invoice_layoutlmv3 / invoice_layoutlmv3.py
nitesh-sawadia's picture
Upload invoice_layoutlmv3.py
435e59c
### Data loader script uploaded to huggingface hub
import json
import os
from pathlib import Path
import uuid
import datasets
import imgaug.augmenters as iaa
from imgaug.augmentables.bbs import BoundingBox, BoundingBoxesOnImage
import imageio
from PIL import Image
import re
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
Created for IntellectAI Hackathon!
"""
def load_image(image_path):
image = Image.open(image_path).convert("RGB")
w, h = image.size
return image, (w, h)
def _get_drive_url(url):
base_url = 'https://drive.google.com/uc?id='
split_url = url.split('/')
return base_url + split_url[5]
def quad_to_box(quad):
x1, y1 = quad[0].values()
x3, y3 = quad[2].values()
box = [x1, y1, x3, y3]
if box[3] < box[1]:
bbox = list(box)
tmp = bbox[3]
bbox[3] = bbox[1]
bbox[1] = tmp
box = tuple(bbox)
if box[2] < box[0]:
bbox = list(box)
tmp = bbox[2]
bbox[2] = bbox[0]
bbox[0] = tmp
box = tuple(bbox)
return box
def augment_image(file_path, file, bboxes):
aug = iaa.SomeOf(2,[
iaa.ElasticTransformation(alpha=(0, 2.0), sigma=0.25),
# iaa.imgcorruptlike.GaussianBlur(severity=1),
iaa.imgcorruptlike.Pixelate(severity=2),
iaa.imgcorruptlike.Contrast(severity=2),
# iaa.PerspectiveTransform(scale=(0.01, 0.15)),
iaa.imgcorruptlike.Brightness(severity=1),
])
image = imageio.imread(os.path.join(file_path, file))
bbs = BoundingBoxesOnImage.from_xyxy_array(bboxes, shape=image.shape)
image_aug, bbs_aug = aug(image=image, bounding_boxes=bbs)
bbs_aug = bbs_aug.remove_out_of_image()
bbs_aug = bbs_aug.clip_out_of_image()
if re.findall('Image...', str(bbs_aug)) == ['Image([]']:
return None, None
else:
aug_bboxes = bbs_aug.to_xyxy_array()
return Image.fromarray(image_aug, 'L').convert("RGB"), aug_bboxes
_URLS = {
"image_files": _get_drive_url("https://drive.google.com/file/d/1bVc6xIAYO22RpehEkmuihaGsZ_VoOH2E"), #URL to zip file containing images
"metadata_file": _get_drive_url("https://drive.google.com/file/d/1dgH6LiEPc2xuj0y7NcUyp6IDCELdwuqe") #URL to metadata.json from UBIAI annotation
}
class IntellectConfig(datasets.BuilderConfig):
"""BuilderConfig for IntellectAI"""
def __init__(self, **kwargs):
"""BuilderConfig for IntellectAI.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(IntellectConfig, self).__init__(**kwargs)
class IntellectAI(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
IntellectConfig(name="intellectai", version=datasets.Version("1.0.0"), description="IntellectAI Hackathon dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'O',
'B-BILL_TO_NAME',
'B-BILL_TO_ADDRESS',
'B-SHIP_TO_NAME',
'B-SHIP_TO_ADDRESS',
'B-INVOICE_NUMBER',
'B-INVOICE_DATE',
'B-PAYMENT_INFO',
'B-DUE_DATE',
'B-TOTAL_TAX_AMOUNT',
'B-TOTAL_AMOUNT',
'I-BILL_TO_NAME',
'I-BILL_TO_ADDRESS',
'I-SHIP_TO_NAME',
'I-SHIP_TO_ADDRESS',
'I-INVOICE_NUMBER',
'I-INVOICE_DATE',
'I-PAYMENT_INFO',
'I-DUE_DATE',
'I-TOTAL_TAX_AMOUNT',
'I-TOTAL_AMOUNT',
]
)
),
"image": datasets.features.Image(),
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
"""Uses local files located with data_dir"""
self.metadata_file = dl_manager.download(_URLS["metadata_file"])
downloaded_file = dl_manager.download_and_extract(_URLS["image_files"])
print(downloaded_file)
print(os.listdir(downloaded_file))
dest = Path(downloaded_file)/"invoice_data"
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"inv_train"}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dest/"inv_dev"}
)
]
def get_line_bbox(self, bboxs):
x = [bboxs[i][j] for i in range(len(bboxs)) for j in range(0, len(bboxs[i]), 2)]
y = [bboxs[i][j] for i in range(len(bboxs)) for j in range(1, len(bboxs[i]), 2)]
x0, y0, x1, y1 = min(x), min(y), max(x), max(y)
assert x1 >= x0 and y1 >= y0
bbox = [[x0, y0, x1, y1] for _ in range(len(bboxs))]
return bbox
def _generate_examples(self, filepath):
with open(self.metadata_file, "r", encoding="utf8") as f:
metadata = json.load(f)
logger.info("Generating examples from = %s", filepath)
for guid, file in enumerate(sorted(os.listdir(filepath))):
words = []
bboxes = []
ner_tags = []
image_path = os.path.join(filepath, file)
image, size = load_image(image_path)
data = [obj for obj in metadata if obj["documentName"]==file][0]
for item in data["annotation"]:
cur_line_bboxes = []
line_words, label = item["boundingBoxes"], item["label"]
line_words = [w for w in line_words if w["word"].strip() != ""]
if len(line_words) == 0:
continue
if label == "OTHER":
for w in line_words:
words.append(w["word"])
ner_tags.append("O")
cur_line_bboxes.append(quad_to_box(w["normalizedVertices"]))
else:
words.append(line_words[0]["word"])
ner_tags.append("B-" + label.upper())
cur_line_bboxes.append(quad_to_box(line_words[0]["normalizedVertices"]))
for w in line_words[1:]:
words.append(w["word"])
ner_tags.append("I-" + label.upper())
cur_line_bboxes.append(quad_to_box(w["normalizedVertices"]))
cur_line_bboxes = self.get_line_bbox(cur_line_bboxes)
bboxes.extend(cur_line_bboxes)
image_variants = [(image, bboxes)]
for _ in range(4):
aug_image, aug_bboxes = augment_image(filepath, file, bboxes)
if aug_image is not None and aug_bboxes is not None:
image_variants.append((aug_image, aug_bboxes))
for img, bbs in image_variants:
yield str(uuid.uuid4()), {"id": str(uuid.uuid4()), "words": words, "bboxes": bbs, "ner_tags": ner_tags,
"image": img}