
|
| 1188 |
+
name=None,
|
| 1189 |
+
dtype=None,
|
| 1190 |
+
thresholds=None,
|
| 1191 |
+
multi_label=False,
|
| 1192 |
+
num_labels=None,
|
| 1193 |
+
label_weights=None,
|
| 1194 |
+
from_logits=False,
|
| 1195 |
+
):
|
| 1196 |
+
# Validate configurations.
|
| 1197 |
+
if isinstance(curve, metrics_utils.AUCCurve) and curve not in list(
|
| 1198 |
+
metrics_utils.AUCCurve
|
| 1199 |
+
):
|
| 1200 |
+
raise ValueError(
|
| 1201 |
+
f'Invalid `curve` argument value "{curve}". '
|
| 1202 |
+
f"Expected one of: {list(metrics_utils.AUCCurve)}"
|
| 1203 |
+
)
|
| 1204 |
+
if isinstance(
|
| 1205 |
+
summation_method, metrics_utils.AUCSummationMethod
|
| 1206 |
+
) and summation_method not in list(metrics_utils.AUCSummationMethod):
|
| 1207 |
+
raise ValueError(
|
| 1208 |
+
"Invalid `summation_method` "
|
| 1209 |
+
f'argument value "{summation_method}". '
|
| 1210 |
+
f"Expected one of: {list(metrics_utils.AUCSummationMethod)}"
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
# Update properties.
|
| 1214 |
+
self._init_from_thresholds = thresholds is not None
|
| 1215 |
+
if thresholds is not None:
|
| 1216 |
+
# If specified, use the supplied thresholds.
|
| 1217 |
+
self.num_thresholds = len(thresholds) + 2
|
| 1218 |
+
thresholds = sorted(thresholds)
|
| 1219 |
+
self._thresholds_distributed_evenly = (
|
| 1220 |
+
metrics_utils.is_evenly_distributed_thresholds(
|
| 1221 |
+
np.array([0.0] + thresholds + [1.0])
|
| 1222 |
+
)
|
| 1223 |
+
)
|
| 1224 |
+
else:
|
| 1225 |
+
if num_thresholds <= 1:
|
| 1226 |
+
raise ValueError(
|
| 1227 |
+
"Argument `num_thresholds` must be an integer > 1. "
|
| 1228 |
+
f"Received: num_thresholds={num_thresholds}"
|
| 1229 |
+
)
|
| 1230 |
+
|
| 1231 |
+
# Otherwise, linearly interpolate (num_thresholds - 2) thresholds in
|
| 1232 |
+
# (0, 1).
|
| 1233 |
+
self.num_thresholds = num_thresholds
|
| 1234 |
+
thresholds = [
|
| 1235 |
+
(i + 1) * 1.0 / (num_thresholds - 1)
|
| 1236 |
+
for i in range(num_thresholds - 2)
|
| 1237 |
+
]
|
| 1238 |
+
self._thresholds_distributed_evenly = True
|
| 1239 |
+
|
| 1240 |
+
# Add an endpoint "threshold" below zero and above one for either
|
| 1241 |
+
# threshold method to account for floating point imprecisions.
|
| 1242 |
+
self._thresholds = np.array(
|
| 1243 |
+
[0.0 - backend.epsilon()] + thresholds + [1.0 + backend.epsilon()]
|
| 1244 |
+
)
|
| 1245 |
+
|
| 1246 |
+
if isinstance(curve, metrics_utils.AUCCurve):
|
| 1247 |
+
self.curve = curve
|
| 1248 |
+
else:
|
| 1249 |
+
self.curve = metrics_utils.AUCCurve.from_str(curve)
|
| 1250 |
+
if isinstance(summation_method, metrics_utils.AUCSummationMethod):
|
| 1251 |
+
self.summation_method = summation_method
|
| 1252 |
+
else:
|
| 1253 |
+
self.summation_method = metrics_utils.AUCSummationMethod.from_str(
|
| 1254 |
+
summation_method
|
| 1255 |
+
)
|
| 1256 |
+
super().__init__(name=name, dtype=dtype)
|
| 1257 |
+
|
| 1258 |
+
# Handle multilabel arguments.
|
| 1259 |
+
self.multi_label = multi_label
|
| 1260 |
+
self.num_labels = num_labels
|
| 1261 |
+
if label_weights is not None:
|
| 1262 |
+
label_weights = ops.array(label_weights, dtype=self.dtype)
|
| 1263 |
+
self.label_weights = label_weights
|
| 1264 |
+
|
| 1265 |
+
else:
|
| 1266 |
+
self.label_weights = None
|
| 1267 |
+
|
| 1268 |
+
self._from_logits = from_logits
|
| 1269 |
+
|
| 1270 |
+
self._built = False
|
| 1271 |
+
if self.multi_label:
|
| 1272 |
+
if num_labels:
|
| 1273 |
+
shape = [None, num_labels]
|
| 1274 |
+
self._build(shape)
|
| 1275 |
+
else:
|
| 1276 |
+
if num_labels:
|
| 1277 |
+
raise ValueError(
|
| 1278 |
+
"`num_labels` is needed only when `multi_label` is True."
|
| 1279 |
+
)
|
| 1280 |
+
self._build(None)
|
| 1281 |
+
|
| 1282 |
+
@property
|
| 1283 |
+
def thresholds(self):
|
| 1284 |
+
"""The thresholds used for evaluating AUC."""
