yonatanbitton commited on
Commit
14cb1d8
·
1 Parent(s): e6dde7d

Update winogavil.py

Browse files
Files changed (1) hide show
  1. winogavil.py +15 -16
winogavil.py CHANGED
@@ -13,10 +13,9 @@
13
  # limitations under the License.
14
  """ WinoGAViL Loading Script """
15
 
16
-
17
  import json
18
  import os
19
- import pandas as pd
20
  import datasets
21
  from huggingface_hub import hf_hub_url
22
 
@@ -40,6 +39,7 @@ _LICENSE = "https://creativecommons.org/licenses/by/4.0/"
40
 
41
  _URL = "https://huggingface.co/datasets/nlphuji/winogavil/blob/main"
42
 
 
43
  class Winogavil(datasets.GeneratorBasedBuilder):
44
  VERSION = datasets.Version("1.1.0")
45
 
@@ -57,12 +57,12 @@ class Winogavil(datasets.GeneratorBasedBuilder):
57
  def _info(self):
58
  features = datasets.Features(
59
  {
 
 
 
60
  "cue": datasets.Value("string"),
61
- "candidate_images": [datasets.Image()],
62
- "association_images": [datasets.Image()],
63
- 'score_fool_the_ai': datasets.Value("float64"),
64
  "associations": [datasets.Value("string")],
65
- "candidates": [datasets.Value("string")],
66
  'num_associations': datasets.Value("int64"),
67
  'num_candidates': datasets.Value("int64"),
68
  'solvers_jaccard_mean': datasets.Value("float64"),
@@ -93,10 +93,10 @@ class Winogavil(datasets.GeneratorBasedBuilder):
93
  # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
94
  # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
95
  data_dir = dl_manager.download_and_extract({
96
- "examples_csv": hf_hub_url(repo_id="nlphuji/winogavil", repo_type='dataset', filename="winogavil_dataset.csv"),
97
- "images_dir": hf_hub_url(repo_id="nlphuji/winogavil", repo_type='dataset', filename="winogavil_images.zip")
98
- })
99
-
100
  return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)]
101
 
102
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
@@ -108,14 +108,13 @@ class Winogavil(datasets.GeneratorBasedBuilder):
108
  # columns_to_serialize = ['candidates', 'associations']
109
  # for c in columns_to_serialize:
110
  # df[c] = df[c].apply(json.loads)
111
-
112
  for r_idx, r in df.iterrows():
113
  r_dict = r.to_dict()
114
  r_dict['candidates'] = json.loads(r_dict['candidates'])
115
- candidates_images = [os.path.join(images_dir, "winogavil_images", f"{x}.{self.IMAGE_EXTENSION}") for x in r_dict['candidates']]
116
- r_dict['candidate_images'] = candidates_images
 
117
  r_dict['associations'] = json.loads(r_dict['associations'])
118
- association_images = [os.path.join(images_dir, "winogavil_images", f"{x}.{self.IMAGE_EXTENSION}") for x in r_dict['associations']]
119
- r_dict['association_images'] = association_images
120
  key = r['ID']
121
- yield key, r_dict
 
13
  # limitations under the License.
14
  """ WinoGAViL Loading Script """
15
 
 
16
  import json
17
  import os
18
+ import pandas as pd
19
  import datasets
20
  from huggingface_hub import hf_hub_url
21
 
 
39
 
40
  _URL = "https://huggingface.co/datasets/nlphuji/winogavil/blob/main"
41
 
42
+
43
  class Winogavil(datasets.GeneratorBasedBuilder):
44
  VERSION = datasets.Version("1.1.0")
45
 
 
57
  def _info(self):
58
  features = datasets.Features(
59
  {
60
+ "candidates": [datasets.Value("string")],
61
+ # "candidates_images": [datasets.Value("string")],
62
+ "candidates_images": [datasets.Image()],
63
  "cue": datasets.Value("string"),
 
 
 
64
  "associations": [datasets.Value("string")],
65
+ 'score_fool_the_ai': datasets.Value("float64"),
66
  'num_associations': datasets.Value("int64"),
67
  'num_candidates': datasets.Value("int64"),
68
  'solvers_jaccard_mean': datasets.Value("float64"),
 
93
  # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
94
  # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
95
  data_dir = dl_manager.download_and_extract({
96
+ "examples_csv": hf_hub_url("datasets/nlphuji/winogavil", filename="winogavil_dataset.csv"),
97
+ "images_dir": hf_hub_url("datasets/nlphuji/winogavil", filename="winogavil_images.zip")
98
+ })
99
+
100
  return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)]
101
 
102
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
 
108
  # columns_to_serialize = ['candidates', 'associations']
109
  # for c in columns_to_serialize:
110
  # df[c] = df[c].apply(json.loads)
111
+
112
  for r_idx, r in df.iterrows():
113
  r_dict = r.to_dict()
114
  r_dict['candidates'] = json.loads(r_dict['candidates'])
115
+ candidates_images = [os.path.join(images_dir, "winogavil_images", f"{x}.{self.IMAGE_EXTENSION}") for x in
116
+ r_dict['candidates']]
117
+ r_dict['candidates_images'] = candidates_images
118
  r_dict['associations'] = json.loads(r_dict['associations'])
 
 
119
  key = r['ID']
120
+ yield key, r_dict