Update NURC-SP_ENTOA_TTS.py
Browse files- NURC-SP_ENTOA_TTS.py +31 -61
NURC-SP_ENTOA_TTS.py
CHANGED
@@ -2,8 +2,6 @@ import csv
|
|
2 |
import datasets
|
3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
4 |
|
5 |
-
|
6 |
-
|
7 |
_PROMPTS_URLS = {
|
8 |
"dev": "automatic/validation.csv",
|
9 |
"train": "automatic/train.csv",
|
@@ -24,13 +22,11 @@ _PATH_TO_CLIPS = {
|
|
24 |
"train": "train",
|
25 |
}
|
26 |
|
27 |
-
|
28 |
class NurcSPConfig(BuilderConfig):
|
29 |
def __init__(self, prompts_type="original", **kwargs):
|
30 |
super().__init__(**kwargs)
|
31 |
self.prompts_type = prompts_type
|
32 |
|
33 |
-
|
34 |
class NurcSPDataset(GeneratorBasedBuilder):
|
35 |
BUILDER_CONFIGS = [
|
36 |
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
@@ -62,78 +58,52 @@ class NurcSPDataset(GeneratorBasedBuilder):
|
|
62 |
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
-
prompts_urls = _PROMPTS_URLS
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
prompts_path = dl_manager.download(prompts_urls)
|
71 |
-
archive = dl_manager.download(_ARCHIVES)
|
72 |
|
|
|
73 |
return [
|
74 |
SplitGenerator(
|
75 |
-
name=Split.
|
76 |
gen_kwargs={
|
77 |
-
"prompts_path": prompts_path["
|
78 |
-
"path_to_clips": _PATH_TO_CLIPS["
|
79 |
-
"audio_files":
|
80 |
}
|
81 |
),
|
82 |
SplitGenerator(
|
83 |
-
name=Split.
|
84 |
gen_kwargs={
|
85 |
-
"prompts_path": prompts_path["
|
86 |
-
"path_to_clips": _PATH_TO_CLIPS["
|
87 |
-
"audio_files":
|
88 |
}
|
89 |
),
|
90 |
]
|
91 |
|
92 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
|
|
93 |
examples = {}
|
94 |
-
with open(prompts_path, "r") as f:
|
95 |
csv_reader = csv.DictReader(f)
|
96 |
for row in csv_reader:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
start_time = row['start_time']
|
101 |
-
end_time = row['end_time']
|
102 |
-
duration = row['duration']
|
103 |
-
quality = row['quality']
|
104 |
-
speech_genre = row['speech_genre']
|
105 |
-
speech_style = row['speech_style']
|
106 |
-
variety = row['variety']
|
107 |
-
accent = row['accent']
|
108 |
-
sex = row['sex']
|
109 |
-
age_range = row['age_range']
|
110 |
-
num_speakers = row['num_speakers']
|
111 |
-
speaker_id = row['speaker_id']
|
112 |
-
examples[file_path] = {
|
113 |
-
"audio_name": audio_name,
|
114 |
-
"file_path": file_path,
|
115 |
-
"text": text,
|
116 |
-
"start_time": start_time,
|
117 |
-
"end_time": end_time,
|
118 |
-
"duration": duration,
|
119 |
-
"quality": quality,
|
120 |
-
"speech_genre": speech_genre,
|
121 |
-
"speech_style": speech_style,
|
122 |
-
"variety": variety,
|
123 |
-
"accent": accent,
|
124 |
-
"sex": sex,
|
125 |
-
"age_range": age_range,
|
126 |
-
"num_speakers": num_speakers,
|
127 |
-
"speaker_id": speaker_id,
|
128 |
}
|
129 |
-
|
|
|
130 |
id_ = 0
|
131 |
-
for
|
132 |
-
if
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
2 |
import datasets
|
3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
4 |
|
|
|
|
|
5 |
_PROMPTS_URLS = {
|
6 |
"dev": "automatic/validation.csv",
|
7 |
"train": "automatic/train.csv",
|
|
|
22 |
"train": "train",
|
23 |
}
|
24 |
|
|
|
25 |
class NurcSPConfig(BuilderConfig):
|
26 |
def __init__(self, prompts_type="original", **kwargs):
|
27 |
super().__init__(**kwargs)
|
28 |
self.prompts_type = prompts_type
|
29 |
|
|
|
30 |
class NurcSPDataset(GeneratorBasedBuilder):
|
31 |
BUILDER_CONFIGS = [
|
32 |
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
|
|
58 |
)
|
59 |
|
60 |
def _split_generators(self, dl_manager):
|
61 |
+
prompts_urls = _PROMPTS_URLS if self.config.prompts_type == "original" else _PROMPTS_FILTERED_URLS
|
62 |
+
|
63 |
+
# Download the prompts CSV files and audio archive
|
64 |
+
prompts_path = dl_manager.download_and_extract(prompts_urls)
|
65 |
+
archive = dl_manager.download_and_extract(_ARCHIVES)
|
|
|
|
|
66 |
|
67 |
+
# Return split generators
|
68 |
return [
|
69 |
SplitGenerator(
|
70 |
+
name=Split.TRAIN,
|
71 |
gen_kwargs={
|
72 |
+
"prompts_path": prompts_path["train"],
|
73 |
+
"path_to_clips": _PATH_TO_CLIPS["train"],
|
74 |
+
"audio_files": archive["train"],
|
75 |
}
|
76 |
),
|
77 |
SplitGenerator(
|
78 |
+
name=Split.VALIDATION, # Changed from Split.VALIDATION to match error message
|
79 |
gen_kwargs={
|
80 |
+
"prompts_path": prompts_path["dev"],
|
81 |
+
"path_to_clips": _PATH_TO_CLIPS["dev"],
|
82 |
+
"audio_files": archive["dev"],
|
83 |
}
|
84 |
),
|
85 |
]
|
86 |
|
87 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
88 |
+
# Load CSV data
|
89 |
examples = {}
|
90 |
+
with open(prompts_path, "r", encoding='utf-8') as f:
|
91 |
csv_reader = csv.DictReader(f)
|
92 |
for row in csv_reader:
|
93 |
+
examples[row['file_path']] = {
|
94 |
+
key: row[key]
|
95 |
+
for key in row.keys()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
}
|
97 |
+
|
98 |
+
# Process audio files
|
99 |
id_ = 0
|
100 |
+
for root, _, files in datasets.utils.py_utils.walk(audio_files):
|
101 |
+
if path_to_clips in root:
|
102 |
+
for fname in files:
|
103 |
+
file_path = f"{path_to_clips}/{fname}"
|
104 |
+
if file_path in examples:
|
105 |
+
full_path = f"{root}/{fname}"
|
106 |
+
with open(full_path, "rb") as audio_file:
|
107 |
+
audio = {"path": file_path, "bytes": audio_file.read()}
|
108 |
+
yield id_, {**examples[file_path], "audio": audio}
|
109 |
+
id_ += 1
|