|
| 1285 |
+
return list(self._thresholds)
|
| 1286 |
+
|
| 1287 |
+
def _build(self, shape):
|
| 1288 |
+
"""Initialize TP, FP, TN, and FN tensors, given the shape of the
|
| 1289 |
+
data."""
|
| 1290 |
+
if self.multi_label:
|
| 1291 |
+
if len(shape) != 2:
|
| 1292 |
+
raise ValueError(
|
| 1293 |
+
"`y_pred` must have rank 2 when `multi_label=True`. "
|
| 1294 |
+
f"Found rank {len(shape)}. "
|
| 1295 |
+
f"Full shape received for `y_pred`: {shape}"
|
| 1296 |
+
)
|
| 1297 |
+
self._num_labels = shape[1]
|
| 1298 |
+
variable_shape = [self.num_thresholds, self._num_labels]
|
| 1299 |
+
else:
|
| 1300 |
+
variable_shape = [self.num_thresholds]
|
| 1301 |
+
|
| 1302 |
+
self._build_input_shape = shape
|
| 1303 |
+
# Create metric variables
|
| 1304 |
+
self.true_positives = self.add_variable(
|
| 1305 |
+
shape=variable_shape,
|
| 1306 |
+
initializer=initializers.Zeros(),
|
| 1307 |
+
name="true_positives",
|
| 1308 |
+
)
|
| 1309 |
+
self.false_positives = self.add_variable(
|
| 1310 |
+
shape=variable_shape,
|
| 1311 |
+
initializer=initializers.Zeros(),
|
| 1312 |
+
name="false_positives",
|
| 1313 |
+
)
|
| 1314 |
+
self.true_negatives = self.add_variable(
|
| 1315 |
+
shape=variable_shape,
|
| 1316 |
+
initializer=initializers.Zeros(),
|
| 1317 |
+
name="true_negatives",
|
| 1318 |
+
)
|
| 1319 |
+
self.false_negatives = self.add_variable(
|
| 1320 |
+
shape=variable_shape,
|
| 1321 |
+
initializer=initializers.Zeros(),
|
| 1322 |
+
name="false_negatives",
|
| 1323 |
+
)
|
| 1324 |
+
|
| 1325 |
+
self._built = True
|
| 1326 |
+
|
| 1327 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
| 1328 |
+
"""Accumulates confusion matrix statistics.
|
| 1329 |
+
|
| 1330 |
+
Args:
|
| 1331 |
+
y_true: The ground truth values.
|
| 1332 |
+
y_pred: The predicted values.
|
| 1333 |
+
sample_weight: Optional weighting of each example. Can
|
| 1334 |
+
be a tensor whose rank is either 0, or the same rank as
|
| 1335 |
+
`y_true`, and must be broadcastable to `y_true`. Defaults to
|
| 1336 |
+
`1`.
|
| 1337 |
+
"""
|
| 1338 |
+
if not self._built:
|
| 1339 |
+
self._build(y_pred.shape)
|
| 1340 |
+
|
| 1341 |
+
if self.multi_label or (self.label_weights is not None):
|
| 1342 |
+
# y_true should have shape (number of examples, number of labels).
|
| 1343 |
+
shapes = [(y_true, ("N", "L"))]
|
| 1344 |
+
if self.multi_label:
|
| 1345 |
+
# TP, TN, FP, and FN should all have shape
|
| 1346 |
+
# (number of thresholds, number of labels).
|
| 1347 |
+
shapes.extend(
|
| 1348 |
+
[
|
| 1349 |
+
(self.true_positives, ("T", "L")),
|
| 1350 |
+
(self.true_negatives, ("T", "L")),
|
| 1351 |
+
(self.false_positives, ("T", "L")),
|
| 1352 |
+
(self.false_negatives, ("T", "L")),
|
| 1353 |
+
]
|
| 1354 |
+
)
|
| 1355 |
+
if self.label_weights is not None:
|
| 1356 |
+
# label_weights should be of length equal to the number of
|
| 1357 |
+
# labels.
|
| 1358 |
+
shapes.append((self.label_weights, ("L",)))
|
| 1359 |
+
|
| 1360 |
+
# Only forward label_weights to update_confusion_matrix_variables when
|
| 1361 |
+
# multi_label is False. Otherwise the averaging of individual label AUCs
|
| 1362 |
+
# is handled in AUC.result
|
| 1363 |
+
label_weights = None if self.multi_label else self.label_weights
|
| 1364 |
+
|
| 1365 |
+
if self._from_logits:
|
| 1366 |
+
y_pred = activations.sigmoid(y_pred)
|
| 1367 |
+
|
| 1368 |
+
metrics_utils.update_confusion_matrix_variables(
|
| 1369 |
+
{
|
| 1370 |
+
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
|
| 1371 |
+
metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, # noqa: E501
|
| 1372 |
+
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501
|
| 1373 |
+
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501
|
| 1374 |
+
},
|
| 1375 |
+
y_true,
|
| 1376 |
+
y_pred,
|
| 1377 |
+
self._thresholds,
|
| 1378 |
+
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
|
| 1379 |
+
sample_weight=sample_weight,
|
| 1380 |
+
multi_label=self.multi_label,
|
| 1381 |
+
label_weights=label_weights,
|
| 1382 |
+
)
|
| 1383 |
+
|
| 1384 |
+
def interpolate_pr_auc(self):
|
| 1385 |
+
"""Interpolation formula inspired by section 4 of Davis & Goadrich 2006.
