|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" VASR Loading Script """ |
|
|
|
import json |
|
import os |
|
import pandas as pd |
|
import datasets |
|
from huggingface_hub import hf_hub_url |
|
|
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
VASR is a challenging dataset for evaluating computer vision commonsense reasoning abilities. Given a triplet of images, the task is to select an image candidate B' that completes the analogy (A to A' is like B to what?). Unlike previous work on visual analogy that focused on simple image transformations, we tackle complex analogies requiring understanding of scenes. Our experiments demonstrate that state-of-the-art models struggle with carefully chosen distractors (±53%, compared to 90% human accuracy). |
|
""" |
|
|
|
_HOMEPAGE = "https://vasr-dataset.github.io/" |
|
|
|
_LICENSE = "https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_URL = "https://huggingface.co/datasets/nlphuji/vasr/blob/main" |
|
|
|
class Vasr(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="v1", version=VERSION, description="vasr gold test dataset"), |
|
] |
|
DATASET_KEYS = ["A", "A'", "B", "B'", 'candidates', 'label', "A_str", "A'_str", "B_str", "B'_str"] |
|
HIDDEN_LABEL = '? (hidden)' |
|
QMARK_IMG = 'qmark.png' |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"A": datasets.Image(), |
|
"A'": datasets.Image(), |
|
"B": datasets.Image(), |
|
"B'": datasets.Image(), |
|
"candidates_images": [datasets.Image()], |
|
"label": datasets.Value("int64"), |
|
"candidates": [datasets.Value("string")], |
|
"A_str": datasets.Value("string"), |
|
"A'_str": datasets.Value("string"), |
|
"B_str": datasets.Value("string"), |
|
"B'_str": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract({ |
|
"images_dir": hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="vasr_images.zip") |
|
}) |
|
test_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="test_gold_unlabeled.csv") |
|
dev_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="dev_gold.csv") |
|
train_examples = hf_hub_url(repo_id="nlphuji/vasr", repo_type='dataset', filename="train_gold.csv") |
|
|
|
train_gen = datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={**data_dir, **{'examples_csv': train_examples}}) |
|
dev_gen = datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={**data_dir, **{'examples_csv': dev_examples}}) |
|
test_gen = datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={**data_dir, **{'examples_csv': test_examples}}) |
|
|
|
return [train_gen, dev_gen, test_gen] |
|
|
|
|
|
def _generate_examples(self, examples_csv, images_dir): |
|
|
|
|
|
df = pd.read_csv(examples_csv) |
|
|
|
for r_idx, r in df.iterrows(): |
|
r_dict = r.to_dict() |
|
r_dict['candidates'] = json.loads(r_dict['candidates']) |
|
candidates_images = [os.path.join(images_dir, "vasr_images", x) for x in |
|
r_dict['candidates']] |
|
r_dict['candidates_images'] = candidates_images |
|
r_dict["A_str"] = r_dict['A_img'] |
|
r_dict["A'_str"] = r_dict['B_img'] |
|
r_dict["B_str"] = r_dict['C_img'] |
|
r_dict["B'_str"] = r_dict['D_img'] |
|
for img in ['A_img', 'B_img', 'C_img', 'D_img']: |
|
if r_dict[img] == self.HIDDEN_LABEL: |
|
r_dict[img] = os.path.join(images_dir, "vasr_images", self.QMARK_IMG) |
|
else: |
|
r_dict[img] = os.path.join(images_dir, "vasr_images", r_dict[img]) |
|
r_dict["A"] = r_dict['A_img'] |
|
r_dict["A'"] = r_dict['B_img'] |
|
r_dict["B"] = r_dict['C_img'] |
|
r_dict["B'"] = r_dict['D_img'] |
|
relevant_r_dict = {k:v for k,v in r_dict.items() if k in self.DATASET_KEYS or k == 'candidates_images'} |
|
yield r_idx, relevant_r_dict |