|
import numpy as np |
|
from tqdm import tqdm |
|
import scipy.io as scio |
|
|
|
|
|
def intoBins(data, n_bins): |
|
k_labels = np.zeros((len(data), n_bins+1)) |
|
bin_size = (np.max(data)+0.0001-np.min(data)) / n_bins |
|
for i in tqdm(range(len(data))): |
|
index = (data[i]-np.min(data)) // bin_size |
|
k_labels[i, int(index)] = 1 |
|
return k_labels |
|
|
|
|
|
def preprocessing(n_data, data_length, degrees_of_freedom, n_labels, n_bins, path='2500\\2500'): |
|
|
|
all_data = np.zeros((n_data, degrees_of_freedom+n_labels+1+1, data_length)) |
|
|
|
for i in tqdm(range(2500)): |
|
file_name = f'{path}\\Data{i+1}.mat' |
|
data = scio.loadmat(file_name)['Data'][:data_length, :] |
|
data = np.transpose(data) |
|
all_data[i] = data |
|
|
|
f_and_xs = all_data[:, 1:2+degrees_of_freedom, :] |
|
mean = np.mean(f_and_xs, (0, 2)) |
|
std = np.std(f_and_xs, (0, 2)) |
|
f_and_xs = f_and_xs - np.reshape(mean, (1, -1, 1)) |
|
f_and_xs = f_and_xs / np.reshape(std, (1, -1, 1)) |
|
dict = {'f_and_xs': f_and_xs} |
|
|
|
|
|
for i in range(n_labels): |
|
label = all_data[:, 2+degrees_of_freedom+i, 0] |
|
bins = intoBins(label, n_bins)[:, :-1] |
|
dict[f'l_{i}'] = bins |
|
|
|
np.save('dataset.npy', dict) |
|
|
|
|
|
|
|
|
|
|
|
def load_dataset(path='dataset.npy'): |
|
""" |
|
:return: |
|
f_and_xs: numpy array of size [sample_number, channels, sample_length] |
|
label_0, label_1, label_2: one-hot encodes of size [sample_number, number_bins] |
|
""" |
|
|
|
r = np.load(path, allow_pickle=True).item() |
|
f_and_xs = r['f_and_xs'] |
|
label_0 = r['l_0'] |
|
label_1 = r['l_1'] |
|
label_2 = r['l_2'] |
|
return f_and_xs, label_0, label_1, label_2 |
|
|
|
|
|
f_and_xs, label_0, label_1, label_2 = load_dataset() |
|
|
|
|