|
| 1386 |
+
|
| 1387 |
+
https://www.biostat.wisc.edu/~page/rocpr.pdf
|
| 1388 |
+
|
| 1389 |
+
Note here we derive & use a closed formula not present in the paper
|
| 1390 |
+
as follows:
|
| 1391 |
+
|
| 1392 |
+
Precision = TP / (TP + FP) = TP / P
|
| 1393 |
+
|
| 1394 |
+
Modeling all of TP (true positive), FP (false positive) and their sum
|
| 1395 |
+
P = TP + FP (predicted positive) as varying linearly within each
|
| 1396 |
+
interval [A, B] between successive thresholds, we get
|
| 1397 |
+
|
| 1398 |
+
Precision slope = dTP / dP
|
| 1399 |
+
= (TP_B - TP_A) / (P_B - P_A)
|
| 1400 |
+
= (TP - TP_A) / (P - P_A)
|
| 1401 |
+
Precision = (TP_A + slope * (P - P_A)) / P
|
| 1402 |
+
|
| 1403 |
+
The area within the interval is (slope / total_pos_weight) times
|
| 1404 |
+
|
| 1405 |
+
int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P}
|
| 1406 |
+
int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P}
|
| 1407 |
+
|
| 1408 |
+
where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in
|
| 1409 |
+
|
| 1410 |
+
int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A)
|
| 1411 |
+
|
| 1412 |
+
Bringing back the factor (slope / total_pos_weight) we'd put aside, we
|
| 1413 |
+
get
|
| 1414 |
+
|
| 1415 |
+
slope * [dTP + intercept * log(P_B / P_A)] / total_pos_weight
|
| 1416 |
+
|
| 1417 |
+
where dTP == TP_B - TP_A.
|
| 1418 |
+
|
| 1419 |
+
Note that when P_A == 0 the above calculation simplifies into
|
| 1420 |
+
|
| 1421 |
+
int_A^B{Precision.dTP} = int_A^B{slope * dTP}
|
| 1422 |
+
= slope * (TP_B - TP_A)
|
| 1423 |
+
|
| 1424 |
+
which is really equivalent to imputing constant precision throughout the
|
| 1425 |
+
first bucket having >0 true positives.
|
| 1426 |
+
|
| 1427 |
+
Returns:
|
| 1428 |
+
pr_auc: an approximation of the area under the P-R curve.
|
| 1429 |
+
"""
|
| 1430 |
+
|
| 1431 |
+
dtp = (
|
| 1432 |
+
self.true_positives[: self.num_thresholds - 1]
|
| 1433 |
+
- self.true_positives[1:]
|
| 1434 |
+
)
|
| 1435 |
+
p = ops.add(self.true_positives, self.false_positives)
|
| 1436 |
+
dp = p[: self.num_thresholds - 1] - p[1:]
|
| 1437 |
+
prec_slope = ops.divide(dtp, ops.maximum(dp, backend.epsilon()))
|
| 1438 |
+
intercept = self.true_positives[1:] - ops.multiply(prec_slope, p[1:])
|
| 1439 |
+
|
| 1440 |
+
safe_p_ratio = ops.where(
|
| 1441 |
+
ops.logical_and(p[: self.num_thresholds - 1] > 0, p[1:] > 0),
|
| 1442 |
+
ops.divide(
|
| 1443 |
+
p[: self.num_thresholds - 1],
|
| 1444 |
+
ops.maximum(p[1:], backend.epsilon()),
|
| 1445 |
+
),
|
| 1446 |
+
ops.ones_like(p[1:]),
|
| 1447 |
+
)
|
| 1448 |
+
|
| 1449 |
+
pr_auc_increment = ops.divide(
|
| 1450 |
+
prec_slope * (dtp + intercept * ops.log(safe_p_ratio)),
|
| 1451 |
+
ops.maximum(
|
| 1452 |
+
self.true_positives[1:] + self.false_negatives[1:],
|
| 1453 |
+
backend.epsilon(),
|
| 1454 |
+
),
|
| 1455 |
+
)
|
| 1456 |
+
|
| 1457 |
+
if self.multi_label:
|
| 1458 |
+
by_label_auc = ops.sum(pr_auc_increment, axis=0)
|
| 1459 |
+
if self.label_weights is None:
|
| 1460 |
+
# Evenly weighted average of the label AUCs.
|
| 1461 |
+
return ops.mean(by_label_auc)
|
| 1462 |
+
else:
|
| 1463 |
+
# Weighted average of the label AUCs.
|
| 1464 |
+
return ops.divide(
|
| 1465 |
+
ops.sum(ops.multiply(by_label_auc, self.label_weights)),
|
| 1466 |
+
ops.maximum(ops.sum(self.label_weights), backend.epsilon()),
|
| 1467 |
+
)
|
| 1468 |
+
else:
|
| 1469 |
+
return ops.sum(pr_auc_increment)
|
| 1470 |
+
|
| 1471 |
+
def result(self):
|
| 1472 |
+
if (
|
| 1473 |
+
self.curve == metrics_utils.AUCCurve.PR
|
| 1474 |
+
and self.summation_method
|
| 1475 |
+
== metrics_utils.AUCSummationMethod.INTERPOLATION
|
| 1476 |
+
):
|
| 1477 |
+
# This use case is different and is handled separately.
|
| 1478 |
+
return self.interpolate_pr_auc()
|
| 1479 |
+
|
| 1480 |
+
# Set `x` and `y` values for the curves based on `curve` config.
|
| 1481 |
+
recall = ops.divide(
|
| 1482 |
+
self.true_positives,
|
| 1483 |
+
ops.maximum(
|
| 1484 |
+
ops.add(self.true_positives, self.false_negatives),
|
| 1485 |
+
backend.epsilon(),
|
| 1486 |
+
),
|
| 1487 |
+
)
|
| 1488 |
+
if self.curve == metrics_utils.AUCCurve.ROC:
|
| 1489 |
+
fp_rate = ops.divide(
|
| 1490 |
+
self.false_positives,
|
| 1491 |
+
ops.maximum(
|
| 1492 |
+
ops.add(self.false_positives, self.true_negatives),
|
| 1493 |
+
backend.epsilon(),
|
| 1494 |
+
),
|
| 1495 |
+
)
|
| 1496 |
+
x = fp_rate
|
| 1497 |
+
y = recall
|
| 1498 |
+
else: # curve == 'PR'.
|
| 1499 |
+
precision = ops.divide(
|
| 1500 |
+
self.true_positives,
|
| 1501 |
+
ops.maximum(
|
| 1502 |
+
ops.add(self.true_positives, self.false_positives),
|
| 1503 |
+
backend.epsilon(),
|
| 1504 |
+
),
|
| 1505 |
+
)
|
| 1506 |
+
x = recall
|
| 1507 |
+
y = precision
|
| 1508 |
+
|
| 1509 |
+
# Find the rectangle heights based on `summation_method`.
|
| 1510 |
+
if (
|
| 1511 |
+
self.summation_method
|
| 1512 |
+
== metrics_utils.AUCSummationMethod.INTERPOLATION
|
| 1513 |
+
):
|
| 1514 |
+
# Note: the case ('PR', 'interpolation') has been handled above.
|
| 1515 |
+
heights = (y[: self.num_thresholds - 1] + y[1:]) / 2.0
|
| 1516 |
+
elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING:
|
| 1517 |
+
heights = ops.minimum(y[: self.num_thresholds - 1], y[1:])
|
| 1518 |
+
# self.summation_method = metrics_utils.AUCSummationMethod.MAJORING:
|
| 1519 |
+
else:
|
| 1520 |
+
heights = ops.maximum(y[: self.num_thresholds - 1], y[1:])
|
| 1521 |
+
|
| 1522 |
+
# Sum up the areas of all the rectangles.
|
| 1523 |
+
if self.multi_label:
|
| 1524 |
+
riemann_terms = ops.multiply(
|
| 1525 |
+
x[: self.num_thresholds - 1] - x[1:], heights
|
| 1526 |
+
)
|
| 1527 |
+
by_label_auc = ops.sum(riemann_terms, axis=0)
|
| 1528 |
+
|
| 1529 |
+
if self.label_weights is None:
|
| 1530 |
+
# Unweighted average of the label AUCs.
|
| 1531 |
+
return ops.mean(by_label_auc)
|
| 1532 |
+
else:
|
| 1533 |
+
# Weighted average of the label AUCs.
|
| 1534 |
+
return ops.divide(
|
| 1535 |
+
ops.sum(ops.multiply(by_label_auc, self.label_weights)),
|
| 1536 |
+
ops.maximum(ops.sum(self.label_weights), backend.epsilon()),
|
| 1537 |
+
)
|
| 1538 |
+
else:
|
| 1539 |
+
return ops.sum(
|
| 1540 |
+
ops.multiply(x[: self.num_thresholds - 1] - x[1:], heights)
|
| 1541 |
+
)
|
| 1542 |
+
|
| 1543 |
+
def reset_state(self):
|
| 1544 |
+
if self._built:
|
| 1545 |
+
if self.multi_label:
|
| 1546 |
+
variable_shape = (self.num_thresholds, self._num_labels)
|
| 1547 |
+
else:
|
| 1548 |
+
variable_shape = (self.num_thresholds,)
|
| 1549 |
+
|
| 1550 |
+
self.true_positives.assign(ops.zeros(variable_shape))
|
| 1551 |
+
self.false_positives.assign(ops.zeros(variable_shape))
|
| 1552 |
+
self.true_negatives.assign(ops.zeros(variable_shape))
|
| 1553 |
+
self.false_negatives.assign(ops.zeros(variable_shape))
|
| 1554 |
+
|
| 1555 |
+
def get_config(self):
|
| 1556 |
+
label_weights = self.label_weights
|
| 1557 |
+
config = {
|
| 1558 |
+
"num_thresholds": self.num_thresholds,
|
| 1559 |
+
"curve": self.curve.value,
|
| 1560 |
+
"summation_method": self.summation_method.value,
|
| 1561 |
+
"multi_label": self.multi_label,
|
| 1562 |
+
"num_labels": self.num_labels,
|
| 1563 |
+
"label_weights": label_weights,
|
| 1564 |
+
"from_logits": self._from_logits,
|
| 1565 |
+
}
|
| 1566 |
+
# optimization to avoid serializing a large number of generated
|
| 1567 |
+
# thresholds
|
| 1568 |
+
if self._init_from_thresholds:
|
| 1569 |
+
# We remove the endpoint thresholds as an inverse of how the
|
| 1570 |
+
# thresholds were initialized. This ensures that a metric
|
| 1571 |
+
# initialized from this config has the same thresholds.
|
| 1572 |
+
config["thresholds"] = self.thresholds[1:-1]
|
| 1573 |
+
base_config = super().get_config()
|
| 1574 |
+
return {**base_config, **config}
|
| 1575 |
+
|
lib/python3.10/site-packages/keras_core/src/metrics/f_score_metrics.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src import backend
|
| 2 |
+
from keras_core.src import initializers
|
| 3 |
+
from keras_core.src import ops
|
| 4 |
+
from keras_core.src.api_export import keras_core_export
|
| 5 |
+
from keras_core.src.metrics.metric import Metric
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@keras_core_export("keras_core.metrics.FBetaScore")
|
| 9 |
+
class FBetaScore(Metric):
|
| 10 |
+
"""Computes F-Beta score.
|
| 11 |
+
|
| 12 |
+
Formula:
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
b2 = beta ** 2
|
| 16 |
+
f_beta_score = (1 + b2) * (precision * recall) / (precision * b2 + recall)
|
| 17 |
+
```
|
| 18 |
+
This is the weighted harmonic mean of precision and recall.
|
| 19 |
+
Its output range is `[0, 1]`. It works for both multi-class
|
| 20 |
+
and multi-label classification.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
average: Type of averaging to be performed across per-class results
|
| 24 |
+
in the multi-class case.
|
| 25 |
+
Acceptable values are `None`, `"micro"`, `"macro"` and
|
| 26 |
+
`"weighted"`. Defaults to `None`.
|
| 27 |
+
If `None`, no averaging is performed and `result()` will return
|
| 28 |
+
the score for each class.
|
| 29 |
+
If `"micro"`, compute metrics globally by counting the total
|
| 30 |
+
true positives, false negatives and false positives.
|
| 31 |
+
If `"macro"`, compute metrics for each label,
|
| 32 |
+
and return their unweighted mean.
|
| 33 |
+
This does not take label imbalance into account.
|
| 34 |
+
If `"weighted"`, compute metrics for each label,
|
| 35 |
+
and return their average weighted by support
|
| 36 |
+
(the number of true instances for each label).
|
| 37 |
+
This alters `"macro"` to account for label imbalance.
|
| 38 |
+
It can result in an score that is not between precision and recall.
|
| 39 |
+
beta: Determines the weight of given to recall
|
| 40 |
+
in the harmonic mean between precision and recall (see pseudocode
|
| 41 |
+
equation above). Defaults to `1`.
|
| 42 |
+
threshold: Elements of `y_pred` greater than `threshold` are
|
| 43 |
+
converted to be 1, and the rest 0. If `threshold` is
|
| 44 |
+
`None`, the argmax of `y_pred` is converted to 1, and the rest to 0.
|
| 45 |
+
name: Optional. String name of the metric instance.
|
| 46 |
+
dtype: Optional. Data type of the metric result.
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
F-Beta Score: float.
|
| 50 |
+
|
| 51 |
+
Example:
|
| 52 |
+
|
| 53 |
+
>>> metric = keras_core.metrics.FBetaScore(beta=2.0, threshold=0.5)
|
| 54 |
+
>>> y_true = np.array([[1, 1, 1],
|
| 55 |
+
... [1, 0, 0],
|
| 56 |
+
... [1, 1, 0]], np.int32)
|
| 57 |
+
>>> y_pred = np.array([[0.2, 0.6, 0.7],
|
| 58 |
+
... [0.2, 0.6, 0.6],
|
| 59 |
+
... [0.6, 0.8, 0.0]], np.float32)
|
| 60 |
+
>>> metric.update_state(y_true, y_pred)
|
| 61 |
+
>>> result = metric.result()
|
| 62 |
+
>>> result
|
| 63 |
+
[0.3846154 , 0.90909094, 0.8333334 ]
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
average=None,
|
| 69 |
+
beta=1.0,
|
| 70 |
+
threshold=None,
|
| 71 |
+
name="fbeta_score",
|
| 72 |
+
dtype=None,
|
| 73 |
+
):
|
| 74 |
+
super().__init__(name=name, dtype=dtype)
|
| 75 |
+
|
| 76 |
+
if average not in (None, "micro", "macro", "weighted"):
|
| 77 |
+
raise ValueError(
|
| 78 |
+
"Invalid `average` argument value. Expected one of: "
|
| 79 |
+
"{None, 'micro', 'macro', 'weighted'}. "
|
| 80 |
+
f"Received: average={average}"
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
if not isinstance(beta, float):
|
| 84 |
+
raise ValueError(
|
| 85 |
+
"Invalid `beta` argument value. "
|
| 86 |
+
"It should be a Python float. "
|
| 87 |
+
f"Received: beta={beta} of type '{type(beta)}'"
|
| 88 |
+
)
|
| 89 |
+
if beta <= 0.0:
|
| 90 |
+
raise ValueError(
|
| 91 |
+
"Invalid `beta` argument value. "
|
| 92 |
+
"It should be > 0. "
|
| 93 |
+
f"Received: beta={beta}"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
if threshold is not None:
|
| 97 |
+
if not isinstance(threshold, float):
|
| 98 |
+
raise ValueError(
|
| 99 |
+
"Invalid `threshold` argument value. "
|
| 100 |
+
"It should be a Python float. "
|
| 101 |
+
f"Received: threshold={threshold} "
|
| 102 |
+
f"of type '{type(threshold)}'"
|
| 103 |
+
)
|
| 104 |
+
if threshold > 1.0 or threshold <= 0.0:
|
| 105 |
+
raise ValueError(
|
| 106 |
+
"Invalid `threshold` argument value. "
|
| 107 |
+
"It should verify 0 < threshold <= 1. "
|
| 108 |
+
f"Received: threshold={threshold}"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
self.average = average
|
| 112 |
+
self.beta = beta
|
| 113 |
+
self.threshold = threshold
|
| 114 |
+
self.axis = None
|
| 115 |
+
self._built = False
|
| 116 |
+
|
| 117 |
+
if self.average != "micro":
|
| 118 |
+
self.axis = 0
|
| 119 |
+
|
| 120 |
+
def _build(self, y_true_shape, y_pred_shape):
|
| 121 |
+
if len(y_pred_shape) != 2 or len(y_true_shape) != 2:
|
| 122 |
+
raise ValueError(
|
| 123 |
+
"FBetaScore expects 2D inputs with shape "
|
| 124 |
+
"(batch_size, output_dim). Received input "
|
| 125 |
+
f"shapes: y_pred.shape={y_pred_shape} and "
|
| 126 |
+
f"y_true.shape={y_true_shape}."
|
| 127 |
+
)
|
| 128 |
+
if y_pred_shape[-1] is None or y_true_shape[-1] is None:
|
| 129 |
+
raise ValueError(
|
| 130 |
+
"FBetaScore expects 2D inputs with shape "
|
| 131 |
+
"(batch_size, output_dim), with output_dim fully "
|
| 132 |
+
"defined (not None). Received input "
|
| 133 |
+
f"shapes: y_pred.shape={y_pred_shape} and "
|
| 134 |
+
f"y_true.shape={y_true_shape}."
|
| 135 |
+
)
|
| 136 |
+
num_classes = y_pred_shape[-1]
|
| 137 |
+
if self.average != "micro":
|
| 138 |
+
init_shape = num_classes
|
| 139 |
+
else:
|
| 140 |
+
init_shape = ()
|
| 141 |
+
|
| 142 |
+
def _add_zeros_variable(name):
|
| 143 |
+
return self.add_variable(
|
| 144 |
+
name=name,
|
| 145 |
+
shape=init_shape,
|
| 146 |
+
initializer=initializers.Zeros(),
|
| 147 |
+
dtype=self.dtype,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
self.true_positives = _add_zeros_variable("true_positives")
|
| 151 |
+
self.false_positives = _add_zeros_variable("false_positives")
|
| 152 |
+
self.false_negatives = _add_zeros_variable("false_negatives")
|
| 153 |
+
self.intermediate_weights = _add_zeros_variable("intermediate_weights")
|
| 154 |
+
self._built = True
|
| 155 |
+
|
| 156 |
+
def update_state(self, y_true, y_pred, sample_weight=None):
|
| 157 |
+
y_true = ops.convert_to_tensor(y_true, dtype=self.dtype)
|
| 158 |
+
y_pred = ops.convert_to_tensor(y_pred, dtype=self.dtype)
|
| 159 |
+
if not self._built:
|
| 160 |
+
self._build(y_true.shape, y_pred.shape)
|
| 161 |
+
|
| 162 |
+
if self.threshold is None:
|
| 163 |
+
threshold = ops.max(y_pred, axis=-1, keepdims=True)
|
| 164 |
+
# make sure [0, 0, 0] doesn't become [1, 1, 1]
|
| 165 |
+
# Use abs(x) > eps, instead of x != 0 to check for zero
|
| 166 |
+
y_pred = ops.logical_and(
|
| 167 |
+
y_pred >= threshold, ops.abs(y_pred) > 1e-9
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
y_pred = y_pred > self.threshold
|
| 171 |
+
|
| 172 |
+
y_pred = ops.cast(y_pred, dtype=self.dtype)
|
| 173 |
+
y_true = ops.cast(y_true, dtype=self.dtype)
|
| 174 |
+
if sample_weight is not None:
|
| 175 |
+
sample_weight = ops.convert_to_tensor(
|
| 176 |
+
sample_weight, dtype=self.dtype
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
def _weighted_sum(val, sample_weight):
|
| 180 |
+
if sample_weight is not None:
|
| 181 |
+
val = ops.multiply(val, ops.expand_dims(sample_weight, 1))
|
| 182 |
+
return ops.sum(val, axis=self.axis)
|
| 183 |
+
|
| 184 |
+
self.true_positives.assign(
|
| 185 |
+
self.true_positives + _weighted_sum(y_pred * y_true, sample_weight)
|
| 186 |
+
)
|
| 187 |
+
self.false_positives.assign(
|
| 188 |
+
self.false_positives
|
| 189 |
+
+ _weighted_sum(y_pred * (1 - y_true), sample_weight)
|
| 190 |
+
)
|
| 191 |
+
self.false_negatives.assign(
|
| 192 |
+
self.false_negatives
|
| 193 |
+
+ _weighted_sum((1 - y_pred) * y_true, sample_weight)
|
| 194 |
+
)
|
| 195 |
+
self.intermediate_weights.assign(
|
| 196 |
+
self.intermediate_weights + _weighted_sum(y_true, sample_weight)
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
def result(self):
|
| 200 |
+
precision = ops.divide(
|
| 201 |
+
self.true_positives,
|
| 202 |
+
self.true_positives + self.false_positives + backend.epsilon(),
|
| 203 |
+
)
|
| 204 |
+
recall = ops.divide(
|
| 205 |
+
self.true_positives,
|
| 206 |
+
self.true_positives + self.false_negatives + backend.epsilon(),
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
precision = ops.convert_to_tensor(precision, dtype=self.dtype)
|
| 210 |
+
recall = ops.convert_to_tensor(recall, dtype=self.dtype)
|
| 211 |
+
|
| 212 |
+
mul_value = precision * recall
|
| 213 |
+
add_value = ((self.beta**2) * precision) + recall
|
| 214 |
+
mean = ops.divide(mul_value, add_value + backend.epsilon())
|
| 215 |
+
f1_score = mean * (1 + (self.beta**2))
|
| 216 |
+
|
| 217 |
+
if self.average == "weighted":
|
| 218 |
+
weights = ops.divide(
|
| 219 |
+
self.intermediate_weights,
|
| 220 |
+
ops.sum(self.intermediate_weights) + backend.epsilon(),
|
| 221 |
+
)
|
| 222 |
+
f1_score = ops.sum(f1_score * weights)
|
| 223 |
+
|
| 224 |
+
elif self.average is not None: # [micro, macro]
|
| 225 |
+
f1_score = ops.mean(f1_score)
|
| 226 |
+
|
| 227 |
+
return f1_score
|
| 228 |
+
|
| 229 |
+
def get_config(self):
|
| 230 |
+
"""Returns the serializable config of the metric."""
|
| 231 |
+
|
| 232 |
+
config = {
|
| 233 |
+
"name": self.name,
|
| 234 |
+
"dtype": self.dtype,
|
| 235 |
+
"average": self.average,
|
| 236 |
+
"beta": self.beta,
|
| 237 |
+
"threshold": self.threshold,
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
base_config = super().get_config()
|
| 241 |
+
return {**base_config, **config}
|
| 242 |
+
|
| 243 |
+
def reset_state(self):
|
| 244 |
+
for v in self.variables:
|
| 245 |
+
v.assign(ops.zeros(v.shape, dtype=v.dtype))
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
@keras_core_export("keras_core.metrics.F1Score")
|
| 249 |
+
class F1Score(FBetaScore):
|
| 250 |
+
r"""Computes F-1 Score.
|
| 251 |
+
|
| 252 |
+
Formula:
|
| 253 |
+
|
| 254 |
+
```python
|
| 255 |
+
f1_score = 2 * (precision * recall) / (precision + recall)
|
| 256 |
+
```
|
| 257 |
+
This is the harmonic mean of precision and recall.
|
| 258 |
+
Its output range is `[0, 1]`. It works for both multi-class
|
| 259 |
+
and multi-label classification.
|
| 260 |
+
|
| 261 |
+
Args:
|
| 262 |
+
average: Type of averaging to be performed on data.
|
| 263 |
+
Acceptable values are `None`, `"micro"`, `"macro"`
|
| 264 |
+
and `"weighted"`. Defaults to `None`.
|
| 265 |
+
If `None`, no averaging is performed and `result()` will return
|
| 266 |
+
the score for each class.
|
| 267 |
+
If `"micro"`, compute metrics globally by counting the total
|
| 268 |
+
true positives, false negatives and false positives.
|
| 269 |
+
If `"macro"`, compute metrics for each label,
|
| 270 |
+
and return their unweighted mean.
|
| 271 |
+
This does not take label imbalance into account.
|
| 272 |
+
If `"weighted"`, compute metrics for each label,
|
| 273 |
+
and return their average weighted by support
|
| 274 |
+
(the number of true instances for each label).
|
| 275 |
+
This alters `"macro"` to account for label imbalance.
|
| 276 |
+
It can result in an score that is not between precision and recall.
|
| 277 |
+
threshold: Elements of `y_pred` greater than `threshold` are
|
| 278 |
+
converted to be 1, and the rest 0. If `threshold` is
|
| 279 |
+
`None`, the argmax of `y_pred` is converted to 1, and the rest to 0.
|
| 280 |
+
name: Optional. String name of the metric instance.
|
| 281 |
+
dtype: Optional. Data type of the metric result.
|
| 282 |
+
|
| 283 |
+
Returns:
|
| 284 |
+
F-1 Score: float.
|
| 285 |
+
|
| 286 |
+
Example:
|
| 287 |
+
|
| 288 |
+
>>> metric = keras_core.metrics.F1Score(threshold=0.5)
|
| 289 |
+
>>> y_true = np.array([[1, 1, 1],
|
| 290 |
+
... [1, 0, 0],
|
| 291 |
+
... [1, 1, 0]], np.int32)
|
| 292 |
+
>>> y_pred = np.array([[0.2, 0.6, 0.7],
|
| 293 |
+
... [0.2, 0.6, 0.6],
|
| 294 |
+
... [0.6, 0.8, 0.0]], np.float32)
|
| 295 |
+
>>> metric.update_state(y_true, y_pred)
|
| 296 |
+
>>> result = metric.result()
|
| 297 |
+
array([0.5 , 0.8 , 0.6666667], dtype=float32)
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
def __init__(
|
| 301 |
+
self,
|
| 302 |
+
average=None,
|
| 303 |
+
threshold=None,
|
| 304 |
+
name="f1_score",
|
| 305 |
+
dtype=None,
|
| 306 |
+
):
|
| 307 |
+
super().__init__(
|
| 308 |
+
average=average,
|
| 309 |
+
beta=1.0,
|
| 310 |
+
threshold=threshold,
|
| 311 |
+
name=name,
|
| 312 |
+
dtype=dtype,
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
def get_config(self):
|
| 316 |
+
base_config = super().get_config()
|
| 317 |
+
del base_config["beta"]
|
| 318 |
+
return base_config
|
| 319 |
+
|
lib/python3.10/site-packages/keras_core/src/metrics/hinge_metrics.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from keras_core.src.api_export import keras_core_export
|
| 2 |
+
from keras_core.src.losses.losses import categorical_hinge
|
| 3 |
+
from keras_core.src.losses.losses import hinge
|
| 4 |
+
from keras_core.src.losses.losses import squared_hinge
|
| 5 |
+
from keras_core.src.metrics import reduction_metrics
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@keras_core_export("keras_core.metrics.Hinge")
|
| 9 |
+
class Hinge(reduction_metrics.MeanMetricWrapper):
|
| 10 |
+
"""Computes the hinge metric between `y_true` and `y_pred`.
|
| 11 |
+
|
| 12 |
+
`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are
|
| 13 |
+
provided we will convert them to -1 or 1.
|
| 14 |
+
|
| 15 |
+
Args:
|
| 16 |
+
name: (Optional) string name of the metric instance.
|
| 17 |
+
dtype: (Optional) data type of the metric result.
|
| 18 |
+
|
| 19 |
+
Standalone usage:
|
| 20 |
+
|
| 21 |
+
>>> m = keras_core.metrics.Hinge()
|
| 22 |
+
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])
|
| 23 |
+
>>> m.result()
|
| 24 |
+
1.3
|
| 25 |
+
>>> m.reset_state()
|
| 26 |
+
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],
|
| 27 |
+
... sample_weight=[1, 0])
|
| 28 |
+
>>> m.result()
|
| 29 |
+
1.1
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self, name="hinge", dtype=None):
|
| 33 |
+
super().__init__(fn=hinge, name=name, dtype=dtype)
|
| 34 |
+
|
| 35 |
+
def get_config(self):
|
| 36 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@keras_core_export("keras_core.metrics.SquaredHinge")
|
| 40 |
+
class SquaredHinge(reduction_metrics.MeanMetricWrapper):
|
| 41 |
+
"""Computes the hinge metric between `y_true` and `y_pred`.
|
| 42 |
+
|
| 43 |
+
`y_true` values are expected to be -1 or 1. If binary (0 or 1) labels are
|
| 44 |
+
provided we will convert them to -1 or 1.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
name: (Optional) string name of the metric instance.
|
| 48 |
+
dtype: (Optional) data type of the metric result.
|
| 49 |
+
|
| 50 |
+
Standalone usage:
|
| 51 |
+
|
| 52 |
+
>>> m = keras_core.metrics.SquaredHinge()
|
| 53 |
+
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])
|
| 54 |
+
>>> m.result()
|
| 55 |
+
1.86
|
| 56 |
+
>>> m.reset_state()
|
| 57 |
+
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],
|
| 58 |
+
... sample_weight=[1, 0])
|
| 59 |
+
>>> m.result()
|
| 60 |
+
1.46
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(self, name="squared_hinge", dtype=None):
|
| 64 |
+
super().__init__(fn=squared_hinge, name=name, dtype=dtype)
|
| 65 |
+
|
| 66 |
+
def get_config(self):
|
| 67 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@keras_core_export("keras_core.metrics.CategoricalHinge")
|
| 71 |
+
class CategoricalHinge(reduction_metrics.MeanMetricWrapper):
|
| 72 |
+
"""Computes the categorical hinge metric between `y_true` and `y_pred`.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
name: (Optional) string name of the metric instance.
|
| 76 |
+
dtype: (Optional) data type of the metric result.
|
| 77 |
+
|
| 78 |
+
Standalone usage:
|
| 79 |
+
>>> m = keras_core.metrics.CategoricalHinge()
|
| 80 |
+
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]])
|
| 81 |
+
>>> m.result().numpy()
|
| 82 |
+
1.4000001
|
| 83 |
+
>>> m.reset_state()
|
| 84 |
+
>>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]],
|
| 85 |
+
... sample_weight=[1, 0])
|
| 86 |
+
>>> m.result()
|
| 87 |
+
1.2
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, name="categorical_hinge", dtype=None):
|
| 91 |
+
super().__init__(fn=categorical_hinge, name=name, dtype=dtype)
|
| 92 |
+
|
| 93 |
+
def get_config(self):
|
| 94 |
+
return {"name": self.name, "dtype": self.dtype}
|
| 95 |
+
|